1
|
Hua Y, Zhao X, Tang N, Wan H, Lian H, Yuan T, Si C. Function of AMPK/mTOR Signaling in TGF-β1-Induced Pterygium Fibroblast Proliferation and Transdifferentiation. Curr Eye Res 2025; 50:600-609. [PMID: 39988428 DOI: 10.1080/02713683.2025.2470410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE This study aimed to investigate the regulatory role of the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) signaling pathway in mediating transforming growth factor-beta 1 (TGF-β1)-induced cellular proliferation and transdifferentiation processes in human pterygium fibroblasts (HPFs). METHODS HPFs were stimulated with TGF-β1 in vitro. Cell viability was assessed using the CCK-8 assay at 12/24/48-h post-stimulation, while migratory capacity was evaluated through standardized wound healing assays. Quantitative real-time PCR (qPCR) and western blotting analyses were employed to evaluate the expression of proliferation marker proliferating cell nuclear antigen (PCNA) and myofibroblast transdifferentiation biomarker α-smooth muscle actin (α-SMA). Western blotting further characterized the activation status of AMPK/mTOR signaling by quantifying phosphorylated AMPK (p-AMPK) and phosphorylated mTOR (p-mTOR), with total AMPK and mTOR levels serving as loading controls. To establish mechanistic causality, TGF-β1-primed HPFs were modulated using the AMPK inhibitor Compound C and activator AICAR for 24 h. Functional consequences were analyzed through CCK-8 viability assays and wound healing assays, while molecular correlates were assessed via qPCR and western blotting for PCNA, α-SMA, and pathway components. This comprehensive approach delineated the AMPK/mTOR axis as a critical regulator of TGF-β1-driven fibrotic phenotype acquisition in HPFs. RESULTS Following TGF-β1 pretreatment-induced activation of human HPFs, both cell viability and migratory capacity were markedly enhanced, with concomitant upregulation of PCNA and α-SMA. Compound C-mediated AMPK inhibition potentiated the TGF-β1-induced enhancements in HPFs viability and migration rate, concomitant with reduced p-AMPK/AMPK ratio and elevated expression of PCNA, α-SMA, and p-mTOR/mTOR ratio. Conversely, AICAR-driven AMPK activation attenuated TGF-β1-stimulated effects, demonstrating diminished viability, suppressed migratory capacity, increased p-AMPK/AMPK ratio, and decreased expression of PCNA, α-SMA, and p-mTOR/mTOR ratio. CONCLUSIONS This study demonstrates the critical regulatory role of the AMPK/mTOR signaling pathway in controlling TGF-β1-induced proliferation and transdifferentiation in HPFs, thereby providing a potential mechanistic framework for developing novel therapeutic interventions targeting fibrotic ocular surface disorders.
Collapse
Affiliation(s)
- Yun Hua
- Department of Ophthalmology, the First Affiliated Hospital of Shihezi University, Shihezi, China
- Department of Medicine, Shihezi University, Shihezi, China
| | - Xinrong Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Na Tang
- Department of Medicine, Shihezi University, Shihezi, China
| | - Huijuan Wan
- Department of Ophthalmology, the First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Haidong Lian
- Department of Ophthalmology, the First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Ting Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Chao Si
- Department of Ophthalmology, the First Affiliated Hospital of Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Hua Z, Zhu Q, Yang J, Zheng Y, Yang W, Li D, Cui Y, Shen L, Rao L, Zhang X, Yuan L. Metformin inhibits subretinal fibrosis by activating Klotho by miR-126-5p. Cytotechnology 2025; 77:84. [PMID: 40190424 PMCID: PMC11965049 DOI: 10.1007/s10616-025-00744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Subretinal fibrosis is a main cause of visual loss in patients with neovascular age-related macular degeneration (nAMD), for whom there has been a lack of effective medication. Metformin can improve inflammation and angiogenesis in eye diseases. This study aimed to investigate the mechanism by which metformin inhibits subretinal fibrosis. A subretinal fibrosis cell model was induced by treating human retinal pigment epithelial cells (ARPE-19) with TGF-β1, a subretinal fibrosis mouse model was induced by a laser, and both cells and mice were treated with metformin. Cell proliferation, migration, and invasion were detected by CCK-8, scratch, and Transwell assays. Western blotting and immunofluorescence were used to evaluate protein expression levels, and RT‒qPCR was used to detect gene expression levels. HE and Masson staining were used to observe the morphological changes in retinal and choroidal tissues. Metformin treatment inhibited the TGF-β1-induced proliferation, migration, invasion and epithelial‒mesenchymal transition (EMT) of ARPE-19 cells and effectively ameliorated laser-induced subretinal fibrosis in mice. Mechanistically, metformin inhibits the expression of miR-126-5p, promotes Klotho synthesis, slows the progression of subretinal fibrosis, and miR-126-5p targets and negatively regulates Klotho. Metformin activates Klotho by inhibiting miR-126-5p, thereby reversing TGF-β1-induced ARPE-19 cell EMT and improving laser-induced subretinal fibrosis in mice.
Collapse
Affiliation(s)
- Zhijuan Hua
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, No. 176, Qingnian Road, Wuhua District, Kunming, 650021 Yunnan China
| | - Qin Zhu
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, No. 176, Qingnian Road, Wuhua District, Kunming, 650021 Yunnan China
| | - Jingfei Yang
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, 650021 Yunnan China
| | - Yuxiang Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032 Yunnan China
| | - Wenchang Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032 Yunnan China
| | - Dongli Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032 Yunnan China
| | - Yixin Cui
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032 Yunnan China
| | - Lu Shen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032 Yunnan China
| | - Lingna Rao
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032 Yunnan China
| | - Xiaofan Zhang
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University, No. 176, Qingnian Road, Wuhua District, Kunming, 650021 Yunnan China
| | - Ling Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032 Yunnan China
| |
Collapse
|
3
|
Tang X, Yang Q, Dou Y, Zhang R, Yan M. Construction of a competing endogenous RNA regulatory network in pterygium and role of hsa_circ_0081682 in fibroblast proliferation, migration, and apoptosis. Exp Eye Res 2025; 255:110365. [PMID: 40164374 DOI: 10.1016/j.exer.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Pterygium is a fibrovascular growth associated with chronic inflammation, tissue remodeling, and angiogenesis, which invades the cornea. Circular RNAs (circRNAs) are emerging as pivotal role in many diseases, but their role in pterygium remains unclear. We performed circRNA and miRNA expression profiling on pterygium and conjunctival tissues, then the circRNA-miRNA-mRNA regulatory network was constructed. Bioinformatics was used to predict downstream pathways. Pterygium fibroblasts were used for experiments assessing proliferation (CCK8, EdU), migration (wound healing, transwell), and apoptosis (AnnexinV-FITC/PI). We identified 162 differentially expressed circRNAs and 96 miRNAs. Key pathways involved in pterygium pathogenesis, including focal adhesion and PI3K-Akt signaling, were predicted. Hsa_circ_0081862 was downregulated in pterygium tissues and fibroblasts, inhibiting fibroblast proliferation and migration while promoting apoptosis. This research constructed a ceRNA network and identified hsa_circ_0081682 as the potential diagnostic marker for pterygium. This research contributes to the understanding of biochemical basis of pterygium, which may facilitate the development of targeted strategies for its management and prevention.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiaodan Yang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yulian Dou
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ruiying Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Yan
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
Mohammad SI, Vasudevan A, Nadhim Mohammed S, Uthirapathy S, M M R, Kundlas M, Siva Prasad GV, Kumari M, Mustafa YF, Ali Hussein Z. Anti-metastatic potential of flavonoids for the treatment of cancers: focus on epithelial-mesenchymal transition (EMT) process. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04235-3. [PMID: 40434422 DOI: 10.1007/s00210-025-04235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025]
Abstract
The leading factor contributing to patient mortality is the local invasion and metastasis of tumors, which are influenced by the malignant progression of tumor cells. The epithelial-mesenchymal transition (EMT) is key to understanding malignancy development. EMT is a critical regulatory mechanism for differentiating cell populations initially observed during the neural crest and embryonic gastrulation formation. This process is closely associated with tumor metastasis in cancer and is also related to the maintenance of cancer stem cells. Flavonoids, known for their antioxidant properties, have been widely studied for their anticancer potential to protect plants from harmful environmental conditions. They have attracted considerable attention and have been the focus of numerous experimental and epidemiological studies to evaluate their potential in cancer treatment. In vitro and in vivo research has demonstrated that flavonoids can significantly impact cancer-related EMT. They may inhibit the EMT process by reducing the levels of Twist1, N-cadherin, ZEB1, integrins, SNAI1/2, CD44, MMPs, and vimentin while increasing E-cadherin levels and targeting the PI3K/AKT, NF-κB p65, and JAK2/STAT3 signaling pathways. In order to suppress the transcription of the E-cadherin promoter, several Zn-finger transcription factors, such as SNAI2, ZEB1, and ZEB2, and basic helix-loop-helix (bHLH) factors, such as Twist, may directly bind to its E-boxes. Overall, clinical cancer research should integrate the anticancer properties of flavonoids, which address all phases of carcinogenesis, including EMT, to improve the prospects for targeted cancer therapies in patients suffering from aggressive forms of tumors.
Collapse
Affiliation(s)
- Suleiman Ibrahim Mohammad
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan
- INTI International University, 71800, Negeri Sembilan, Malaysia
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
- Shinawatra University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani, 12160, Thailand
| | - Sumaya Nadhim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Zainab Ali Hussein
- Radiological Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
5
|
Wen Y, Nie JH, Qin XM, Li ZY. Functional metabolomics revealed pyroglutamic acid may play a key role in idiopathic pulmonary fibrosis. J Pharm Biomed Anal 2025; 264:116967. [PMID: 40398246 DOI: 10.1016/j.jpba.2025.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible respiratory disease with poor survival rates. Despite significant research efforts, IPF still lacks a curative treatment. Excessive epithelial-mesenchymal transition (EMT) contributes to approximately one-third of fibroblasts in pulmonary fibrosis and plays a critical role in IPF pathogenesis. Identifying factors that regulate EMT is essential for developing effective therapeutic strategies for IPF. In this study, functional metabolomics revealed significant alterations in multiple metabolites in transforming growth factor-beta 1 (TGF-β1)-induced A549 cells, with pyroglutamic acid and 5-oxoprolinase (OPLAH) being identified as the most critical factors. Cellular experiments demonstrated that pyroglutamic acid effectively inhibited TGF-β1-induced EMT in A549 cells. Mechanistically, pyroglutamic acid inhibited IPF by suppressing EMT through the inhibition of Smad2/3 expression in TGF-β1-induced A549 cells. Bioinformatics analysis further elucidated the pyroglutamate is a potential metabolite that inhibits EMT. In addition, this study is the first to highlight the pivotal role of pyroglutamic acid and OPLAH in regulating EMT in IPF, offering novel insights into the metabolic mechanisms involved in IPF inhibition and providing a foundation for developing innovative therapeutic approaches for IPF.
Collapse
Affiliation(s)
- Yang Wen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Jia-Hui Nie
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China.
