1
|
Patil R, Singh A, Mane S, Roy T. Emerging encapsulation strategies for vitamin A fortification in food sector: an overview. Food Sci Biotechnol 2024; 33:2937-2951. [PMID: 39220307 PMCID: PMC11364737 DOI: 10.1007/s10068-024-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024] Open
Abstract
Micro- and nano-encapsulation techniques, such as microfluidization, spray drying, and centrifugal extrusion, have been widely utilized in various industries, including pharmaceuticals, food, cosmetics, and agriculture, to improve the stability, shelf life, and bioavailability of active ingredients, such as vitamin A. Emulsion-based delivery platforms offer feasible and appropriate alternatives for safeguarding, encapsulating, and transporting bioactive compounds. Therefore, there is a need to enrich our basic diet to prevent vitamin A deficiency within a population. This review focused on addressing vitamin A shortages, encapsulation techniques for improving the delivery of vital vitamins A and their food applications. Additionally, more studies are required to guarantee the security of nano-delivery strategies, as they proliferate in the food and beverage sector. Graphical Abstract
Collapse
Affiliation(s)
- Reena Patil
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (Institute of National Importance, Under MoFPI, Govt. of India), Kundli, District- Sonipat, Haryana 131 028 India
| | - Anupama Singh
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (Institute of National Importance, Under MoFPI, Govt. of India), Kundli, District- Sonipat, Haryana 131 028 India
| | - Sheetal Mane
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (Institute of National Importance, Under MoFPI, Govt. of India), Kundli, District- Sonipat, Haryana 131 028 India
| | - Tapas Roy
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (Institute of National Importance, Under MoFPI, Govt. of India), Kundli, District- Sonipat, Haryana 131 028 India
| |
Collapse
|
2
|
Espinoza-Espinoza LA, Muñoz-More HD, Nole-Jaramillo JM, Ruiz-Flores LA, Arana-Torres NM, Moreno-Quispe LA, Valdiviezo-Marcelo J. Microencapsulation of vitamins: A review and meta-analysis of coating materials, release and food fortification. Food Res Int 2024; 187:114420. [PMID: 38763670 DOI: 10.1016/j.foodres.2024.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Vitamins are responsible for providing biological properties to the human body; however, their instability under certain environmental conditions limits their utilization in the food industry. The objective was to conduct a systematic review on the use of biopolymers and lipid bases in microencapsulation processes, assessing their impact on the stability, controlled release, and viability of fortified foods with microencapsulated vitamins. The literature search was conducted between the years 2013-2023, gathering information from databases such as Scopus, PubMed, Web of Science and publishers including Taylor & Francis, Elsevier, Springer and MDPI; a total of 49 articles were compiled The results were classified according to the microencapsulation method, considering the following information: core, coating material, solvent, formulation, process conditions, particle size, efficiency, yield, bioavailability, bioaccessibility, in vitro release, correlation coefficient and references. It has been evidenced that gums are the most frequently employed coatings in the protection of vitamins (14.04%), followed by alginate (10.53%), modified chitosan (9.65%), whey protein (8.77%), lipid bases (8.77%), chitosan (7.89%), modified starch (7.89%), starch (7.02%), gelatin (6.14%), maltodextrin (5.26%), zein (3.51%), pectin (2.63%) and other materials (7.89%). The factors influencing the release of vitamins include pH, modification of the coating material and crosslinking agents; additionally, it was determined that the most fitting mathematical model for release values is Weibull, followed by Zero Order, Higuchi and Korsmeyer-Peppas; finally, foods commonly fortified with microencapsulated vitamins were described, with yogurt, bakery products and gummy candies being notable examples.
Collapse
Affiliation(s)
| | - Henry Daniel Muñoz-More
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru.
