1
|
Ali M, Reutrakul S, Vajaranant TS. Melatonin as an adjuvant: reshaping glaucoma treatment strategies. Eye (Lond) 2024:10.1038/s41433-024-03358-w. [PMID: 39327449 DOI: 10.1038/s41433-024-03358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Affiliation(s)
- Moonis Ali
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Thasarat Sutabutr Vajaranant
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Zhang J, Zhou H, Cai Y, Yoshida S, Li Y, Zhou Y. Melatonin: Unveiling the functions and implications in ocular health. Pharmacol Res 2024; 205:107253. [PMID: 38862072 DOI: 10.1016/j.phrs.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
4
|
Romeo A, Kazsoki A, Musumeci T, Zelkó R. A Clinical, Pharmacological, and Formulation Evaluation of Melatonin in the Treatment of Ocular Disorders-A Systematic Review. Int J Mol Sci 2024; 25:3999. [PMID: 38612812 PMCID: PMC11011996 DOI: 10.3390/ijms25073999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Melatonin's cytoprotective properties may have therapeutic implications in treating ocular diseases like glaucoma and age-related macular degeneration. Literature data suggest that melatonin could potentially protect ocular tissues by decreasing the production of free radicals and pro-inflammatory mediators. This study aims to summarize the screened articles on melatonin's clinical, pharmacological, and formulation evaluation in treating ocular disorders. The identification of relevant studies on the topic in focus was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. The studies were searched in the following databases and web search engines: Pubmed, Scopus, Science Direct, Web of Science, Reaxys, Google Scholar, Google Patents, Espacenet, and Patentscope. The search time interval was 2013-2023, with the following keywords: melatonin AND ocular OR ophthalmic AND formulation OR insert AND disease. Our key conclusion was that using melatonin-loaded nano-delivery systems enabled the improved permeation of the molecule into intraocular tissues and assured controlled release profiles. Although preclinical studies have demonstrated the efficacy of developed formulations, a considerable gap has been observed in the clinical translation of the results. To overcome this failure, revising the preclinical experimental phase might be useful by selecting endpoints close to clinical ones.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (A.R.); (T.M.)
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7–9, 1092 Budapest, Hungary;
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (A.R.); (T.M.)
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7–9, 1092 Budapest, Hungary;
| |
Collapse
|
5
|
Shi Y, Ye D, Cui K, Bai X, Fan M, Feng Y, Hu C, Xu Y, Huang J. Melatonin ameliorates retinal ganglion cell senescence and apoptosis in a SIRT1-dependent manner in an optic nerve injury model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167053. [PMID: 38325588 DOI: 10.1016/j.bbadis.2024.167053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Melatonin is involved in exerting protective effects in aged-related and neurodegenerative diseases through a silent information regulator type 1 (SIRT1)-dependent pathway. However, little was known about the impact of melatonin on retinal ganglion cell (RGC) senescence and apoptosis following optic nerve crush (ONC). Thus, this study aimed to examine the effects of melatonin on RGC senescence and apoptosis after ONC and investigate the involvement of SIRT1 in this process. To study this, an ONC model was established. EX-527, an inhibitor of SIRT1, was injected intraperitoneally into mice. And melatonin was administrated abdominally into mice after ONC every day. Hematoxylin & eosin staining, retina flat-mounts and optical coherence tomography were used to evaluate the loss of retina cells/neurons. Pattern electroretinogram (p-ERG) was performed to evaluate the function of RGCs. Immunofluorescence and western blot were used to evaluate protein expression. SA-β-gal staining was employed to detect senescent cells. The results demonstrated that melatonin partially rescued the expression of SIRT1 in RGC 3 days after ONC. Additionally, melatonin administration partly rescued the decreased RGC number and ganglion cell complex thickness observed 14 days after ONC. Melatonin also suppressed ONC-induced senescence and apoptosis index. Furthermore, p-ERG showed that melatonin improved the amplitude of P50, N95 and N95/P50 following ONC. Importantly, the protective effects of melatonin were reversed when EX-527 was administered. In summary, this study revealed that melatonin attenuated RGC senescence and apoptosis through a SIRT1-dependent pathway after ONC. These findings provide valuable insights for the treatment of RGC senescence and apoptosis.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, CT 201942, United States