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Zhen-Yu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
6
|
Han S, Zhu W, Guo Q. Cohesin Complex Interacting with Promoters of MMP Genes for in Pterygium Occurrence. Curr Eye Res 2025; 50:467-476. [PMID: 39819270 DOI: 10.1080/02713683.2025.2452919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE Pterygium is a common ocular surface disease characterized by a high recurrence rate and unknown etiology. METHODS In this study, we investigated the upregulation of matrix metalloproteinase genes, including MMP1, MMP2, MMP3, MMP7, MMP9, MMP11, MMP12, MMP13, MMP23B, and MMP28, in pterygium tissue using RNA sequencing, Western blotting, and immunohistochemistry. RESULTS Employing the MEME tool, we identified a conserved DNA motif within the promoter regions of these matrix metalloproteinase genes. Mass spectrometry analysis revealed an interaction between the cohesin complex and this motif. Disrupting the cohesin complex through RNA interference of RAD21 cohesin complex component or structural maintenance of chromosomes 3 in primary pterygial fibroblasts led to decreased matrix metalloproteinase gene expression and reduced recruitment of twist family bHLH transcription factor 1 and transcription factor 4 to matrix metalloproteinase gene promoters. CONCLUSION Overall, our findings suggest a novel epigenetic mechanism regulating matrix metalloproteinase transcription in pterygium.
Collapse
Affiliation(s)
- Shichao Han
- Department of Ophthalmology, Zibo Center Hospital, Zibo, China
| | - Wei Zhu
- Department of Ophthalmology, Zibo Center Hospital, Zibo, China
| | - Qianqian Guo
- Department of Ophthalmology, Zibo Center Hospital, Zibo, China
| |
Collapse
|
7
|
Xiong Y, Knoedler S, Alfertshofer M, Kim BS, Jiang D, Liu G, Rinkevich Y, Mi B. Mechanisms and therapeutic opportunities in metabolic aberrations of diabetic wounds: a narrative review. Cell Death Dis 2025; 16:341. [PMID: 40280905 PMCID: PMC12032273 DOI: 10.1038/s41419-025-07583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Metabolic aberrations are fundamental to the complex pathophysiology and challenges associated with diabetic wound healing. These alterations, induced by the diabetic environment, trigger a cascade of events that disrupt the normal wound-healing process. Key factors in this metabolic alternation include chronic hyperglycemia, insulin resistance, and dysregulated lipid and amino acid metabolism. In this review, we summarize the underlying mechanisms driving these metabolic changes in diabetic wounds, while emphasizing the broad implications of these disturbances. Additionally, we discuss therapeutic approaches that target these metabolic anomalies and how their integration with existing wound-healing treatments may yield synergistic effects, offering promising avenues for innovative therapies.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Michael Alfertshofer
- Department of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, 80336, Munich, Germany
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dongsheng Jiang
- Precision Research Centre for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, 81377, Munich, Germany.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Guo JY, Dong XY, Li S, Tang JF, Zhou CF. Chinese patent medicine: Opening new perspectives for treatment of post-endoscopic submucosal dissection esophageal stricture in esophageal cancer patients. World J Gastroenterol 2025; 31:102943. [PMID: 40248381 PMCID: PMC12001194 DOI: 10.3748/wjg.v31.i14.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Endoscopic submucosal dissection (ESD) is an effective technique for treating early esophageal cancer, and the prevention of postoperative esophageal stricture has emerged as a significant research topic. Zhou et al utilized an experimental minipig model to demonstrate that Kangfuxin (KFX) can improve postoperative esophageal stricture following ESD by inhibiting transforming growth factor-β1-driven fibrosis and the downstream fibrotic mediators Smad2/3. In this letter, we primarily discuss recent advancements in the treatment of esophageal stricture, the clinical applications of KFX, and the mechanisms involved in alleviating postoperative esophageal stricture, aiming to provide insights for advancing clinical practice and research in esophageal stricture after ESD.
Collapse
Affiliation(s)
- Jie-Yu Guo
- School of Life and Health Sciences, Institute of Biomedical Research, Wuhan 430068, Hubei Province, China
| | - Xue-Ying Dong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei Province, China
| | - Shi Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei Province, China
| | - Jing-Feng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei Province, China
| | - Ce-Fan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei Province, China
| |
Collapse
|
9
|
Wang B, Liang L, Zeng H, Yang X, Zhang R, Deng W, Wang X, Yuan J. Single-Cell RNA Sequencing Revealed Functional Conjunctival Keratinocytes Loss via TGF-β-Wnt/β-Catenin Signaling in Sjögren's Syndrome Related Dry Eye. Invest Ophthalmol Vis Sci 2025; 66:43. [PMID: 40238113 PMCID: PMC12011132 DOI: 10.1167/iovs.66.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose The role of the conjunctiva in the pathophysiology of Sjögren's syndrome (SS) related dry eye disease (DED) remains obscure especially in the view of functional conjunctival epithelia. In order to illustrate effects of conjunctiva in SS, we investigated the interactions between parenchymal cells and immune cells in the conjunctiva with single-cell RNA sequencing technique. Methods Freshly collected conjunctiva from a canonical SS model was prepared for 10 × Genomics single-cell RNA sequencing and T cell receptor (TCR) sequencing. Conjunctiva was collected for Western blot, immunofluorescence, multiplex immunohistochemical (mIHC), and flow cytometry. Phenol red thread test, lissamine staining, and qRT-PCR were applied to evaluate signs of DED. Results DED phenotype was validated in the SS model. Loss of water-secreting keratinocyte was projected in scRNA-seq data and proved by mIHC test in SS mice. The proportion of Lgr4+ basal epithelial cells with poor ability to differentiate into mature keratinocyte increased, and Wnt/β-catenin signaling was upregulated in it under regulation of TGF-β derived from macrophages. Such macrophages promoted angiogenesis through secretion of VEGFA to activate endothelial cells. Immuno-fibroblasts had an increased population, which were implicated in specifically activated T cell chemotaxis. Conclusions In SS conjunctiva, a TGF-β-Wnt/β-catenin axis downregulated the formation of functional keratinocytes accompanied by infiltration of pro-angiogenetic and pro-fibrotic macrophage and pro-inflammatory T cell.
Collapse
Affiliation(s)
- Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Lihong Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Runze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Wenrui Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jin Yuan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| |
Collapse
|
10
|
Wang L, Wang W, Sun C, Li T, Wang J. Inhibition of AGTR1 attenuates cell proliferation after glaucoma filtration surgery via NF-κB pathway-mediated G 0/G 1-phase cell cycle arrest. Exp Cell Res 2025; 447:114514. [PMID: 40073956 DOI: 10.1016/j.yexcr.2025.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/11/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Fibroblast proliferation after glaucoma filtration surgery (GFS) plays a pivotal role in scar formation. Angiotensin type 1 receptor (AGTR1) is involved in tissue remodeling. Our previous study demonstrated that treatment with an AGTR1 blocker prolonged the survival of filtering blebs following GFS. However, whether AGTR1 participates in fibroblast proliferation after GFS remains unclear. This study examined the mechanisms underlying the involvement of AGTR1 in the activation of cell proliferation following GFS. AGTR1 expression was increased in Tenon capsule tissue of patients with glaucoma. AGTR1 inhibition resulted in a decrease in TGF-β2-induced human Tenon capsule fibroblast (HTF) proliferation and a mitigation of subconjunctival cell proliferation following GFS. Additionally, lower AGTR1 expression led to a higher percentage of HTFs in the G0/G1 phase via the p21Waf1/Cip1/Cyclin D/Cyclin E pathway. Furthermore, the addition of BAY 11-7082, a blocker of the NF-κB pathway, resulted in further inhibition of Ki67, Cyclin D, and Cyclin E expressions and an increase in the percentage of HTFs in the G0/G1 phase. In conclusion, our findings indicate that AGTR1 inhibition can attenuate HTF proliferation by leading to cell cycle arrest in the G0/G1 phase through the NF-κB pathway. Targeting AGTR1 is a feasible strategy for mitigating cell proliferation following GFS.
Collapse
|
11
|
Li J, Nagasaka Y, Shen H, Zhou X, Ma J, Trevisan-Silva D, Sherman NE, Ambati J, Gelfand BD, Guo LW. TMEM97 governs partial epithelial-mesenchymal transition of retinal pigment epithelial cells via the CTNND2-ADAM10 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102460. [PMID: 39995975 PMCID: PMC11848774 DOI: 10.1016/j.omtn.2025.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with retinal pigment epithelium (RPE) dysfunction in degenerative retinal diseases. However, the role of partial EMT (pEMT), a hybrid state exhibiting both epithelial and mesenchymal markers, remains poorly understood in this context. Our previous research demonstrated that TMEM97 ablation in mice worsens photoreceptor loss in an oxidant-induced RPE damage model. Here, we link TMEM97 to pEMT in RPE cells and explore the underlying molecular mechanisms. We found that re-expressing TMEM97 in the RPE of TMEM97-knockout mice, via subretinal lentiviral delivery, mitigated oxidant (NaIO3)-induced photoreceptor loss. Interestingly, TMEM97 knockout in ARPE19 cells in vitro led to upregulation of cadherin/adhesion-binding pathways, even without oxidant exposure. Integrated proteomic, transcriptomic, segmentation, and immunoblot analyses revealed that TMEM97 ablation induces pEMT, marked by the concurrent expression of epithelial E-cadherin and mesenchymal N-cadherin, a process reversed upon TMEM97 re-expression. Furthermore, TMEM97 negatively regulated CTNND2 protein (catenin δ-2), but not the known EMT driver β-catenin, and CTNND2 was found to promote ADAM10, which sustains both E- and N-cadherin protein levels. These findings identify TMEM97 as a novel regulator of RPE-cell pEMT through the CTNND2-ADAM10 axis, highlighting potential new targets for therapeutic intervention in RPE-related pathophysiology.