| | - Juliana Maricielo Nole-Jaramillo
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Luis Alberto Ruiz-Flores
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Nancy Maribel Arana-Torres
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Luz Arelis Moreno-Quispe
- Facultad de Ciencias empresariales y Turismo, Universidad Nacional de Frontera, Sullana 20100, Peru
| | - Jaime Valdiviezo-Marcelo
- Laboratorio de Alimentos Funcionales y Bioprocesos - Facultad de Ingeniería de Industrias alimentarias, Universidad Nacional de Frontera, Sullana 20100, Peru
| |
Collapse
|
3
|
Ribeiro AM, Gonçalves A, Rocha F, Estevinho BN. Statistical simplex centroid experimental design for evaluation of pectin, modified chitosan and modified starch as encapsulating agents on the development of vitamin E-loaded microparticles by spray-drying. Int J Biol Macromol 2024; 269:131792. [PMID: 38677704 DOI: 10.1016/j.ijbiomac.2024.131792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
Vitamin E encapsulation into biopolymer-based microparticles, obtained by spray-drying technology, was proposed to improve the encapsulation efficiency and the controlled release of fat-soluble vitamin. Binary and ternary blends of pectin, modified chitosan and modified starch, modified starch + modified chitosan, modified starch + pectin, modified chitosan + pectin and modified starch + modified chitosan + pectin ((0.33, 0.33, 0.33), (0.70, 0.15, 0.15), (0.15, 0.70, 0.15) and (0.15, 0.15, 0.70)) were proposed to produce and evaluate different carrier-based delivery systems. Vitamin E-loaded microparticles and empty microparticles were created with a product yield between 9 and 49 %. The mean diameter among all microparticles varied between 3.74 ± 0.02 and 421 ± 21 μm (differential volume distribution). Oval, spherical or irregular microparticles, with a variable morphology from a smooth to a high rough surface structure, with concavities, were produced. All vitamin E-loaded microparticles exhibited an encapsulation efficiency higher than 70 %. The slower vitamin E controlled release was observed from microparticles composed by modified chitosan (>36 h), while the faster release was achieved from microparticles individually composed by pectin (39 min). In general, the Fickian diffusion is the main release mechanism involved in the microparticles produced with modified chitosan, other formulations combine also other mechanisms such as swelling.
Collapse
Affiliation(s)
- A Marisa Ribeiro
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Antónia Gonçalves
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Balanč B, Salević-Jelić A, Đorđević V, Bugarski B, Nedović V, Petrović P, Knežević-Jugović Z. The Application of Protein Concentrate Obtained from Green Leaf Biomass in Structuring Nanofibers for Delivery of Vitamin B12. Foods 2024; 13:1576. [PMID: 38790876 PMCID: PMC11121456 DOI: 10.3390/foods13101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Nanofibers made of natural proteins have caught the increasing attention of food scientists because of their edibility, renewability, and possibility for various applications. The objective of this study was to prepare nanofibers based on pumpkin leaf protein concentrate (LPC) as a by-product from some crops and gelatin as carriers for vitamin B12 using the electrospinning technique. The starting mixtures were analyzed in terms of viscosity, density, surface tension, and electrical conductivity. Scanning electron micrographs of the obtained nanofibers showed a slight increase in fiber average diameter with the addition of LPC and vitamin B12 (~81 nm to 109 nm). Fourier transform infrared spectroscopy verified the physical blending of gelatin and LPC without phase separation. Thermal analysis showed the fibers had good thermal stability up to 220 °C, highlighting their potential for food applications, regardless of the thermal processing. Additionally, the newly developed fibers have good storage stability, as detected by low water activity values ranging from 0.336 to 0.376. Finally, the release study illustrates the promising sustained release of vitamin B12 from gelatin-LPC nanofibers, mainly governed by the Fickian diffusion mechanism. The obtained results implied the potential of these nanofibers in the development of functional food products with improved nutritional profiles.
Collapse
Affiliation(s)
- Bojana Balanč
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (P.P.)
| | - Ana Salević-Jelić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia; (A.S.-J.); (V.N.)
| | - Verica Đorđević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| | - Viktor Nedović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Beograd, Serbia; (A.S.-J.); (V.N.)
| | - Predrag Petrović
- Innovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (P.P.)
| | - Zorica Knežević-Jugović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (Z.K.-J.)
| |
Collapse
|
5
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
6
|
Rodrigues T, Mota R, Gales L, Tamagnini P, Campo-Deaño L. Microrheological characterisation of Cyanoflan in human blood plasma. Carbohydr Polym 2024; 326:121575. [PMID: 38142107 DOI: 10.1016/j.carbpol.2023.121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 12/25/2023]
Abstract
Naturally occurring polysaccharidic biopolymers released by marine cyanobacteria are of great interest for numerous biomedical applications, such as wound healing and drug delivery. Such polymers generally exhibit high molecular weight and an entangled structure that impact the rheology of biological fluids. However, biocompatibility tests focus not so much on rheological properties as on immune response. In the present study, the rheological behaviour of native blood plasma as a function of the concentration of a cyanobacterium biopolymer is investigated via multiple particle tracking microrheology, which measures the Brownian motion of probes embedded in a sample, and cryogenic scanning electron microscope microstructural characterisation. We use Cyanoflan as the biopolymer of choice, and profit from our knowledge of its chemical structure and its exciting potential for biotechnological applications. A sol-gel transition is identified using time-concentration superposition and the power-law behaviour of the incipient network's viscoelastic response is observed in a variety of microrheological data. Our results point to rheology-based principles for blood compatibility tests by facilitating the assignment of quantitative values to specific properties, as opposed to more heuristic approaches.