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
6
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
7
|
Zhang X, Wang F, Su Y. TRPV: An emerging target in glaucoma and optic nerve damage. Exp Eye Res 2024; 239:109784. [PMID: 38199261 DOI: 10.1016/j.exer.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Zhou D, Zhu W, Liu H, Zhang F, Zhou X, Zhang X, Zhao Y, Huang Y, Duan X. A novel adjustable PHBV basement film for enhancing the efficacy of glaucoma surgery by inhibiting scar formation. Mater Today Bio 2024; 24:100922. [PMID: 38226011 PMCID: PMC10788518 DOI: 10.1016/j.mtbio.2023.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024] Open
Abstract
Trabeculectomy is the primary surgical approach used to treat glaucoma, but scarring of the filtering passage (filtering bleb) after surgery often leads to treatment failure. To address this issue, we have developed a drug release system called RSG/Pd@ZIF-8 PHBV film. This system enables the sustained release of an anti-fibrosis drug, aiming to prevent scarring. In vitro, the film has the function of continuous Rosiglitazone (RSG) release, with accelerated release after laser irradiation. The antibacterial experiments revealed that the film exhibited antibacterial rates of 87.0 % against E.coli and 97.1 % against S.aureus, respectively. Moreover, we confirmed its efficacy in a rabbit eye model undergoing trabeculectomy. After implantation of the film, we observed a prolonged postoperative period for reducing intraocular pressure (IOP), increased survival rate of filtering blebs, and improved long-term surgical outcomes in vivo. Additionally, the film exhibited excellent biosafety. In summary, the designed sustained-release film in this study possesses the aforementioned functionalities, allowing for the regulation of anti-scarring drug release without causing harm post-surgery. This personalized and precise anti-scarring strategy represents a significant advancement.
Collapse
Affiliation(s)
- Dengming Zhou
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, China, 410015
| | - Wenxiang Zhu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Hairong Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Feng Zhang
- The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiaoyu Zhou
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, China, 410015
| | - Xinyue Zhang
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, China, 410015
| | - Yang Zhao
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, China, 410015
| | - Yuting Huang
- Shanghai Achieva Medical Suzhou Co., Ltd. Suzhou, 215028, China
| | - Xuanchu Duan
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, China, 410015
| |
Collapse
|
9
|
Mueller A, Lam I, Kishor K, Lee RK, Bhattacharya S. Secondary glaucoma: Toward interventions based on molecular underpinnings. WIREs Mech Dis 2024; 16:e1628. [PMID: 37669762 DOI: 10.1002/wsbm.1628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Glaucoma is a heterogeneous group of progressive diseases that leads to irreversible blindness. Secondary glaucoma refers to glaucoma caused by a known underlying condition. Pseudoexfoliation and pigment dispersion syndromes are common causes of secondary glaucoma. Their respective deposits may obstruct the trabecular meshwork, leading to aqueous humor outflow resistance, ocular hypertension, and optic neuropathy. There are no disease-specific interventions available for either. Pseudoexfoliation syndrome is characterized by fibrillar deposits (pseudoexfoliative material) on anterior segment structures. Over a decade of multiomics analyses taken together with the current knowledge on pseudoexfoliative glaucoma warrant a re-think of mechanistic possibilities. We propose that the presence of nucleation centers (e.g., vitamin D binding protein), crosslinking enzymes (e.g., transglutaminase 2), aberrant extracellular matrix, flawed endocytosis, and abnormal aqueous-blood barrier contribute to the formation of proteolytically resistant pseudoexfoliative material. Pigment dispersion syndrome is characterized by abnormal iridolenticular contact that disrupts iris pigment epithelium and liberates melanin granules. Iris melanogenesis is aberrant in this condition. Cytotoxic melanogenesis intermediates leak out of melanosomes and cause iris melanocyte and pigment epithelium cell death. Targeting melanogenesis can likely decrease the risk of pigmentary glaucoma. Skin and melanoma research provides insights into potential therapeutics. We propose that specific prostanoid agonists and fenofibrates may reduce melanogenesis by inhibiting cholesterol internalization and de novo synthesis. Additionally, melatonin is a potent melanogenesis suppressor, antioxidant, and hypotensive agent, rendering it a valuable agent for pigmentary glaucoma. In pseudoexfoliative glaucoma, where environmental insults drive pseudoexfoliative material formation, melatonin's antioxidant and hypotensive properties may offer adjunct therapeutic benefits. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Anna Mueller
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Isabel Lam
- Idaho College of Osteopathic Medicine, Meridian, Idaho, USA
| | - Krishna Kishor
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sanjoy Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
10
|
Pastor-Idoate S, Mateos-Olivares M, Sobas EM, Marcos M, Toribio A, Pastor JC, Usategui Martín R. Short-Wavelength Light-Blocking Filters and Oral Melatonin Administration in Patients With Retinitis Pigmentosa: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e49196. [PMID: 37971796 PMCID: PMC10690531 DOI: 10.2196/49196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The medical community is beginning to recognize that retinitis pigmentosa (RP), due to its disabling progression, eventually leads to a reduction in the patient´s quality of life, a direct economic impact, and an increase in the burden on the health care system. There is no curative treatment for the origin of the disease, and most of the current interventions fail in reducing the associated negative psychological states, such as anxiety and depression, which lead to increased variability of vision and pose a continuous threat to the patient's independence. OBJECTIVE The aim of this study is to assess the effect of oral melatonin (OM) administration alone and combined with short-wavelength light (SWL)-blocking filters on patients with RP and test their effectiveness in improving the level of stress and sleep problems in many of these patients. METHODS We have developed a low-cost therapy protocol for patients with RP with sleep disorders and negative psychological stress. Patients will be randomized to receive a combined intervention with SWL-blocking filters and OM, SWL-blocking filters alone, or OM alone. There will also be a nonintervention arm as a control group. This study will be conducted across 2 retinal units in patients with RP with sleep disorders and high perceived stress and anxiety score reports. Patients will be assessed in the preintervention period, weekly during the 4 weeks of intervention, and then at 6 months postintervention. The primary outcomes are the differences in changes from baseline to postintervention in hormone release (α-amylase, cortisol, and melatonin) and sleep quality, as measured with the visual analog scale. Secondary outcome measures include clinical macular changes, as measured with optical coherence tomography and optical coherence tomography angiography; retinal function, as measured using the visual field and best-corrected visual acuity; sleep data collected from personal wearables; and several patient-reported variables, such as self-recorded sleep diaries, quality of life, perceived stress, and functional status. RESULTS This project is still a study protocol and has not yet started. Bibliographic research for information for its justification began in 2020, and this working group is currently seeking start-up funding. As soon as we have the necessary means, we will proceed with the registration and organization prior to the preliminary phase. CONCLUSIONS In this feasibility randomized clinical controlled trial, we will compare the effects of SWL blocking alone, administration of OM alone, and a combined intervention with both in patients with RP. We present this study so that it may be replicated and incorporated into future studies at other institutions, as well as applied to additional inherited retinal dystrophies. The goal of presenting this protocol is to aid recent efforts in reducing the impact of sleeping disorders and other psychological disorders on the quality of life in patients with RP and recovering their self-autonomy. In addition, the results of this study will represent a significant step toward developing a novel low-cost therapy for patients with RP and validating a novel therapeutic target. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/49196.