Collapse
Affiliation(s)
- Jing Li
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Yosuke Nagasaka
- Department of Ophthalmology, University of Virginia, Charlottesville, VA 22903, USA
| | - Hongtao Shen
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Xinyu Zhou
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Dilza Trevisan-Silva
- School of Medicine Core Facilities, University of Virginia, Charlottesville, VA 22903, USA
| | - Nicholas E. Sherman
- School of Medicine Core Facilities, University of Virginia, Charlottesville, VA 22903, USA
| | - Jayakrishna Ambati
- Department of Ophthalmology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bradley D. Gelfand
- Department of Ophthalmology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lian-Wang Guo
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Ophthalmology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Sacchi M, Tomaselli D, Ruggeri ML, Aiello FB, Sabella P, Dore S, Pinna A, Mastropasqua R, Nubile M, Agnifili L. Fighting Bleb Fibrosis After Glaucoma Surgery: Updated Focus on Key Players and Novel Targets for Therapy. Int J Mol Sci 2025; 26:2327. [PMID: 40076946 PMCID: PMC11900438 DOI: 10.3390/ijms26052327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Filtration bleb (FB) fibrosis represents the primary risk factor for glaucoma filtration surgery (GFS) failure. We reviewed the most recent literature on post-GFS fibrosis in humans, focusing on novel molecular pathways and antifibrotic treatments. Three main literature searches were conducted. First, we performed a narrative review of two models of extra-ocular fibrosis, idiopathic pulmonary fibrosis and skin fibrosis, to improve the comprehension of ocular fibrosis. Second, we conducted a systematic review of failed FB features in the PubMed, Embase, and Cochrane Library databases. Selected studies were screened based on the functional state and morphological features of FB. Third, we carried out a narrative review of novel potential antifibrotic molecules. In the systematic review, 11 studies met the criteria for analysis. Immunohistochemistry and genomics deemed SPARC and transglutaminases to be important for tissue remodeling and attributed pivotal roles to TGFβ and M2c macrophages in promoting FB fibrosis. Four major mechanisms were identified in the FB failure process: inflammation, fibroblast proliferation and myofibroblast conversion, vascularization, and tissue remodeling. On this basis, an updated model of FB fibrosis was described. Among the pharmacological options, particular attention was given to nintedanib, pirfenidone, and rapamycin, which are used in skin and pulmonary fibrosis, since their promising effects are demonstrated in experimental models of FB fibrosis. Based on the most recent literature, modern patho-physiological models of FB fibrosis should consider TGFβ and M2c macrophages as pivotal players and favorite targets for therapy, while research on antifibrotic strategies should clinically investigate medications utilized in the management of extra-ocular fibrosis.
Collapse
Affiliation(s)
- Matteo Sacchi
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy; (M.S.)
| | - Davide Tomaselli
- Ophthalmology Clinic, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy
| | - Maria Ludovica Ruggeri
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Retina Division, Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Francesca Bianca Aiello
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Pierfilippo Sabella
- Ophthalmology Clinic, Alessandro Manzoni Hospital, ASST Lecco, 23900 Lecco, Italy
| | - Stefano Dore
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy; (M.S.)
| | - Antonio Pinna
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy; (M.S.)
| | - Rodolfo Mastropasqua
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario Nubile
- Ophthalmology Clinic, Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy (L.A.)
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy (L.A.)
| |
Collapse
|
13
|
Mohamed YH, Uematsu M, Kusano M, Kitaoka T, Nishida T. Is it really descemetocele? Morphology of extremely thin membrane that remained after severe corneal melting: a case report. Med Mol Morphol 2025; 58:69-74. [PMID: 39352448 PMCID: PMC11829923 DOI: 10.1007/s00795-024-00405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 02/16/2025]
Abstract
The aim of this study was to report transmission electron microscopic findings of a case with whole corneal descemetocele following infective corneal ulcer for the first time in literature. A 72-year-old male patient presented with infective corneal ulcer. After resolution of the infection, corneoscleral transplantation was performed. The excised very thin corneal membrane was processed for transmission electron microscopic examination. Transmission electron microscopic examination of the specimen revealed many layered structures that consisted of two different types of cells. The first type consisted of lighter staining polygonal cells, while the second consisted of elongated cells with relatively dense staining. All cells were connected with a large number of gap or adherens junctions with intercalation of the cell membranes of adjacent cells. A haphazard distribution of cytoplasmic microfilaments were also observed in all of the cell types. There was no evidence of the presence of endothelial cells throughout the specimen. There was also no evidence of Descemet membrane presence except for a small part adjacent to iris tissue that contained some melanosomes. Although we clinically diagnosed descemetocele, Descemet membrane was not present at the electron microscopic level, and thus, the expression "descemetocele" is inappropriate.
Collapse
Affiliation(s)
- Yasser Helmy Mohamed
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Masafumi Uematsu
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan.
| | - Mao Kusano
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Takashi Kitaoka
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Teruo Nishida
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
14
|
Jiang Y, Wen X, Jian X, Chen Q, Li Y. Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways. Int J Mol Med 2025; 55:45. [PMID: 39791203 PMCID: PMC11758894 DOI: 10.3892/ijmm.2025.5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis. The aim of the present study was to explore the effects of klotho on subretinal fibrosis induced by laser photocoagulation in mice and EMT induced by TGF‑β1 in RPE cells and the underlying molecular mechanisms. In vitro, klotho overexpression or knockdown was performed in ARPE‑19 cells (adult retinal Pigment Epithelial‑19), then TGF‑β1 treatment was applied. Using western blotting, expression of epithelial markers (zonula occludens‑1), mesenchymal signs (α‑smooth muscle actin, α‑SMA, N‑cadherin, N‑cad and collagen I), and the ERK1/2 and Wnt/β‑catenin signaling pathways were assessed. The proliferative ability of ARPE‑19 cells was examined by CCK‑8 and EdU test, and the migratory ability was examined by wound healing and Transwell assays. Furthermore, to explore the underlying molecular pathway of klotho overexpression, RNA‑sequencing (seq) was performed. In vivo, photocoagulation was used to induce subretinal fibrosis in mice, which occurs as a result of choroidal neovascularization (CNV), then recombinant mouse klotho protein was administered intravitreally. Upregulation of epithelial and downregulation of mesenchymal markers demonstrated that klotho overexpression prevented TGF‑β1‑induced EMT; klotho knockdown resulted in the opposite effects. Additionally, klotho overexpression suppressed cell proliferation and migration and attenuated ERK1/2 and Wnt/β‑catenin signaling activated by TGF‑β1. RNA‑seq results demonstrated that several signaling pathways, including cellular senescence and the TNF signaling pathway, were associated with anti‑fibrotic effects of klotho overexpression. In vivo, subretinal fibrotic areas were attenuated following klotho treatment in laser‑induced CNV lesions, as illustrated by immunofluorescence and Masson staining of the mouse eyes. Western blotting results that the protein levels of mesenchymal markers were significantly downregulated and those of epithelial markers were upregulated. In summary, the present study suggested that klotho may have therapeutic value in management of fibrotic vitreoretinal disorders such as subretinal fibrosis.
Collapse
Affiliation(s)
| | | | - Xiaoyu Jian
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qianbo Chen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
15
|
Song P, Liang Q, Ge X, Zhou D, Yuan M, Chu W, Xu J. Adipose-Derived Stem Cell Exosomes Promote Scar-Free Healing of Diabetic Wounds via miR-204-5p/TGF- β1/Smad Pathway. Stem Cells Int 2025; 2025:6344844. [PMID: 40018015 PMCID: PMC11865461 DOI: 10.1155/sci/6344844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Numerous researches have demonstrated the therapeutic potential of adipose-derived stem cell exosomes (ADSC-Exos) in promoting wound healing. In this study, we aimed to investigate the impact of ADSC-Exos on diabetic wound fibroblasts and elucidate its possible mechanisms. CCK-8, Edu, cell scratch, and Transwell tests were used to evaluate the function of ADSC-Exos on rat skin fibroblasts (RSFs) in high-glucose (HG) medium. The targeting effect of ADSC-Exo-derived microRNA (miRNA) and TGF-β1 was assessed using bioinformatic analysis and then confirmed with western blot and dual luciferase reporter assays. ADSC-Exos, miR-204-5p mimic, and anti-miR-204-5p mimic were used to stimulate RSFs, and the levels of TGF-β1/Smad pathway were analyzed by western blot. In vivo, digital photo and tissue section staining were used to evaluate the therapeutic effect of ADSC-Exos on diabetic wounds. The data showed that ADSC-Exos enhance the proliferation and migration of fibroblasts under HG conditions, reduce excessive myofibroblast differentiation and collagen deposition, and promote scarless healing of diabetic wounds. Additionally, miR-204-5p in ADSC-Exos targets TGF-β1 to inhibit p-Smad2/3, Col I, and alpha-smooth muscle actin (α-SMA), thereby reducing fibrosis. These findings suggest that ADSC-Exos have potential prospects for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Peijun Song
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu City 233000, Anhui Province, China
| | - Qiu Liang
- Department of Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou City 225000, Jiangsu Province, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu City 233000, Anhui Province, China
| | - Xiuyu Ge
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu City 233000, Anhui Province, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu City 233000, Anhui Province, China
| | - Danlian Zhou
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu City 233000, Anhui Province, China
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu City 233000, Anhui Province, China
| | - Mei Yuan
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu City 233000, Anhui Province, China
| | - Weiwei Chu
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu City 233000, Anhui Province, China
| | - Jing Xu
- Department of Plastic Surgery and Burn, The First Affiliated Hospital of Bengbu Medical University, Bengbu City 233000, Anhui Province, China
| |
Collapse
|
16
|
Li MX, Zhang Z, Zhang Y, Zhao FR, Li YF, Dang YF, Yue YY, Li L. Skullcapflavone II suppresses TGF-β-induced corneal epithelial mesenchymal transition in vitro. Int J Ophthalmol 2025; 18:209-215. [PMID: 39967985 PMCID: PMC11754024 DOI: 10.18240/ijo.2025.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/01/2024] [Indexed: 02/20/2025] Open
Abstract
AIM To investigate the effect of skullcapflavone II (SCF-II) on the epithelial-mesenchymal transition (EMT) induced by transforming growth factor beta (TGF-β) in human corneal epithelial cells (HCECs), as well as to identify the signaling pathways that may be involved. METHODS HCECs were cultured in vitro. At a SCF-II (5, 10 µmol/L) dose, cell viability was analysed with a cell counting kit-8 (CCK-8) assay, and cell migration was monitored with wound healing and Transwell migration assays. There were 4 groups: SCF-II, TGF-β, SCF-II+TGF-β and Control. Western blotting and immunofluorescence were performed to show the expression of EMT markers and the translocation of nuclear factor kappa-B (NF-κB) into the nucleus in the 4 groups. RESULTS Treatment with SCF-II decreased HCEC viability in a dose-dependent manner. A concentration below 10 µmol/L did not present obvious cell toxicity, and survival rates were more than 70% at 48h. Treatment with SCF-II (5 and 10 µmol/L) significantly impeded migration in wound healing and Transwell migration assays (P<0.05), and EMT markers and NF-κB translocation into the nucleus were inhibited. After both TGF-β and SCF-II treatment, the migration of TGF-β-treated HCECs were suppressed by SCF-II (P<0.05). The expression levels of the mesenchymal markers N-cadherin (P<0.05), α-smooth muscle actin (α-SMA; P<0.05) and NF-κB (P<0.05) in both TGF-β- and SCF-II-treated HCECs were lower than those in the HCECs treated with TGF-β alone and higher than those in HCECs treated with SCF-II alone. Immunofluorescence showed that the entry of NF-κB into the nucleus in both TGF-β- and SCF-II-treated HCECs was less than that in the TGF-β-treated HCECs. CONCLUSION SCF-II inhibit TGF-β-induced EMT in HCECs by potentially regulating the NF-κB signalling pathway. Thus, SCF-II represents a candidate putative therapeutic agent in corneal fibrotic diseases.