Collapse
Affiliation(s)
- T Rodrigues
- CEFT - Centro de Estudos de Fenómenos de Transporte, Depto. de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Laboratório Associado em Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - R Mota
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - L Gales
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Depto. de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal
| | - L Campo-Deaño
- CEFT - Centro de Estudos de Fenómenos de Transporte, Depto. de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Laboratório Associado em Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Galasso C, Ruocco N, Mutalipassi M, Barra L, Costa V, Giommi C, Dinoi A, Genovese M, Pica D, Romano C, Greco S, Pennesi C. Marine polysaccharides, proteins, lipids, and silica for drug delivery systems: A review. Int J Biol Macromol 2023; 253:127145. [PMID: 37778590 DOI: 10.1016/j.ijbiomac.2023.127145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Marine environments represent an incredible source of biopolymers with potential biomedical applications. Recently, drug delivery studies have received great attention for the increasing need to improve site specificity, therapeutic value, and bioavailability, reducing off-target effects. Marine polymers, such as alginate, carrageenan, collagen, chitosan, and silica, have reported unique biochemical features, allowing an efficient binding with drugs, and a controlled release to the target tissue, also obtainable through "green processes". In the present review, we i) analysed the last ten years of scientific peer-reviewed literature; ii) divided the articles based on the achieved experimental phases, tagged as chemistry, drug release, and drug delivery, and iii) compared the best performances among marine polymers extracted from micro- and macro-organisms. Many reviews describe drug carriers from marine organisms, focusing on a single biopolymer or a chemical class. Our study is a groundbreaking literature collection, representing the first thorough investigation of all marine biopolymers described. Most articles report experimental results on the chemical characterisation of marine biopolymers and their in vitro behaviour as drug carriers, although development processes and commercial applications are still in the early stages. Hence, the next efforts should be focused on the sustainable production of marine polymers and final product development.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Nadia Ruocco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Lucia Barra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Valentina Costa
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Giommi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Alessia Dinoi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Martina Genovese
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Daniela Pica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Romano
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Bra CN, Italy
| | - Silvestro Greco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Pennesi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| |
Collapse
|
8
|
Gharibzahedi SMT, Moghadam M, Amft J, Tolun A, Hasabnis G, Altintas Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B 12: A Critical Review. Molecules 2023; 28:7469. [PMID: 38005191 PMCID: PMC10673454 DOI: 10.3390/molecules28227469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this overview, the latest achievements in dietary origins, absorption mechanism, bioavailability assay, health advantages, cutting-edge encapsulation techniques, fortification approaches, and innovative highly sensitive sensor-based detection methods of vitamin B12 (VB12) were addressed. The cobalt-centered vitamin B is mainly found in animal products, posing challenges for strict vegetarians and vegans. Its bioavailability is highly influenced by intrinsic factor, absorption in the ileum, and liver reabsorption. VB12 mainly contributes to blood cell synthesis, cognitive function, and cardiovascular health, and potentially reduces anemia and optic neuropathy. Microencapsulation techniques improve the stability and controlled release of VB12. Co-microencapsulation of VB12 with other vitamins and bioactive compounds enhances bioavailability and controlled release, providing versatile initiatives for improving bio-functionality. Nanotechnology, including nanovesicles, nanoemulsions, and nanoparticles can enhance the delivery, stability, and bioavailability of VB12 in diverse applications, ranging from antimicrobial agents to skincare and oral insulin delivery. Staple food fortification with encapsulated and free VB12 emerges as a prominent strategy to combat deficiency and promote nutritional value. Biosensing technologies, such as electrochemical and optical biosensors, offer rapid, portable, and sensitive VB12 assessment. Carbon dot-based fluorescent nanosensors, nanocluster-based fluorescent probes, and electrochemical sensors show promise for precise detection, especially in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
| | - Maryam Moghadam
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Jonas Amft
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Aysu Tolun
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Gauri Hasabnis
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Zeynep Altintas
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
9
|