Collapse
Affiliation(s)
- Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results, National Institute of Health Carlos III, Madrid, Spain
- European Reference Network dedicated to Rare Eye Diseases, Valladolid, Spain
| | - Milagros Mateos-Olivares
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Department of Ophthalmology, Clinical University Hospital of Caceres, Caceres, Spain
| | - Eva María Sobas
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Nursing School, University of Valladolid, Valladolid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Alfredo Toribio
- Federation of Associations of Hereditary Retinal Dystrophies in Spain, Valladolid, Spain
| | - José Carlos Pastor
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results, National Institute of Health Carlos III, Madrid, Spain
- European Reference Network dedicated to Rare Eye Diseases, Valladolid, Spain
| | - Ricardo Usategui Martín
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Department of Cellular Biology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| |
Collapse
|
11
|
Romeo A, Kazsoki A, Omer S, Pinke B, Mészáros L, Musumeci T, Zelkó R. Formulation and Characterization of Electrospun Nanofibers for Melatonin Ocular Delivery. Pharmaceutics 2023; 15:pharmaceutics15041296. [PMID: 37111782 PMCID: PMC10143234 DOI: 10.3390/pharmaceutics15041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The poor ocular bioavailability of melatonin (MEL) limits the therapeutic action the molecule could exert in the treatment of ocular diseases. To date, no study has explored the use of nanofiber-based inserts to prolong ocular surface contact time and improve MEL delivery. Here, the electrospinning technique was proposed to prepare poly (vinyl alcohol) (PVA) and poly (lactic acid) (PLA) nanofiber inserts. Both nanofibers were produced with different concentrations of MEL and with or without the addition of Tween® 80. Nanofibers morphology was evaluated by scanning electron microscopy. Thermal and spectroscopic analyses were performed to characterize the state of MEL in the scaffolds. MEL release profiles were observed under simulated physiological conditions (pH 7.4, 37 °C). The swelling behavior was evaluated by a gravimetric method. The results confirmed that submicron-sized nanofibrous structures were obtained with MEL in the amorphous state. Different MEL release rates were achieved depending on the nature of the polymer. Fast (20 min) and complete release was observed for the PVA-based samples, unlike the PLA polymer, which provided slow and controlled MEL release. The addition of Tween® 80 affected the swelling properties of the fibrous structures. Overall, the results suggest that membranes could be an attractive vehicle as a potential alternative to liquid formulations for ocular administration of MEL.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, Laboratory of Drug Delivery Technology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Safaa Omer
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| | - Balázs Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - László Mészáros
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Teresa Musumeci
- Department of Drug and Health Sciences, Laboratory of Drug Delivery Technology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- NANOMED-Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Högyes Endre utca 7-9, H-1092 Budapest, Hungary
| |
Collapse
|
12
|
Li KL, Shan SW, Lin FY, Ling CY, Wong NW, Li HL, Han W, To CH, Do CW. Regulation of Aqueous Humor Secretion by Melatonin in Porcine Ciliary Epithelium. Int J Mol Sci 2023; 24:5789. [PMID: 36982863 PMCID: PMC10051954 DOI: 10.3390/ijms24065789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Secretion of melatonin, a natural hormone whose receptors are present in the ciliary epithelium, displays diurnal variation in the aqueous humor (AH), potentially contributing to the regulation of intraocular pressure. This study aimed to determine the effects of melatonin on AH secretion in porcine ciliary epithelium. The addition of 100 µM melatonin to both sides of the epithelium significantly increased the short-circuit current (Isc) by ~40%. Stromal administration alone had no effect on the Isc, but aqueous application triggered a 40% increase in Isc, similar to that of bilateral application without additive effect. Pre-treatment with niflumic acid abolished melatonin-induced Isc stimulation. More importantly, melatonin stimulated the fluid secretion across the intact ciliary epithelium by ~80% and elicited a sustained increase (~50-60%) in gap junctional permeability between pigmented ciliary epithelial (PE) cells and non-pigmented ciliary epithelial (NPE) cells. The expression of MT3 receptor was found to be >10-fold higher than that of MT1 and MT2 in porcine ciliary epithelium. Aqueous pre-treatment with MT1/MT2 antagonist luzindole failed to inhibit the melatonin-induced Isc response, while MT3 antagonist prazosin pre-treatment abolished the Isc stimulation. We conclude that melatonin facilitates Cl- and fluid movement from PE to NPE cells, thereby stimulating AH secretion via NPE-cell MT3 receptors.