Collapse
Affiliation(s)
- Meng-Xi Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zhen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an 710000, Shaanxi Province, China
| | - Yue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an 710000, Shaanxi Province, China
| | - Fan-Ru Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yu-Fan Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yu-Fei Dang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yang-Yang Yue
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
17
|
Zhang J, Sheng X, Ding Q, Wang Y, Zhao J, Zhang J. Subretinal fibrosis secondary to neovascular age-related macular degeneration: mechanisms and potential therapeutic targets. Neural Regen Res 2025; 20:378-393. [PMID: 38819041 PMCID: PMC11317958 DOI: 10.4103/nrr.nrr-d-23-01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 06/01/2024] Open
Abstract
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration. It causes local damage to photoreceptors, retinal pigment epithelium, and choroidal vessels, which leads to permanent central vision loss of patients with neovascular age-related macular degeneration. The pathogenesis of subretinal fibrosis is complex, and the underlying mechanisms are largely unknown. Therefore, there are no effective treatment options. A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments. The current article reviews several aspects of subretinal fibrosis, including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis; multimodal imaging techniques for subretinal fibrosis; animal models for studying subretinal fibrosis; cellular and non-cellular constituents of subretinal fibrosis; pathophysiological mechanisms involved in subretinal fibrosis, such as aging, infiltration of macrophages, different sources of mesenchymal transition to myofibroblast, and activation of complement system and immune cells; and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis, such as vascular endothelial growth factor, connective tissue growth factor, fibroblast growth factor 2, platelet-derived growth factor and platelet-derived growth factor receptor-β, transforming growth factor-β signaling pathway, Wnt signaling pathway, and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10. This review will improve the understanding of the pathogenesis of subretinal fibrosis, allow the discovery of molecular targets, and explore potential treatments for the management of subretinal fibrosis.
Collapse
Affiliation(s)
- Jingxiang Zhang
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Xia Sheng
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Quanju Ding
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Yujun Wang
- Department of Urology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jiwei Zhao
- Department of Ophthalmology, People’s Hospital of Huangdao District, Qingdao, Shandong Province, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
18
|
Tien LV, Yamamoto M, Tagami M, Misawa N, Honda S. Immunohistochemical expression of Fibrillin-1 in idiopathic epiretinal membranes. Graefes Arch Clin Exp Ophthalmol 2025; 263:415-424. [PMID: 39466436 DOI: 10.1007/s00417-024-06667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
PURPOSE To investigate the expression patterns of Fibrillin-1 in idiopathic epiretinal membranes (iERM) and identify Fibrillin-1-secreting cells. METHODS iERM samples were collected via standard 27-gauge vitrectomy and subsequently subjected to flat-mount immunohistochemistry with double staining for the following markers: Fibrillin-1, glial acidic fibrillary protein (GFAP), cellular retinaldehyde-binding protein (CRALBP), retinoid isomerohydrolase RPE65 (RPE65), and α-smooth muscle actin (α-SMA). RESULTS Fibrillin-1 was detected throughout the iERM. The colocalization of Fibrillin-1 with α-SMA, CRALBP, and RPE65 suggested that myofibroblasts and retinal pigment epithelial (RPE) cells secreted Fibrillin-1. The lack of colocalization between GFAP and Fibrillin-1 indicated that GFAP-positive glial cells did not secrete Fibrillin-1. The colocalization of CRALBP and RPE65 with α-SMA indicated the transformation of RPE cells into myofibroblasts. This suggested that RPE cells transformed into myofibroblasts and secreted Fibrillin-1. The lack of colocalization between GFAP and α-SMA implied that GFAP-positive glial cells did not express α-SMA. CONCLUSIONS Fibrillin-1 is widely distributed in iERMs, and myofibroblasts were the primary sources of Fibrillin-1 secretion. Additionally, during their transformation into myofibroblasts, RPE cells secreted Fibrillin-1. GFAP-positive glial cells did not express α-SMA nor secrete Fibrillin-1. KEY MESSAGES What is known Idiopathic epiretinal membranes are a common cause of visual acuity and quality impairment. The protein and cell components of idiopathic epiretinal membrane exhibit diversity. What is new Fibrillin-1 is present throughout the idiopathic epiretinal membrane. Myofibroblasts are the most important source of Fibrillin-1 secretion. Retinal pigment epithelial cells also secrete Fibrillin-1 when transforming into myofibroblast. Glial cells do not transform to myofibroblast and do not secrete Fibrillin-1.
Collapse
Affiliation(s)
- Luu Viet Tien
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Manabu Yamamoto
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Mizuki Tagami
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Norihiko Misawa
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shigeru Honda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
19
|
Bhattacharyya A, Yadav P, Bhattacharya M. Myeloid-Mesenchymal Crosstalk in Lung Fibrosis. Compr Physiol 2025; 15:e70004. [PMID: 39980172 DOI: 10.1002/cph4.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by progressive scarring of the lung parenchyma. While two drugs have been approved by the US Food and Drug Administration (FDA) for IPF, median survival remains limited at 3 years, and the discovery of novel therapeutic targets is urgently needed. Recent studies indicate that immune cells play a critical role in regulating fibrosis. In this Mini Review, we discuss the recent literature focused on cells of the myeloid lineage that serve as key agents of pathologic interorgan communication in fibrosis. These cells are recruited from the bone marrow and have been found to be key drivers of the fibrotic process in the lung.
Collapse
Affiliation(s)
- Aritra Bhattacharyya
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Preeti Yadav
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mallar Bhattacharya
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Chen Y, Jiang M, Li L, Yang S, Liu Z, Lin S, Wang W, Li J, Chen F, Hou Q, Ma X, Hou L. Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy. Cell Death Dis 2025; 16:49. [PMID: 39870644 PMCID: PMC11772762 DOI: 10.1038/s41419-025-07367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear. The present study demonstrated that AIM2 functions as a potent suppressor of RPE cell proliferation and EMT to maintain retinal homeostasis. Transcriptome analysis using RNA-sequencing (RNA-Seq) revealed that AIM2 was significantly downregulated in primary human RPE (phRPE) cells undergoing EMT and proliferation. Consequently, Aim2-deficient mice showed morphological changes and increased FN expression in RPE cells under physiological conditions, whereas AIM2 overexpression in phRPE cells inhibited EMT. In a retinal detachment-induced PVR mouse model, AIM2 deficiency promotes RPE-EMT, resulting in severe experimental PVR. Clinical samples further confirmed the downregulation of AIM2 in the PVR membranes from patients. Kyoto Encyclopedia of Genes and Genome analysis revealed that the PI3K-AKT signaling pathway was significantly related to RPE-EMT and that AIM2 inhibited AKT activation in RPE cells by reducing its phosphorylation. Moreover, treatment with eye drops containing an AKT inhibitor alleviated RPE-EMT and the severity of experimental PVR. These findings provide new insights into the complex mechanisms underlying RPE-EMT and PVR pathogenesis, with implications for rational strategies for potential therapeutic applications in PVR by targeting RPE-EMT.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingyuan Jiang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Liping Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhengzhou Aier Eye Hospital, Zhengzhou, China
| | - Shanshan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shiwen Lin
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wanxiao Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyang Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiang Hou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Institute of Developmental and Genetic Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
21
|
Song R, Ma J, Yin S, Wu Z, Liu C, Sun R, Cao G, Lu Y, Liu J, Su L, Wang Y. Receptor activity-modifying protein 1 regulates the differentiation of mouse skin fibroblasts by downregulating α-SMA expression via suppression of high mobility group AT-hook 1 to promote skin wound repair. BURNS & TRAUMA 2025; 13:tkae068. [PMID: 39839760 PMCID: PMC11750253 DOI: 10.1093/burnst/tkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/21/2024] [Accepted: 10/11/2024] [Indexed: 01/23/2025]
Abstract
Background Skin innervation is very important for normal wound healing, and receptor activity-modifying protein 1 (RAMP1) has been reported to modulate calcitonin gene-related peptide (CGRP) receptor function and thus be a potential treatment target. This study aimed to elucidate the intricate regulatory effect of RAMP1 on skin fibroblast function, thereby addressing the existing knowledge gap in this area. Methods Immunohistochemical staining and immunofluorescence (IF) staining were used to measure the dynamic changes in the expression of RAMP1 and α-smooth muscle actin (α-SMA) in skin wound tissue in mice. Mouse skin fibroblasts (MSFs) stably transfected with Tet-on-Flag-RAMP1 overexpression (OE) and Tet-on-Flag control (Ctrl) lentiviruses were constructed for in vitro experiments. High mobility group AT-hook 1 (HMGA1) plasmids and α-SMA plasmids were used to overexpress HMGA1 and α-SMA, respectively. An α-SMA siRNA was used to silence α-SMA. Quantitative real-time polymerase chain reaction (qPCR), western blot and IF staining analyses were used to determine the mRNA and protein levels in the cells in different groups. A scratch wound healing assay was used to evaluate the cell migration ability of different groups. Cleavage under targets and release using nuclease (CUT & RUN) assays and dual-luciferase reporter assays were used to predict and verify the interaction between HMGA1 and the α-SMA promoter. Results RAMP1 and α-SMA protein expression levels in the dermis changed dynamically and were negatively correlated during dorsal skin wound healing in mice. RAMP1 OE in vitro inhibited the differentiation and promoted the migration of MSFs by decreasing α-SMA expression via the suppression of HMGA1, which was shown for the first time to bind to the α-SMA promoter and increase α-SMA transcription. RAMP1 OE also modulated extracellular matrix (ECM) synthesis and remodeling by promoting collagen III and MMP9 expression and decreasing collagen I, MMP2, and tissue inhibitor of metalloproteinases 1 expression. Conclusions Our findings suggest that RAMP1 OE decreases differentiation and promotes migration in MSFs by downregulating α-SMA expression via the suppression of HMGA1 and modulates ECM synthesis and remodeling, revealing a novel mechanism regulating α-SMA transcription, providing new insights into the RAMP1-mediated regulation of fibroblast function, and identifying effective nerve-related targets for skin wound repair.
Collapse
Affiliation(s)
- Ru Song
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Jiaxu Ma
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Siyuan Yin
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Zhenjie Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Rui Sun
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Guoqi Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Yongpan Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Linqi Su
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 44, Wenhua Xilu, Lixia District, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
22
|
Huang L, Chen H, Nie J, Zhao Y, Miao J. Advanced dressings based on novel biological targets for diabetic wound healing: A review. Eur J Pharmacol 2025; 987:177201. [PMID: 39667426 DOI: 10.1016/j.ejphar.2024.177201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The diabetic wound is one of the most common complications of diabetes in clinic. The existing diabetic wound dressings all have bottlenecks in decreasing inflammation, stopping peripheral neuropathy, relieving local ischemia and hypoxia in diabetic wounds. These challenges are intricately linked to the roles of various growth factors, as well as matrix metalloproteinases. Thus, a comprehensive understanding of growth factors-particularly their dynamic interactions with the extracellular matrix (ECM) and cellular components-is essential. Cells and proteins that influence the synthesis of growth factors and matrix metalloproteinases emerge as potential therapeutic targets for diabetic wound management. This review discusses the latest advancements in the pathophysiology of diabetic wound healing, highlights novel biological targets, and evaluates new wound dressing strategies designed for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Lantian Huang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hangbo Chen
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Nie
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China.