Simões A, Castro RAE, Veiga F, Vitorino C. A quality by design framework for developing nanocrystal bioenabling formulations. Int J Pharm 2023; 646:123393. [PMID: 37717717 DOI: 10.1016/j.ijpharm.2023.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The present study aims to outline a rational framework for the design and development of a 1.0% (w/v) hydrocortisone nanocrystal-based formulation, resorting to a simple, efficient, and scalable nanonization methodology, based on the high-pressure homogenization (HPH) technique. Accordingly, the innovative product was comprehensively optimized following a Quality by Design (QbD) approach. The thorough selection of formulation composition was driven by a dual purpose: improving skin permeation and stability. In the early stage of development, a Failure Mode, Effects and Criticality Analysis (FMECA) diagram was employed to identify the most impactful variables for the critical quality attributes (CQAs). In this sense, a rotatable, three-factor and five-level circumscribed central composite design (CCCD) was applied to investigate how squalene concentration (x1), soluplus concentration (x2) and HPH-time (x3) influence physicochemical properties, performance and physical stability of the formulation. A robust Design Space (DS) was defined, establishing the optimal settings for the critical variables, whose combination meets the requirements set in the quality target product profile (QTPP). Morphological analysis revealed the cuboidal shape of hydrocortisone nanocrystals. In what concerns colloidal properties, the most promising formulation disclosed a small particle size (Dx(50) = 311.8 ± 1.5 nm), along with narrow size distribution (span value = 1.91 ± 0.17). Zeta potential results (-2.19 ± 0.15 mV--12.1 ± 0.4 mV) suggested a steric hindrance stabilization. FTIR spectra showed no chemical interactions between drug and formulation components. XRD diffractograms confirmed loss of crystallinity during the downsizing process. In vitro studies revealed an improvement on drug release rate (316 ± 21-516 ± 35 μg/cm2/√t), compared to the coarse suspension and commercial products, and a straight dependence on the stabilizer concentration and HPH time. The permeation flux across the skin (0.16 ± 0.02-1.2 ± 0.5 μg/cm2/h) appeared to be dependent on the drug physicochemical properties, in particular saturation solubility. Further characterization of the experimental formulations pointed out the role of the stabilizing component to prevent against physical instability phenomena. This organic solvent-free, and therefore "green" nanocrystal production technology offers great potential for pharmaceutical R&D and drug delivery by enabling the development of new forms of conventional drugs with optimal physicochemical properties and performance.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ricardo A E Castro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
10
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
11
|
Co-Encapsulation of Epigallocatechin-3-Gallate and Vitamin B12 in Zein Microstructures by Electrospinning/Electrospraying Technique. Molecules 2023; 28:molecules28062544. [PMID: 36985516 PMCID: PMC10053329 DOI: 10.3390/molecules28062544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
EGCG is a catechin known for its antioxidant and anti-inflammatory characteristics. Vitamin B12 is an essential vitamin found in animal-derived products, and its deficiency may cause serious health problems such as anemia. The effectiveness of both catechin and vitamin B12 depends on their stability and bioavailability, which can be lost during industrial processes due to degradation when exposed to external factors. A potential solution to this issue is the microencapsulation, which protects the compounds from external agents. The current study aims to microencapsulate EGCG and vitamin B12 in a polymer matrix of biological origin, zein. Microencapsulation was performed using an electrospinning technique, and different concentrations of zein (1–30% w/v) and active compound (0.5–5% w/w) were tested, resulting in the production of micro/nanoparticles, fibers, or the mixture of both. The microstructures were analyzed and characterized in terms of morphology, release profile and kinetics, and encapsulation efficiency. High encapsulation efficiencies were obtained, and the highest were found in the samples with 1% w/w of active substance and 30% w/v of zein. Controlled release studies were conducted in deionized water and in an ethanolic solution, and five kinetic models were applied to the release profiles. The results indicated that the Weibull model was the best fit for the majority of results.
Collapse
|
12
|
Study of the Polysaccharide Production by the Microalga Vischeria punctata in Relation to Cultivation Conditions. Life (Basel) 2022; 12:life12101614. [PMID: 36295049 PMCID: PMC9604657 DOI: 10.3390/life12101614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Vischeria punctata is a unicellular microalga that has industrial potential, as it can produce substances with beneficial properties. Among them, endopolysaccharides (accumulated in cells) and exopolysaccharides (released by cells into the culture medium) are of particular interest. This study aimed to investigate the effect of nutrient medium composition on the growth of V. punctata biomass and the synthesis of polysaccharides by microalgae. The effect of modifying a standard nutrient medium and varying cultivation parameters (temperature, time, and extractant type) on the yield of exopolysaccharides produced by the microalgae V. punctate was investigated. The methods of spectrophotometry, ultrasonic extraction, and alcohol precipitation were used in the study. It was found that after 61 days of cultivation, the concentration of polysaccharides in the culture medium was statistically significantly higher (p <0.05) when using a Prat nutrient medium (984.9 mg/g d.w.) than BBM 3N (63.0 mg/g d.w.). It was found that the increase in the V. punctata biomass when cultivated on different nutrient media did not differ significantly. The maximum biomass values on Prat and BBM 3N media were 1.101 mg/g d.w. and 1.120 mg/g d.w., respectively. Neutral sugars and uronic acids were found in the culture media. It follows on from the obtained data that the modified PratM medium was more efficient for extracting polysaccharides from V. punctata. The potential of microalgae as new sources of valuable chemicals (polysaccharides), which can be widely used in technologies for developing novel functional foods, biologically active food supplements, and pharmaceutical substances, was studied.
Collapse
|
13
|
Bioprocess Strategies for Vitamin B12 Production by Microbial Fermentation and Its Market Applications. Bioengineering (Basel) 2022; 9:bioengineering9080365. [PMID: 36004890 PMCID: PMC9405231 DOI: 10.3390/bioengineering9080365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin B12 is a widely used compound in the feed and food, healthcare and medical industries that can only be produced by fermentation because of the complexity of its chemical synthesis. For this reason, finding better producer strains and optimizing their bioprocesses have been the main focus of industrial producers over the last few decades. In this review, we initially provide a historical overview of vitamin B12 research and the main biosynthetic characteristics of the two microorganism families typically used for its industrial production: several strains of Propionibacterium freudenreichii and strains related to Pseudomonas denitrificans. Later, a complete summary of the current state of vitamin B12 industrial production as well as the main advances and challenges for improving it is detailed, with a special focus on bioprocess optimization, which aims not only to increase production but also sustainability. In addition, a comprehensive list of the most important and relevant patents for the present industrial strains is provided. Finally, the potential applications of vitamin B12 in different markets are discussed.
Collapse
|
14
|
Ralaivao M, Lucas J, Rocha F, Estevinho BN. Food-Grade Microencapsulation Systems to Improve Protection of the Epigallocatechin Gallate. Foods 2022; 11:foods11131990. [PMID: 35804803 PMCID: PMC9265360 DOI: 10.3390/foods11131990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Epigallocatechin gallate (EGCG) is a catechin and one of the most abundant polyphenols in green tea, and it is under research for its potential benefit to human health and for its potential to be used in disease treatments, such as for cancer. However, the effectiveness of polyphenols depends on preserving their bioactivity, stability, and bioavailability. The EGCG was microencapsulated by a spray-drying process, using different biopolymers as encapsulating agents (gum arabic, modified chitosan and sodium alginate), in order to overcome some of the limitations of this compound. The microparticles showed a diameter around 4.22 to 41.55 µm (distribution in volume) and different morphologies and surfaces, depending on the encapsulating agent used. The EGCG release was total, and it was achieved in less than 21 min for all the formulations tested. The EGCG encapsulation efficiency ranged between 78.5 and 100.0%. The release profiles were simulated and evaluated using three kinetic models: Korsmeyer-Peppas (R2: 0.739-0.990), Weibull (R2: 0.963-0.994) and Baker-Lonsdale (R2: 0.746-0.993). The Weibull model was the model that better adjusted to the experimental EGCG release values. This study proves the success of the EGCG microencapsulation, using the spray-drying technique, opening the possibility to insert dried EGCG microparticles in different food and nutraceutical products.
Collapse
Affiliation(s)
- Mathis Ralaivao
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.R.); (J.L.); (F.R.)
- ENSCM—Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’Ecole Normale, CEDEX 5, 34296 Montpellier, France
| | - Jade Lucas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.R.); (J.L.); (F.R.)
- ENSCM—Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’Ecole Normale, CEDEX 5, 34296 Montpellier, France
| | - Fernando Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.R.); (J.L.); (F.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N. Estevinho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.R.); (J.L.); (F.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-22-041-3699
| |
Collapse
|
15
|
Coelho SC, Estevinho BN, Rocha F. Recent Advances in Water-Soluble Vitamins Delivery Systems Prepared by Mechanical Processes (Electrospinning and Spray-Drying Techniques) for Food and Nutraceuticals Applications-A Review. Foods 2022; 11:foods11091271. [PMID: 35563994 PMCID: PMC9100492 DOI: 10.3390/foods11091271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 01/15/2023] Open
Abstract
Water-soluble vitamins are essential micronutrients in diets and crucial to biochemical functions in human body physiology. These vitamins are essential for healthy diets and have a preventive role against diseases. However, their limitations associated with high sensitivity against external conditions (temperature, light, pH, moisture, oxygen) can lead to degradation during processing and storage. In this context, microencapsulation may overcome these conditions, protecting a biomolecule’s bioavailability, stability, and effectiveness of delivery. This technique has been used to produce delivery systems based on polymeric agents that surround the active compounds. The present review focuses on the most relevant topics of water-soluble vitamin encapsulation using promising methods to produce delivery vehicles—electrohydrodynamic (electrospinning and electrospraying) and spray-drying techniques. An overview of the suitable structures produced by these processes is provided. The review introduces the general principles of the methods, advantages, disadvantages, and involved parameters. A brief list of the used physicochemical techniques for the systems’ characterization is discussed in this review. Electrospinning and spray-drying techniques are the focus of this investigation in order to guarantee vitamins’ bioaccessibility and bioavailability. Recent studies and the main encapsulating agents used for these micronutrients in both processes applied to functional food and nutraceutical areas are highlighted in this review.