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Wei QH, Pan YB, Tian LL, Wang YS, Wang JY, Liu X, Zhang H. Sang-Bai-Pi extract and its constituent regiafuran C ameliorate renal fibrosis through TGF-β/Smad and Wnt/β-catenin signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156351. [PMID: 39756310 DOI: 10.1016/j.phymed.2024.156351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Renal fibrosis is a major pathological feature of many chronic kidney diseases, and traditional Chinese medicines (TCM) have shown promising therapeutic potential for treating renal fibrosis. Although the extracts or fractions of Morus alba leaves and twigs have been reported to ameliorate renal fibrosis, the beneficial effects of M. alba root bark (commonly known as Sang-Bai-Pi), a well-known TCM, on this disorder have not been investigated. PURPOSE This study aims to investigate the effects and mechanisms of Sang-Bai-Pi extract/fractions and their constituents on renal fibrosis. METHODS Immunoblotting was first used to assess the effects of different Sang-Bai-Pi fractions on key fibrotic markers. The most potent fraction, EA-3, was further evaluated using a unilateral ureteral obstruction (UUO) rat model to assess its antifibrotic effects. The efficacy of EA-3 was evaluated by analyzing the pathomorphological changes in the kidney tissues of rats using histological staining and by detecting the expression of relevant proteins via Western blotting. The transforming growth factor-β1 (TGF-β1)-stimulated human renal proximal tubular cell line HK-2 was used to elucidate the likely modes of action of EA-3 and its constituent regiafuran C (RFC). Network pharmacology and molecular docking analyses were utilized to explore the detailed molecular mechanism of RFC. RESULTS Fraction EA3 effectively alleviated UUO-induced renal fibrosis in rats. Mechanistically, EA-3 suppressed the epithelial-mesenchymal transition, accumulation of extracellular matrix, and activation of the TGF-β/Smad and Wnt/β-catenin signaling pathways in vitro and in vivo. RFC also demonstrated antifibrotic potential by inhibiting TGF-β/Smad and Wnt/β-catenin signaling in HK-2 cells. Further investigations revealed that RFC inhibited TGF-β/Smad pathway by blocking the interaction of Smad3 with TGF-βRII and TGF-βRI might be a potential direct target of RFC. CONCLUSION The antirenal fibrotic effects of Sang-Bai-Pi extract/fractions and the constituent RFC were evaluated for the first time. Fraction EA-3 and RFC alleviated renal fibrosis by targeting the TGF-β/Smad and Wnt/β-catenin pathways. These findings provide valuable insights into the development of Sang-Bai-Pi-based phytotherapy and new drug molecules for the safe treatment of renal diseases.
Collapse
Affiliation(s)
- Quan-Hao Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yin-Bo Pan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lin-Lin Tian
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yu-Song Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jin-Yan Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xiang Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
24
|
Cui HS, Zheng YX, Cho YS, Ro YM, Jeon K, Joo SY, Seo CH. Slit1 Promotes Hypertrophic Scar Formation Through the TGF-β Signaling Pathway. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2051. [PMID: 39768930 PMCID: PMC11678377 DOI: 10.3390/medicina60122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Background and objectives: Slit1 is a secreted protein that is closely related to cell movement and adhesion. Few studies related to fibrosis exist, and the preponderance of current research is confined to the proliferation and differentiation of neural systems. Hypertrophic scars (HTSs) are delineated by an overproduction of the extracellular matrix (ECM) by activated fibroblasts, leading to anomalous fibrosis, which is a severe sequela of burns. However, the functionality of Slit1 in HTS formation remains unknown. We aimed to investigate whether Slit1 regulates fibroblasts through a fibrosis-related mechanism derived from post-burn HTS tissues and normal patient tissues. Methods: Human normal fibroblasts (HNFs) and hypertrophic scar fibroblasts (HTSFs) were extracted from normal skin and post-burn HTS tissues, with settings grouped according to the patient of origin. Cell proliferation was evaluated using a CellTiter-Glo Luminescent Cell Viability Assay Kit. Cell migration experiments were carried out using a μ-Dish insert system. Protein and mRNA expression levels were quantified by Western blot and quantitative real-time polymerase chain reaction. Results: We found increased expressions of Slit1 in HTS tissues and HTSFs compared to normal tissues and HNFs. The treatment of human recombinant Slit1 protein (rSlit1) within HNFs promoted cell proliferation and differentiation, leading to an upregulation in ECM components such as α-SMA, type I and III collagen, and fibronectin. The treatment of rSlit1 in HNFs facilitated cell migration, concurrent with enhanced levels of N-cadherin and vimentin, and a diminished expression of E-cadherin. Treatment with rSlit1 resulted in the phosphorylation of SMAD pathway proteins, including SMAD2, SMAD3, and SMAD1/5/8, and non-SMAD pathway proteins, including TAK1, JNK1, ERK1/2, and p38, in HNFs. Conclusions: Exogenous Slit1 potentiates the epithelial-mesenchymal transition and upregulates SMAD and non-SMAD signaling pathways in HNFs, leading to the development of HTS, suggesting that Slit1 is a promising new target for the treatment of post-burn HTS.
Collapse
Affiliation(s)
- Hui Song Cui
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea; (H.S.C.); (Y.X.Z.); (Y.M.R.)
| | - Ya Xin Zheng
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea; (H.S.C.); (Y.X.Z.); (Y.M.R.)
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea;
| | - Yu Mi Ro
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea; (H.S.C.); (Y.X.Z.); (Y.M.R.)
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea;
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea;
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea;
| |
Collapse
|
25
|
Xiong M, Yang X, Shi Z, Xiang J, Gao H, Ji S, Li Y, Pi W, Chen H, Zhang H, Wang M, Li Y, Hong Y, Liu D, Fu X, Dong Y, Sun X. Programmable Artificial Skins Accomplish Antiscar Healing with Multiple Appendage Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407322. [PMID: 39460410 DOI: 10.1002/adma.202407322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Indexed: 10/28/2024]
Abstract
Functional appendage regeneration is essential for skin rehabilitation, but it has always failed by current existing healing approaches, owing to their inefficacy in preventing disfiguring scars. In this study, a novel regeneration-directing artificial skin (RDAS) system is presented, which is based on the rational design of multi-layered hydrogels that closely mimic natural skin matrices. By leveraging the programmability and architectural rigidity of DNA components, without the need for exogenous cell transplantation, such RDAS effectively minimizes tissue fibrosis by accurately guiding the regenerative process in wound fibroblasts, enabling rapid scarless wound repair, restoration of dermal function, and successful in situ regeneration of multiple appendages, such as hair follicles (HFs), sebaceous glands (SGs), and sweat glands (SwGs). Therefore, the RDAS offers a cell-free antiscarring therapeutic strategy for regenerative wound healing, resulting in improved outcomes. This innovative approach holds great potential for future clinical applications and burn rehabilitation.
Collapse
Affiliation(s)
- Mingchen Xiong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Xinling Yang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Ziwei Shi
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiangbing Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yingying Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Wei Pi
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| |
Collapse
|
26
|
Zhou YT, Li S, Du SL, Zhao JH, Cai YQ, Zhang ZQ. The multifaceted role of macrophage mitophagy in SiO 2-induced pulmonary fibrosis: A brief review. J Appl Toxicol 2024; 44:1854-1867. [PMID: 38644760 DOI: 10.1002/jat.4612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Prolonged exposure to environments with high concentrations of crystalline silica (CS) can lead to silicosis. Macrophages play a crucial role in the pathogenesis of silicosis. In the process of silicosis, silica (SiO2) invades alveolar macrophages (AMs) and induces mitophagy which usually exists in three states: normal, excessive, and/or deficiency. Different mitophagy states lead to corresponding toxic responses, including successful macrophage repair, injury, necrosis, apoptosis, and even pulmonary fibrosis. This is a complex process accompanied by various cytokines. Unfortunately, the details have not been fully systematically summarized. Therefore, it is necessary to elucidate the role of macrophage mitophagy in SiO2-induced pulmonary fibrosis by systematic analysis on the literature reports. In this review, we first summarized the current data on the macrophage mitophagy in the development of SiO2-induced pulmonary fibrosis. Then, we introduce the molecular mechanism on how SiO2-induced mitophagy causes pulmonary fibrosis. Finally, we focus on introducing new therapies based on newly developed mitophagy-inducing strategies. We conclude that macrophage mitophagy plays a multifaceted role in the progression of SiO2-induced pulmonary fibrosis, and reprogramming the macrophage mitophagy state accordingly may be a potential means of preventing and treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- Department of Public Health, Shandong First Medical University, Jinan, China
- Department of Public Health, Jining Medical University, Jining, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, China
| | - Shu-Ling Du
- Department of Public Health, Jining Medical University, Jining, China
| | - Jia-Hui Zhao
- Department of Public Health, Jining Medical University, Jining, China
| | | | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
27
|
Wang Y, Geng X, Guo Z, Chu D, Liu R, Cheng B, Cui H, Li C, Li J, Li Z. M2 macrophages promote subconjunctival fibrosis through YAP/TAZ signalling. Ann Med 2024; 56:2313680. [PMID: 38335557 PMCID: PMC10860428 DOI: 10.1080/07853890.2024.2313680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE To evaluate the role of M2 macrophages in subconjunctival fibrosis after silicone implantation (SI) and investigate the underlying mechanisms. MATERIALS AND METHODS A model of subconjunctival fibrosis was established by SI surgery in rabbit eyes. M2 distribution and collagen deposition were evaluated by histopathology. The effects of M2 cells on the migration (using wound-scratch assay) and activation (by immunofluorescence and western blotting) of human Tenon's fibroblasts (HTFs) were investigated. RESULTS There were more M2 macrophages (CD68+/CD206+ cells) occurring in tissue samples around silicone implant at 2 weeks postoperatively. Dense collagen deposition was observed at 8 weeks after SI. In vitro experiment showed M2 expressed high level of CD206 and transforming growth factor-β1 (TGF-β1). The M2-conditioned medium promoted HTFs migration and the synthesis of collagen I and fibronectin. Meanwhile, M2-conditioned medium increased the protein levels of TGF-β1, TGF-βR II, p-Smad2/3, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ). Verteporfin, a YAP inhibitor, suppressedTGF-β1/Smad2/3-YAP/TAZ pathway and attenuated M2-induced extracellular matrix deposition by HTFs. CONCLUSIONS TGF-β1/Smad2/3-YAP/TAZ signalling may be involved in M2-induced fibrotic activities in HTFs. M2 plays a key role in promoting subconjunctival fibrosis and can serve as an attractive target for anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Yiwei Wang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Boyuan Cheng
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengcheng Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Yin C, Zhang Y, Fan C, Zheng J, Yang Y, Zhang Y, Jiang J. Injectable and pH-Responsive Metformin-Loaded Hydrogel for Active Inhibition of Posterior Capsular Opacification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59880-59894. [PMID: 39437316 DOI: 10.1021/acsami.4c13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Posterior capsular opacification (PCO) is a common complication following cataract surgery, which can lead to a significant vision loss. This study introduces a facile method for developing a metformin-derived hydrogel (HCM6) stabilized by dynamic covalent bonds among natural polymers. This hydrogel demonstrates antifibrotic properties, on-demand drug release, pH responsiveness, injectability, and self-healing capabilities. Our in vitro experiments confirmed that the HCM6 hydrogel exhibits excellent biocompatibility, inhibiting lens epithelial cell migration, and transforming growth factor-2β (TGFβ2)-induced α-smooth muscle actin (α-SMA) expression in lens epithelial cells. In vivo studies conducted in a rat extracapsular lens extraction (ECLE) model revealed that HCM6 significantly suppressed PCO after 21 days of implantation with no observed pathological effects on surrounding tissues or the optic nerve. According to our experimental results, the inhibitory mechanism of PCO may be attributed to metformin's suppressive effect on lens cell migration, epithelial-mesenchymal transition (EMT), and lens fiber formation. In summary, the long-acting, controllable, and on-demand release characteristics of the HCM6 hydrogel not only provide an effective strategy for preventing PCO but also offer new avenues for treating undesirable proliferative conditions in ophthalmology and beyond.