Collapse
|
16
|
Fathi F, Ebrahimi SN, Pereira DM, Estevinho BN, Rocha F. Preliminary studies of microencapsulation and anticancer activity of polyphenols extract from
Punica granatum
peels. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Faezeh Fathi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute Shahid Beheshti University Tehran Iran
| | - Samad N. Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute Shahid Beheshti University Tehran Iran
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050‐313 Porto Portugal
| | - Berta N. Estevinho
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias Porto Portugal
| | - Fernando Rocha
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto, Rua Dr. Roberto Frias Porto Portugal
| |
Collapse
|
17
|
Coelho SC, Laget S, Benaut P, Rocha F, Estevinho BN. A new approach to the production of zein microstructures with vitamin B12, by electrospinning and spray drying techniques. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Matinha-Cardoso J, Mota R, Gomes LC, Gomes M, Mergulhão FJ, Tamagnini P, Martins MCL, Costa F. Surface activation of medical grade polyurethane for the covalent immobilization of an anti-adhesive biopolymeric coating. J Mater Chem B 2021; 9:3705-3715. [PMID: 33871523 DOI: 10.1039/d1tb00278c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hospital-acquired infections are still a major concern worldwide, being frequently related to bacterial biofilm formation on medical devices, and thus difficult to eradicate with conventional antimicrobial treatments. Therefore, infection-preventive solutions based on natural polymers are being investigated. Recently, a marine cyanobacterium-derived polymeric coating (CyanoCoating) has demonstrated great anti-adhesive potential when immobilized onto gold model substrates. In this work, we took this technology a step closer to an industrial application by covalently immobilizing CyanoCoating onto medical grade polyurethane (PU). This immobilization was developed through the introduction of linkable moieties onto a PU inert surface using different pre-treatments. Besides the application of the polydopamine (pDA) linker layer, other processes frequently found in industrial settings, such as atmospheric plasma (using O2 or N2 as reactive gases) and ozone surface activations, were evaluated. From all the pre-treatments tested, the ozone activation was the most promising since the obtained coating not only revealed a homogeneous distribution, but also significantly reduced the adhesion of two relevant etiological bacteria in static conditions (the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli). Moreover, it also impaired E. coli biofilm formation under simulated urinary tract dynamic conditions, reinforcing the potential of CyanoCoating as an antibiotic-free alternative to mitigate medical device-associated infections, particularly in the urinary tract.
Collapse
Affiliation(s)
- Jorge Matinha-Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. and IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rita Mota
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. and IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Luciana C Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marisa Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. and IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal and Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal and ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fabíola Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal. and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Development of Controlled Delivery Functional Systems by Microencapsulation of Different Extracts of Plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02652-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Biocompatibility of the Biopolymer Cyanoflan for Applications in Skin Wound Healing. Mar Drugs 2021; 19:md19030147. [PMID: 33799836 PMCID: PMC8001550 DOI: 10.3390/md19030147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
There is a great demand for the development of novel wound dressings to overcome the time and costs of wound care performed by a vast number of clinicians, especially in the current overburdened healthcare systems. In this study, Cyanoflan, a biopolymer secreted by a marine unicellular cyanobacterium, was evaluated as a potential biomaterial for wound healing. Cyanoflan effects on cell viability, apoptosis, and migration were assessed in vitro, while the effect on tissue regeneration and biosafety was evaluated in healthy Wistar rats. The cell viability and apoptosis of fibroblasts and endothelial cells was not influenced by the treatment with different concentrations of Cyanoflan, as observed by flow cytometry. Moreover, the presence of Cyanoflan did not affect cell motility and migratory capacity, nor did it induce reactive oxygen species production, even revealing an antioxidant behavior regarding the endothelial cells. Furthermore, the skin wound healing in vivo assay demonstrated that Cyanoflan perfectly adapted to the wound bed without inducing systemic or local oxidative or inflammatory reaction. Altogether, these results suggest that Cyanoflan is a promising biopolymer for the development of innovative applications to overcome the many challenges that still exist in skin wound healing.