Collapse
Affiliation(s)
- Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yue Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cong Fan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yu Yang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
29
|
Lamont HC, Wright AL, Devries K, Okur KE, Jones M, Masood I, Hill LJ, Nazhat SN, Grover LM, Haj AJE, Metcalfe AD. Trabecular meshwork cell differentiation in response to collagen and TGFβ-2 spatial interactions. Acta Biomater 2024; 189:217-231. [PMID: 39218278 DOI: 10.1016/j.actbio.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Primary open-angle glaucoma (POAG) is currently the most prevalent cause of irreversible blindness globally. To date, few in vitro models that can faithfully recapitulate the complex architecture of the trabecular meshwork (TM) and the specialised trabecular meshwork cell (TMC) characteristics that are local to the structurally opposing regions. This study aimed to investigate the parameters that govern TMC phenotype by adapting the extracellular matrix structure to mimic the juxtacanalicular tissue (JCT) region of the TM. Initially, TMC phenotypic characteristics were investigated within type I collagen matrices of controlled fiber density and anisotropy, generated through confined plastic compression (PC). Notably, PC-collagen presented biophysical cues that induced JCT cellular characteristics (elastin, α-β-Crystallin protein expression, cytoskeletal remodelling, increased mesenchymal markers and JCT-specific genetic markers). In parallel, a pathological mesenchymal phenotype associated with POAG was induced through localised transforming growth factor -beta 2 (TGFβ-2) exposure. This resulted in a profile of alternative mesenchymal states (fibroblast/smooth muscle or myofibroblast) displayed by the TMC in vitro. Overall, the study provides an advanced insight into the biophysical cues that modulate TMC fate, inducing a JCT-specific phenotype and transient mesenchymal characteristics that reflect healthy and pathological scenarios. STATEMENT OF SIGNIFICANCE: Glaucoma is a leading cause of blindness, with a lack of long-term efficacy within current drug candidates. Reliable trabecular meshwork (TM) in vitro models will be critical for enhancing the fields understanding of healthy and disease states for pre-clinical testing. Trabecular meshwork cells (TMCs) display heterogeneity throughout the hierarchical TM, however our understanding into recapitulating these phenotypes in vitro, remains elusive. This study hypothesizes the importance of specific matrix/growth factor spatial stimuli in governing TMCs phenotype. By emulating certain biophysical/biochemical in vivo parameters, we introduce an advanced profile of distinct TMC phenotypic states, reflecting healthy and disease scenarios. A notion that has not be stated prior and a fundamental consideration for future 3D TM in vitro modelling.
Collapse
Affiliation(s)
- Hannah C Lamont
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Kate Devries
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Kerime E Okur
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Michael Jones
- Cell Guidance Systems Ltd, Maia Building, Babraham Bioscience Campus, Cambridge, UK
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Anthony D Metcalfe
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Zhu J, Lan X, Mo K, Zhang W, Huang Y, Tan J, Wang L, Ji J, Ke Q, Ouyang H. Deficiency of SECTM1 impairs corneal wound healing in aging. Aging Cell 2024; 23:e14247. [PMID: 38887148 PMCID: PMC11464118 DOI: 10.1111/acel.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
The corneal epithelium is the outermost transparent barrier of the eyeball and undergoes continuous self-renewal by limbal stem cells (LSCs) during its lifetime; however, the impact of aging on LSCs remains largely unknown. Here, we showed that the healing ability of the cornea in elderly macaques (Macaca fascicularis) was significantly decreased compared to that of younger macaques. This delayed wound closure accompanied a disordered cell arrangement and corneal opacity. A novel cytokine, Secreted and Transmembrane 1 (SECTM1), was found to facilitate corneal healing and was upregulated in young macaques upon wounding. Mechanistically, SECTM1 is essential for LSC migration and proliferation, and may partially function through Cell Division Cycle Associated 7 (CDCA7). Notably, the topical application of SECTM1 to aged wounded corneas dramatically promoted re-epithelialization and improved corneal transparency in both mice and macaques. Our work suggests that aging may impair the expression of healing response factors and injury repair in non-human primate corneas, and that SECTM1 application could potentially benefit corneal wound healing in clinical treatment.
Collapse
Affiliation(s)
- Jin Zhu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Wang Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Li Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Qiong Ke
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Department of Histoembryology and Cell Biology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
31
|
Xu Y, Hu P, Chen W, Chen J, Liu C, Zhang H. Testicular fibrosis pathology, diagnosis, pathogenesis, and treatment: A perspective on related diseases. Andrology 2024. [PMID: 39330621 DOI: 10.1111/andr.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Testicular fibrosis is a chronic and progressive condition characterized by the excessive deposition of extracellular matrix proteins. This process leads to fibrotic remodeling, damage to testicular tissue, and the irreversible loss of male reproductive function. However, there is currently a lack of comprehensive reviews systematically elucidating the pathology, diagnosis, pathogenesis, and treatment of testicular fibrosis from the perspectives of different related diseases. This review addresses these aspects of testicular fibrosis, with a particular emphasis on elucidating the underlying mechanisms of testicular cells. It provides insights that can be relevant for future research and clinical interventions.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Williams AL, Bohnsack BL. Keratin 8/18a.1 Expression Influences Embryonic Neural Crest Cell Dynamics and Contributes to Postnatal Corneal Regeneration in Zebrafish. Cells 2024; 13:1473. [PMID: 39273043 PMCID: PMC11394277 DOI: 10.3390/cells13171473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
A complete understanding of neural crest cell mechanodynamics during ocular development will provide insight into postnatal neural crest cell contributions to ophthalmic abnormalities in adult tissues and inform regenerative strategies toward injury repair. Herein, single-cell RNA sequencing in zebrafish during early eye development revealed keratin intermediate filament genes krt8 and krt18a.1 as additional factors expressed during anterior segment development. In situ hybridization and immunofluorescence microscopy confirmed krt8 and krt18a.1 expression in the early neural plate border and migrating cranial neural crest cells. Morpholino oligonucleotide (MO)-mediated knockdown of K8 and K18a.1 markedly disrupted the migration of neural crest cell subpopulations and decreased neural crest cell marker gene expression in the craniofacial region and eye at 48 h postfertilization (hpf), resulting in severe phenotypic defects reminiscent of neurocristopathies. Interestingly, the expression of K18a.1, but not K8, is regulated by retinoic acid (RA) during early-stage development. Further, both keratin proteins were detected during postnatal corneal regeneration in adult zebrafish. Altogether, we demonstrated that both K8 and K18a.1 contribute to the early development and postnatal repair of neural crest cell-derived ocular tissues.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| |
Collapse
|
33
|
Vardar C, George-Weinstein M, Getts R, Byrne ME. Evaluation of Dose-Response Relationship in Novel Extended Release of Targeted Nucleic Acid Nanocarriers to Treat Secondary Cataracts. J Ocul Pharmacol Ther 2024; 40:459-466. [PMID: 38899506 DOI: 10.1089/jop.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Purpose: The present study aimed to determine the dose-response relationship between targeted nanocarriers released from a novel, sustained release formulation and their ability to specifically deplete cells responsible for the development of posterior capsular opacification (PCO) in month-long, dynamic cell cultures. Methods: Injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) triblock copolymer hydrogels were loaded with either a low or a high dose of doxorubicin-loaded antibody-targeted nanocarriers (G8:3DNA:Dox). Human rhabdomyosarcoma cells, selected for their expression of PCO marker brain-specific angiogenesis inhibitor 1 (BAI1), were kept under dynamic media flow and received either a low or high dose of nanocarriers. Cells were fixed and stained at predetermined time points to evaluate targeted depletion of BAI1+ cells. Results: A lower dose of nanocarriers in hydrogel depleted BAI1+ cells at a slower rate than the higher dose, whereas both reached over 90% BAI1+ cellular nonviability at 28 days. Both treatment groups also significantly lowered the relative abundance of BAI1+ cells in the population compared with the control group. Conclusions: Controlled release of a lower dose of nanocarriers can still achieve therapeutically relevant effects in the prevention of PCO, while avoiding potential secondary effects associated with the administration of a higher dose.
Collapse
Affiliation(s)
- Camila Vardar
- Department of Biomedical Engineering, Rowan Virtua School of Translational Biomedical Engineering and Sciences University, Glassboro, New Jersey, USA
| | | | | | - Mark E Byrne
- Department of Biomedical Engineering, Rowan Virtua School of Translational Biomedical Engineering and Sciences University, Glassboro, New Jersey, USA
- OcuMedic, Inc., Mullica Hill, New Jersey, USA
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
34
|
Zhang Q, Shu DY, Bryan RA, Han JYS, Gulette GA, Lo K, Kim LA, Miller JML. Long-term Monitoring of Oxygen Consumption Rates in Highly Differentiated and Polarized Retinal Pigment Epithelial Cultures. J Vis Exp 2024:10.3791/67038. [PMID: 39221933 PMCID: PMC12045155 DOI: 10.3791/67038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondrial metabolism is critical for the normal function of the retinal pigment epithelium (RPE), a monolayer of cells in the retina important for photoreceptor survival. RPE mitochondrial dysfunction is a hallmark of age-related macular degeneration (AMD), the leading cause of irreversible blindness in the developed world, and proliferative vitreoretinopathy (PVR), a blinding complication of retinal detachments. RPE degenerative conditions have been well-modeled by RPE culture systems that are highly differentiated and polarized to mimic in vivo RPE. However, monitoring oxygen consumption rates (OCR), a proxy for mitochondrial function, has been difficult in such culture systems because the conditions that promote ideal RPE polarization and differentiation do not allow for easy OCR measurements. Here, we introduce a novel system, Resipher, to monitor OCR for weeks at a time in well-differentiated RPE cultures while maintaining the RPE on optimal growth substrates and physiologic culture media in a standard cell culture incubator. This system calculates OCR by measuring the oxygen concentration gradient present in the media above cells. We discuss the advantages of this system over other methods for detecting OCR and how to set up the system for measuring OCR in RPE cultures. We cover key tips and tricks for using the system, caution about interpreting the data, and guidelines for troubleshooting unexpected results. We also provide an online calculator for extrapolating the level of hypoxia, normoxia, or hyperoxia RPE cultures experience based on the oxygen gradient in the media above cells detected by the system. Finally, we review two applications of the system, measuring the metabolic state of RPE cells in a PVR model and understanding how the RPE metabolically adapts to hypoxia. We anticipate that the use of this system on highly polarized and differentiated RPE cultures will enhance our understanding of RPE mitochondrial metabolism both under physiologic and disease states.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor
| | - Daisy Y Shu
- School of Optometry and Vision Science, University of New South Wales
| | | | - John Y S Han
- Kellogg Eye Center, University of Michigan, Ann Arbor
| | | | | | - Leo A Kim
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor;
| |
Collapse
|
35
|
Zheng M, Liu Z, He Y. Radiation-induced fibrosis: Mechanisms and therapeutic strategies from an immune microenvironment perspective. Immunology 2024; 172:533-546. [PMID: 38561001 DOI: 10.1111/imm.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Radiation-induced fibrosis (RIF) is a severe chronic complication of radiotherapy (RT) manifested by excessive extracellular matrix (ECM) components deposition within the irradiated area. The lung, heart, skin, jaw, pelvic organs and so on may be affected by RIF, which hampers body functions and quality of life. There is accumulating evidence suggesting that the immune microenvironment may play a key regulatory role in RIF. This article discussed the synergetic or antagonistic effects of immune cells and mediators in regulating RIF's development. Several potential preventative and therapeutic strategies for RIF were proposed based on the immunological mechanisms to provide clinicians with improved cognition and clinical treatment guidance.