Collapse
|
21
|
Santos M, Pereira SB, Flores C, Príncipe C, Couto N, Karunakaran E, Cravo SM, Oliveira P, Tamagnini P. Absence of KpsM (Slr0977) Impairs the Secretion of Extracellular Polymeric Substances (EPS) and Impacts Carbon Fluxes in Synechocystis sp. PCC 6803. mSphere 2021; 6:e00003-21. [PMID: 33504656 PMCID: PMC7885315 DOI: 10.1128/msphere.00003-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/02/2022] Open
Abstract
Many cyanobacteria produce extracellular polymeric substances (EPS), composed mainly of heteropolysaccharides, that play a variety of physiological roles, being crucial for cell protection, motility, and biofilm formation. However, due to their complexity, the EPS biosynthetic pathways as well as their assembly and export mechanisms are still far from being fully understood. Here, we show that the absence of a putative EPS-related protein, KpsM (Slr0977), has a pleiotropic effect on Synechocystis sp. strain PCC 6803 physiology, with a strong impact on the export of EPS and carbon fluxes. The kpsM mutant exhibits a significant reduction of released polysaccharides and a smaller decrease of capsular polysaccharides, but it accumulates more polyhydroxybutyrate (PHB) than the wild type. In addition, this strain shows a light/cell density-dependent clumping phenotype and exhibits an altered protein secretion capacity. Furthermore, the most important structural component of pili, the protein PilA, was found to have a modified glycosylation pattern in the mutant compared to the wild type. Proteomic and transcriptomic analyses revealed significant changes in the mechanisms of energy production and conversion, namely, photosynthesis, oxidative phosphorylation, and carbon metabolism, in response to the inactivation of slr0977 Overall, this work shows for the first time that cells with impaired EPS secretion undergo transcriptomic and proteomic adjustments, highlighting the importance of EPS as a major carbon sink in cyanobacteria. The accumulation of PHB in cells of the mutant, without affecting significantly its fitness/growth rate, points to its possible use as a chassis for the production of compounds of interest.IMPORTANCE Most cyanobacteria produce extracellular polymeric substances (EPS) that fulfill different biological roles depending on the strain/environmental conditions. The interest in the cyanobacterial EPS synthesis/export pathways has been increasing, not only to optimize EPS production but also to efficiently redirect carbon flux toward the production of other compounds, allowing the implementation of industrial systems based on cyanobacterial cell factories. Here, we show that a Synechocystis kpsM (slr0977) mutant secretes less EPS than the wild type, accumulating more carbon intracellularly, as polyhydroxybutyrate. Further characterization showed a light/cell density-dependent clumping phenotype, altered protein secretion, and modified glycosylation of PilA. The proteome and transcriptome of the mutant revealed significant changes, namely, in photosynthesis and carbon metabolism. Altogether, this work provides a comprehensive overview of the impact of kpsM disruption on Synechocystis physiology, highlighting the importance of EPS as a carbon sink and showing how cells adapt when their secretion is impaired, and the redirection of the carbon fluxes.
Collapse
Affiliation(s)
- Marina Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Sara B Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Carlos Flores
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Narciso Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Sara M Cravo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paulo Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
In vitro evaluation of microparticles with Laurus nobilis L. extract prepared by spray-drying for application in food and pharmaceutical products. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Estevinho BN, Lazar R, Blaga A, Rocha F. Preliminary evaluation and studies on the preparation, characterization and in vitro release studies of different biopolymer microparticles for controlled release of folic acid. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Carlan IC, Estevinho BN, Rocha F. Production of vitamin B1 microparticles by a spray drying process using different biopolymers as wall materials. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23735] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ioana C. Carlan
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of Porto Porto Portugal
| | - Berta N. Estevinho
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of Porto Porto Portugal
| | - Fernando Rocha
- LEPABE ‐ Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of Porto Porto Portugal
| |
Collapse
|
27
|
Lucas J, Ralaivao M, Estevinho BN, Rocha F. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019; 20:E5693. [PMID: 31739392 PMCID: PMC6888056 DOI: 10.3390/ijms20225693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Biopolymers derived from polysaccharides are a sustainable and environmentally friendly alternative to the synthetic counterparts available in the market. Due to their distinctive properties, the cyanobacterial extracellular polymeric substances (EPS), mainly composed of heteropolysaccharides, emerge as a valid alternative to address several biotechnological and biomedical challenges. Nevertheless, biotechnological/biomedical applications based on cyanobacterial EPS have only recently started to emerge. For the successful exploitation of cyanobacterial EPS, it is important to strategically design the polymers, either by genetic engineering of the producing strains or by chemical modification of the polymers. This requires a better understanding of the EPS biosynthetic pathways and their relationship with central metabolism, as well as to exploit the available polymer functionalization chemistries. Considering all this, we provide an overview of the characteristics and biological activities of cyanobacterial EPS, discuss the challenges and opportunities to improve the amount and/or characteristics of the polymers, and report the most relevant advances on the use of cyanobacterial EPS as scaffolds, coatings, and vehicles for drug delivery.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Filipa Serôdio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