Collapse
Affiliation(s)
- Mengting Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
36
|
Wang Y, Geng X, Sun X, Cui H, Guo Z, Chu D, Li J, Li Z. Celastrol alleviates subconjunctival fibrosis induced by silicone implants mimicking glaucoma surgery. Eur J Pharm Biopharm 2024; 201:114352. [PMID: 38851459 DOI: 10.1016/j.ejpb.2024.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Subconjunctival fibrosis is critical to the outcomes of several ophthalmic conditions or procedures, such as glaucoma filtering surgery. This study aimed to investigate the anti-fibrotic effect of celastrol on subconjunctival fibrosis and to further reveal the underlying mechanisms. We used celastrol-loaded nanomicelles hydrogel hybrid as a sustained-release drug. A rabbit model of subconjunctival fibrosis following silicone implantation was used for in vivo study, and TGF-β1-induced human pterygium fibroblast (HPF) activation as an in vitro model. The effects of celastrol on inhibiting TGF-β1-induced migration and proliferation of HPFs were evaluated by scratch wound assay and CCK-8, respectively. Immunofluorescence and western blotting were used to examine the effect of celastrol on the expression of α-SMA, collagen I, fibronectin, and the targets of the Hippo signaling pathway. We found that in vivo celastrol treatment reduced the expression of YAP and TAZ in subconjunctival tissue. Moreover, celastrol alleviated collagen deposition and subconjunctival fibrosis at 8 weeks. No obvious tissue toxicity was observed in the rabbit models. Mechanistically, celastrol significantly inhibited TGF-β1-induced proliferation and migration of HPFs. Pretreatment of HPFs with celastrol also suppressed the TGF-β1-induced protein expression of α-SMA, collagen I, fibronectin, TGF-βRII, phosphorylated Smad2/3, YAP, TAZ, and TEAD1. In conclusion, celastrol effectively prevented subconjunctival fibrosis through inhibiting TGF-β1/Smad2/3-YAP/TAZ pathway. Celastrol could serve as a promising therapy for subconjunctival fibrosis.
Collapse
Affiliation(s)
- Yiwei Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xue Sun
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
37
|
Ding X, Yue P, Li X, Jia Y, Fang R, Li E, Wu X, Zhou H, Song X. Evaluation of nintedanib efficacy: Attenuating the lens fibrosis in vitro and vivo. Int Immunopharmacol 2024; 136:112334. [PMID: 38815350 DOI: 10.1016/j.intimp.2024.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Organ fibrosis is a huge challenge in clinic. There are no drugs for fibrotic cataracts treatments in clinic. Nintedanib is approved by the FDA for pulmonary fibrosis treatments. This study aims to investigate the efficacy and mechanism of nintedanib on fibrotic cataracts. METHODS Drug efficacy was validated through TGFβ2-induced cell models and injury-induced anterior subcapsular cataract (ASC) mice. A slit lamp and the eosin staining technique were applied to access the degree of capsular fibrosis. The CCK-8 assay was used to evaluate the toxicity and anti-proliferation ability of the drug. The cell migration was determined by wound healing assay and transwell assay. The anti-epithelial mesenchymal transition (EMT) and anti-fibrosis efficacy were evaluated by qRT-PCR, immunoblot, and immunofluorescence. The inhibition of nintedanib to signaling pathways was certified by immunoblot. RESULTS Nintedanib inhibited the migration and proliferation of TGFβ2-induced cell models. Nintedanib can also repress the EMT and fibrosis of the lens epithelial cells. The intracameral injection of nintedanib can also allay the anterior subcapsular opacification in ASC mice. The TGFβ2/ Smad and non-Smad signaling pathways can be blocked by nintedanib in vitro and in vivo. CONCLUSION Nintedanib alleviates fibrotic cataracts by suppressing the TGFβ2/ Smad and non-Smad signaling pathways. Nintedanib is a potential drug for lens fibrosis.
Collapse
Affiliation(s)
- Xuefei Ding
- Beijing Tongren Hospital, Beijing 100730, China; Capital Medical University, Beijing 100730, China
| | - Peilin Yue
- Beijing Tongren Hospital, Beijing 100730, China; Capital Medical University, Beijing 100730, China
| | - Xiaohe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China
| | - Yuxuan Jia
- Beijing Tongren Hospital, Beijing 100730, China; Capital Medical University, Beijing 100730, China
| | - Rui Fang
- Beijing Tongren Hospital, Beijing 100730, China; Capital Medical University, Beijing 100730, China
| | - Enjie Li
- Beijing Tongren Hospital, Beijing 100730, China; Capital Medical University, Beijing 100730, China
| | - Xi Wu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China.
| | - Xudong Song
- Beijing Tongren Hospital, Beijing 100730, China; Capital Medical University, Beijing 100730, China; Beijing Tongren Eye Center, Beijing 100730, China; Beijing Ophthalmology&Visual Sciences Key Lab, Beijing 100730, China.
| |
Collapse
|
38
|
Wang S, Chen CY, Liu CC, Stavropoulos D, Rao M, Petrash JM, Chang KC. GDF-15 Attenuates the Epithelium-Mesenchymal Transition and Alleviates TGFβ2-Induced Lens Opacity. Transl Vis Sci Technol 2024; 13:2. [PMID: 38949633 PMCID: PMC11221611 DOI: 10.1167/tvst.13.7.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor β2 (TGFβ2)-induced lens opacity. Methods To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFβ2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFβ2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFβ2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFβ2. Conclusions Our results indicate that GDF-15 could alleviate TGFβ2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.
Collapse
Affiliation(s)
- Shining Wang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dimitrios Stavropoulos
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J. Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Ke HL, Li RJ, Yu CC, Wang XP, Wu CY, Zhang YW. Network pharmacology and experimental verification to decode the action of Qing Fei Hua Xian Decotion against pulmonary fibrosis. PLoS One 2024; 19:e0305903. [PMID: 38913698 PMCID: PMC11195996 DOI: 10.1371/journal.pone.0305903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a common interstitial pneumonia disease, also occurred in post-COVID-19 survivors. The mechanism underlying the anti-PF effect of Qing Fei Hua Xian Decotion (QFHXD), a traditional Chinese medicine formula applied for treating PF in COVID-19 survivors, is unclear. This study aimed to uncover the mechanisms related to the anti-PF effect of QFHXD through analysis of network pharmacology and experimental verification. METHODS The candidate chemical compounds of QFHXD and its putative targets for treating PF were achieved from public databases, thereby we established the corresponding "herb-compound-target" network of QFHXD. The protein-protein interaction network of potential targets was also constructed to screen the core targets. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict targets, and pathways, then validated by in vivo experiments. RESULTS A total of 188 active compounds in QFHXD and 50 target genes were identified from databases. The key therapeutic targets of QFHXD, such as PI3K/Akt, IL-6, TNF, IL-1β, STAT3, MMP-9, and TGF-β1 were identified by KEGG and GO analysis. Anti-PF effects of QFHXD (in a dose-dependent manner) and prednisone were confirmed by HE, Masson staining, and Sirius red staining as well as in vivo Micro-CT and immunohistochemical analysis in a rat model of bleomycin-induced PF. Besides, QFXHD remarkably inhibits the activity of PI3K/Akt/NF-κB and TGF-β1/Smad2/3. CONCLUSIONS QFXHD significantly attenuated bleomycin-induced PF via inhibiting inflammation and epithelial-mesenchymal transition. PI3K/Akt/NF-κB and TGF-β1/Smad2/3 pathways might be the potential therapeutic effects of QFHXD for treating PF.
Collapse
Affiliation(s)
- Hao-Liang Ke
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui-Jie Li
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chao-Chao Yu
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiu-Ping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao-Yan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Nishikiori N, Sato T, Ogawa T, Higashide M, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Watanabe M. TGF-β Isoforms and Local Environments Greatly Modulate Biological Nature of Human Retinal Pigment Epithelium Cells. Bioengineering (Basel) 2024; 11:581. [PMID: 38927817 PMCID: PMC11201039 DOI: 10.3390/bioengineering11060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
To characterize transforming growth factor-β (TGF-β) isoform (TGF-β1~3)-b's biological effects on the human retinal pigment epithelium (RPE) under normoxia and hypoxia conditions, ARPE19 cells cultured by 2D (two-dimensional) and 3D (three-dimensional) conditions were subjected to various analyses, including (1) an analysis of barrier function by trans-epithelial electrical resistance (TEER) measurements; (2) qPCR analysis of major ECM molecules including collagen 1 (COL1), COL4, and COL6; α-smooth muscle actin (αSMA); hypoxia-inducible factor 1α (HIF1α); and peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), a master regulator for mitochondrial respiration;, tight junction-related molecules, Zonula occludens-1 (ZO1) and E-cadherin; and vascular endothelial growth factor (VEGF); (3) physical property measurements of 3D spheroids; and (4) cellular metabolic analysis. Diverse effects among TGF-β isoforms were observed, and those effects were also different between normoxia and hypoxia conditions: (1) TGF-β1 and TGF-β3 caused a marked increase in TEER values, and TGF-β2 caused a substantial increase in TEER values under normoxia conditions and hypoxia conditions, respectively; (2) the results of qPCR analysis supported data obtained by TEER; (3) 3D spheroid sizes were decreased by TGF-β isoforms, among which TGF-β1 had the most potent effect under both oxygen conditions; (4) 3D spheroid stiffness was increased by TGF-β2 and TGF-β3 or by TGF-β1 and TGF-β3 under normoxia conditions and hypoxia conditions, respectively; and (5) the TGF-β isoform altered mitochondrial and glycolytic functions differently under oxygen conditions and/or culture conditions. These collective findings indicate that the TGF-β-induced biological effects of 2D and 3D cultures of ARPE19 cells were substantially diverse depending on the three TGF-β isoforms and oxygen levels, suggesting that pathological conditions including epithelial-mesenchymal transition (EMT) of the RPE may be exclusively modulated by both factors.
Collapse
Affiliation(s)
- Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
41
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
42
|
Zhang Q, Yan X, Han H, Wang Y, Sun J. Pericyte in retinal vascular diseases: A multifunctional regulator and potential therapeutic target. FASEB J 2024; 38:e23679. [PMID: 38780117 DOI: 10.1096/fj.202302624r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| |
Collapse
|
43
|
Ying J, Wang P, Jin X, Luo L, Lai K, Li J. TGF-β1 Mediates the EndoMt in High Glucose-Treated Human Retinal Microvascular Endothelial Cells. Semin Ophthalmol 2024; 39:312-319. [PMID: 38192082 DOI: 10.1080/08820538.2023.2300806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
The purpose of our study was to investigate the role of TGF-β1 in the endothelial-to-mesenchymal transition (EndoMT) and fibrosis in high glucose (HG)-treated human retinal microvascular endothelial cells (HRMECs). HRMECs were cultured not only under normal glucose (NG) conditions with or without TGF-β1, but also under HG conditions with or without the TGF-β1 inhibitor SB431542. The expression of TGF-β1 was detected by real time-PCR and enzyme-linked immunosorbent assay. Morphological changes and migration of the HRMECs were observed using electron microscopy and scratch-wound assay. Endothelial markers, such as CD31 and vascular endothelial (VE)-cadherin, and the acquisition of fibrotic markers, such as alpha smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1), were determined by immunofluorescent staining and western blot. The level of TGF-β1 was significantly upregulated in HG-treated HRMECs. And HG stimulation promoted obvious morphological changes and the migration ability in HRMECs. Our results also demonstrated increased expression of α-SMA and FSP-1, and decreased expression of CD31 and VE-cadherin, in HG-treated HRMECs. These EndoMT-related changes were promoted by TGF-β1 and abrogated by SB431542. The results of this study demonstrated the important role of TGF-β1 in HG-induced vitreoretinal fibrosis. EndoMT is likely to be involved in the associated effects.
Collapse
Affiliation(s)
- Jia Ying
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Peipei Wang
- Department of Stomatology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Xiao Jin
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Li Luo
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Keshuang Lai
- Department of Ophthalmology, Yunhe County Hospital of traditional Chinese medicine, Lishui, PR China
| | - Jun Li
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| |
Collapse
|
44
|
Zhang K, Zheng S, Wu J, He J, Ouyang Y, Ao C, Lang R, Jiang Y, Yang Y, Xiao H, Li Y, Li M, Wang H, Li C, Wu D. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling. FASEB J 2024; 38:e23599. [PMID: 38572590 DOI: 10.1096/fj.202302324r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jiasheng Wu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
45
|
Zhang X, Han P, Qiu J, Huang F, Luo Q, Cheng J, Shan K, Yang Y, Zhang C. Single-cell RNA sequencing reveals the complex cellular niche of pterygium. Ocul Surf 2024; 32:91-103. [PMID: 38290663 DOI: 10.1016/j.jtos.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Pterygium is a vision-threatening conjunctival fibrovascular degenerated disease with a high global prevalence up to 12 %, while no absolute pharmacotherapy has been applied in clinics. In virtue of single-cell RNA sequencing (scRNA-seq) technique, our study investigated underlying pathogeneses and potential therapeutic targets of pterygium from the cellular transcriptional level. METHODS A total of 45605 cells from pterygium of patients and conjunctiva of normal controls (NC) were conducted with scRNA-seq, and then analyzed via integrated analysis, pathway enrichment, pseudotime trajectory, and cell-cell communications. Besides, immunofluorescence and western blot were performed in vivo and in vitro to verify our findings. RESULTS In brief, 9 major cellular types were defined, according to canonical markers. Subsequently, we further determined the subgroups of each major cell lineages. Several newly identified cell sub-clusters could promote pterygium, including immuno-fibroblasts, epithelial mesenchymal transition (EMT)-epithelial cells, and activated vascular endothelial cells (activated-vEndo). Besides, we also probed the enrichment of immune cells in pterygium. Particularly, macrophages, recruited by ACKR1+activated-vEndo, might play an important role in the development of pterygium by promoting angiogenesis, immune suppression, and inflammation. CONCLUSION An intricate cellular niche was revealed in pterygium via scRNA-seq analysis and the interactions between macrophages and ACKR1+ activated-vEndo might be the key part in the development of pterygia.
Collapse
Affiliation(s)
- Xueling Zhang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Peizhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jini Qiu
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Feifei Huang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Qiting Luo
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jingyi Cheng
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Kun Shan
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Yujing Yang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Chaoran Zhang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
46
|
Yang Q, Cai Y, Ma Q, Xiong A, Xu P, Zhang Z, Xu J, Zhou Y, Liu Z, Zhao D, Asara J, Li W, Shi H, Caldwell RB, Sodhi A, Huo Y. Inactivation of adenosine receptor 2A suppresses endothelial-to-mesenchymal transition and inhibits subretinal fibrosis in mice. Sci Transl Med 2024; 16:eadk3868. [PMID: 38446902 PMCID: PMC11373239 DOI: 10.1126/scitranslmed.adk3868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
Anti-vascular endothelial growth factor therapy has had a substantial impact on the treatment of choroidal neovascularization (CNV) in patients with neovascular age-related macular degeneration (nAMD), the leading cause of vision loss in older adults. Despite treatment, many patients with nAMD still develop severe and irreversible visual impairment because of the development of subretinal fibrosis. We recently reported the anti-inflammatory and antiangiogenic effects of inhibiting the gene encoding adenosine receptor 2A (Adora2a), which has been implicated in cardiovascular disease. Here, using two mouse models of subretinal fibrosis (mice with laser injury-induced CNV or mice with a deficiency in the very low-density lipoprotein receptor), we found that deletion of Adora2a either globally or specifically in endothelial cells reduced subretinal fibrosis independently of angiogenesis. We showed that Adora2a-dependent endothelial-to-mesenchymal transition contributed to the development of subretinal fibrosis in mice with laser injury-induced CNV. Deficiency of Adora2a in cultured mouse and human choroidal endothelial cells suppressed induction of the endothelial-to-mesenchymal transition. A metabolomics analysis of cultured human choroidal endothelial cells showed that ADORA2A knockdown with an siRNA reversed the increase in succinate because of decreased succinate dehydrogenase B expression under fibrotic conditions. Pharmacological inhibition of ADORA2A with a small-molecule KW6002 in both mouse models recapitulated the reduction in subretinal fibrosis observed in mice with genetic deletion of Adora2a. ADORA2A inhibition may be a therapeutic approach to treat subretinal fibrosis associated with nAMD.
Collapse
Affiliation(s)
- Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Albert Xiong
- Department of Ophthalmology, University of South Florida, Tampa, FL 33606, USA
| | - Peishan Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhidan Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiean Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaqi Zhou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dingwei Zhao
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Wei Li
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Akrit Sodhi
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins, Baltimore, MD 21287, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
47
|
Surico PL, Scarabosio A, Miotti G, Grando M, Salati C, Parodi PC, Spadea L, Zeppieri M. Unlocking the versatile potential: Adipose-derived mesenchymal stem cells in ocular surface reconstruction and oculoplastics. World J Stem Cells 2024; 16:89-101. [PMID: 38455097 PMCID: PMC10915950 DOI: 10.4252/wjsc.v16.i2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
This review comprehensively explores the versatile potential of mesenchymal stem cells (MSCs) with a specific focus on adipose-derived MSCs. Ophthalmic and oculoplastic surgery, encompassing diverse procedures for ocular and periocular enhancement, demands advanced solutions for tissue restoration, functional and aesthetic refinement, and aging. Investigating immunomodulatory, regenerative, and healing capacities of MSCs, this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside, addressing common unmet needs in the field of reconstructive and regenerative surgery.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
- Department of Ophthalmology, Campus Bio-Medico University, Rome 00128, Italy
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
48
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
49
|
Zhou M, Lin B, Wu P, Ke Y, Huang S, Zhang F, Hei X, Mao Z, Li X, Wan P, Chen T, Yang H, Huang D. SOX9 Induces Orbital Fibroblast Activation in Thyroid Eye Disease Via MAPK/ERK1/2 Pathway. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 38345552 PMCID: PMC10866156 DOI: 10.1167/iovs.65.2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose To evaluate the expression of sry-box transcription factor 9 (SOX9) in orbital fibroblasts (OFs) of thyroid eye disease (TED) and to find its potential role and underlying mechanism in orbital fibrosis. Methods OFs were cultured from orbital connective tissues obtained from patients with TED (n = 10) and healthy controls (n = 6). SOX9 was depleted by small interfering RNA or overexpressed through lentivirus transduction in OFs. Fibroblast contractile activity was measured by collagen gel contraction assay and proliferation was examined by EdU assay. Transcriptomic changes were assessed by RNA sequencing. Results The mRNA and protein levels of SOX9 were significantly higher in OFs cultured from patients with TED than those from healthy controls. Extracellular matrix-related genes were down-regulated by SOX9 knockdown and up-regulated by SOX9 overexpression in TED-OFs. SOX9 knockdown significantly decrease the contraction and the antiapoptotic ability of OFs, whereas the overexpression of SOX9 increased the ability of transformation, migration, and proliferation of OFs. SOX9 knockdown suppressed the expression of phosphorylated ERK1/2, whereas its overexpression showed the opposite effect. Epidermal growth factor receptor (EGFR) is one of the notably down-regulated genes screened out by RNA sequencing. Chromatin immunoprecipitation-qPCR demonstrated SOX9 binding to the EGFR promoter. Conclusions A high expression of SOX9 was found in TED-OFs. SOX9 can activate OFs via MAPK/ERK1/2 signaling pathway, which in turn promotes proliferation and differentiation of OFs. EGFR was a downstream target gene of SOX9. SOX9/EGFR can be considered as therapeutic targets for the treatment of orbital fibrosis in TED.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| |
Collapse
|
50
|
Meng S, Wei Q, Chen S, Liu X, Cui S, Huang Q, Chu Z, Ma K, Zhang W, Hu W, Li S, Wang Z, Tian L, Zhao Z, Li H, Fu X, Zhang C. MiR-141-3p-Functionalized Exosomes Loaded in Dissolvable Microneedle Arrays for Hypertrophic Scar Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305374. [PMID: 37724002 DOI: 10.1002/smll.202305374] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-β2 to suppress the TGF-β2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-β2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.
Collapse
Affiliation(s)
- Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengqiu Chen
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shiyi Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Lige Tian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Haihong Li
- Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| |
Collapse
|