29
|
Mota R, Vidal R, Pandeirada C, Flores C, Adessi A, De Philippis R, Nunes C, Coimbra MA, Tamagnini P. Cyanoflan: A cyanobacterial sulfated carbohydrate polymer with emulsifying properties. Carbohydr Polym 2019; 229:115525. [PMID: 31826510 DOI: 10.1016/j.carbpol.2019.115525] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
The extracellular polysaccharides produced by cyanobacteria have distinctive characteristics that make them promising for applications ranging from bioremediation to biomedicine. In this study, a sulfated polysaccharide produced by a marine cyanobacterial strain and named cyanoflan was characterized in terms of morphology, chemical composition, and rheological and emulsifying properties. Cyanoflan has a 71 % carbohydrate content, with 11 % of sulfated residues, while the protein account for 4 % of dry weight. The glycosidic-substitution analysis revealed a highly branched complex chemical structure with a large number of sugar residues. The cyanoflan high molecular mass fractions (above 1 MDa) and entangled structure is consistent with its high apparent viscosity in aqueous solutions and high emulsifying activity. It showed to be a typical non-Newtonian fluid with pseudoplastic behavior. Altogether, these results confirm that cyanoflan is a versatile carbohydrate polymer that can be used in different biotechnological applications, such as emulsifying/thickening agent in food or cosmetic industries.
Collapse
Affiliation(s)
- Rita Mota
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Ricardo Vidal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Carolina Pandeirada
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Carlos Flores
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alessandra Adessi
- DAGRI - Department of Agriculture, Food, Environment and Forestry, Florence University, Via Maragliano, 77, I-50144 Firenze, Italy.
| | - Roberto De Philippis
- DAGRI - Department of Agriculture, Food, Environment and Forestry, Florence University, Via Maragliano, 77, I-50144 Firenze, Italy.
| | - Cláudia Nunes
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; CICECO, Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.
| |
Collapse
|
30
|
Cardoso T, Gonçalves A, Estevinho BN, Rocha F. Potential food application of resveratrol microparticles: Characterization and controlled release studies. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Costa B, Mota R, Parreira P, Tamagnini P, L Martins MC, Costa F. Broad-Spectrum Anti-Adhesive Coating Based on an Extracellular Polymer from a Marine Cyanobacterium. Mar Drugs 2019; 17:md17040243. [PMID: 31022915 PMCID: PMC6520837 DOI: 10.3390/md17040243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/30/2022] Open
Abstract
Medical device-associated infections are a major health threat, representing about half of all hospital-acquired infections. Current strategies to prevent this problem based on device coatings with antimicrobial compounds (antibiotics or antiseptics) have proven to be insufficient, often toxic, and even promoting bacterial resistance. Herein, we report the development of an infection-preventive coating (CyanoCoating) produced with an extracellular polymer released by the marine cyanobacterium Cyanothece sp. CCY 0110. CyanoCoating was prepared by spin-coating and its bacterial anti-adhesive efficiency was evaluated against relevant etiological agents (Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa and Escherichia coli) and platelets, both in the presence or absence of human plasma proteins. CyanoCoating cytotoxicity was assessed using the L929 fibroblasts cell line. CyanoCoating exhibited a smooth topography, low thickness and high hydrophilic properties with mild negative charge. The non-cytotoxic CyanoCoating prevented adhesion of all the bacteria tested (≤80%) and platelets (<87%), without inducing platelet activation (even in the presence of plasma proteins). The significant reduction in protein adsorption (<77%) confirmed its anti-adhesive properties. The development of this anti-adhesive coating is an important step towards the establishment of a new technological platform capable of preventing medical device-associated infections, without inducing thrombus formation in blood-contacting applications.
Collapse
Affiliation(s)
- Bruna Costa
- i3S⁻Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- INEB⁻Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Rita Mota
- i3S⁻Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- IBMC⁻Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Paula Parreira
- i3S⁻Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- INEB⁻Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Paula Tamagnini
- i3S⁻Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- IBMC⁻Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.
| | - M Cristina L Martins
- i3S⁻Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- INEB⁻Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- ICBAS⁻Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Fabíola Costa
- i3S⁻Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
- INEB⁻Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|