Collapse
Affiliation(s)
- Ka-Lok Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sze-Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Fang-Yu Lin
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Ophthalmology, Zhejiang University, Hangzhou 310027, China
- Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Choi-Ying Ling
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Nga-Wai Wong
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hoi-Lam Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Wei Han
- Department of Ophthalmology, Zhejiang University, Hangzhou 310027, China
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
13
|
Structural Basis for Agonistic Activity and Selectivity toward Melatonin Receptors hMT1 and hMT2. Int J Mol Sci 2023; 24:ijms24032863. [PMID: 36769183 PMCID: PMC9918025 DOI: 10.3390/ijms24032863] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma, a major ocular neuropathy originating from a progressive degeneration of retinal ganglion cells, is often associated with increased intraocular pressure (IOP). Daily IOP fluctuations are physiologically influenced by the antioxidant and signaling activities of melatonin. This endogenous modulator has limited employment in treating altered IOP disorders due to its low stability and bioavailability. The search for low-toxic compounds as potential melatonin agonists with higher stability and bioavailability than melatonin itself could start only from knowing the molecular basis of melatonergic activity. Thus, using a computational approach, we studied the melatonin binding toward its natural macromolecular targets, namely melatonin receptors 1 (MT1) and 2 (MT2), both involved in IOP signaling regulation. Besides, agomelatine, a melatonin-derivative agonist and, at the same time, an atypical antidepressant, was also included in the study due to its powerful IOP-lowering effects. For both ligands, we evaluated both stability and ligand positioning inside the orthosteric site of MTs, mapping the main molecular interactions responsible for receptor activation. Affinity values in terms of free binding energy (ΔGbind) were calculated for the selected poses of the chosen compounds after stabilization through a dynamic molecular docking protocol. The results were compared with experimental in vivo effects, showing a higher potency and more durable effect for agomelatine with respect to melatonin, which could be ascribed both to its higher affinity for hMT2 and to its additional activity as an antagonist for the serotonin receptor 5-HT2c, in agreement with the in silico results.
Collapse
|
14
|
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, Liao J, Huang W, Xu F, Liang X, Huang J. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res 2022; 73:e12828. [PMID: 36031799 DOI: 10.1111/jpi.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1β-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
15
|
MEDORI MARIACHIARA, NAUREEN ZAKIRA, DHULI KRISTJANA, PLACIDI GIORGIO, FALSINI BENEDETTO, BERTELLI MATTEO. Dietary supplements in retinal diseases, glaucoma, and other ocular conditions. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E189-E199. [PMID: 36479474 PMCID: PMC9710404 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Environmental pollution, inadequate eating habits and unhealthy lifestyles have led to a tremendous increase in ocular diseases worldwide. Given the costly treatments that are currently available for the most common and threatening eye diseases (such as cataract, dry eye disorder, or diabetic retinopathy), curing these diseases or preventing refractive errors by taking nutraceuticals and natural compounds that are present in our daily diet is a very valuable intervention. The eyes are the most important part of our visual system and require micronutrients such as vitamins, carotenoids, trace metals, and omega-3 fatty acids in order to function properly and to protect themselves against light-induced and age-mediated degenerative disorders. The Mediterranean Diet (MedDiet) has been in the limelight since the 1980s because of the several health benefits it provides, including eye health. MedDiet is characterized by the consumption of small amounts of red meat, while emphasizing the intake of fish, eggs, nuts, legumes, citrus fruits, green vegetables, olives and their derivatives, especially olive oil, and dairy products in a proportionate manner, in order to achieve the maximum health benefits. The antioxidant, anti-inflammatory, and neuroprotective properties of these foods - both when used as an ingredient in the dietary regime or as a source of nutritional supplements - have shown promising results in the management of chronic degenerative ocular diseases, both in animal models and in human subjects. In this chapter, we will focus on the importance of MedDiet and natural compounds for the visual system and its role in slowing down age-related ocular degeneration.
Collapse
Affiliation(s)
- MARIA CHIARA MEDORI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Maria Chiara Medori, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | | | - GIORGIO PLACIDI
- Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - BENEDETTO FALSINI
- Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Oftalmologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI’S LAB, Rovereto (TN), Italy
- MAGI Euregio, Bolzano, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
16
|
Melatonin-Eluting Contact Lenses Effect on Tear Volume: In Vitro and In Vivo Experiments. Pharmaceutics 2022; 14:pharmaceutics14051019. [PMID: 35631605 PMCID: PMC9147799 DOI: 10.3390/pharmaceutics14051019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The purpose of this study was to synthesize melatonin-eluting contact lenses (CLs) and evaluate both the ocular kinetics of the released melatonin and its effect on tear volume and intraocular pressure. (2) Methods: In vitro, melatonin-eluting CLs were synthesized by using non-functionalized (HEMA) and functionalized (HEMA/APMA) monomers. In vivo, a short-term prospective and randomized study was performed on 15 rabbits divided into two groups: 12 rabbits wearing functionalized CLs and 3 rabbits without CLs as a control. The melatonin levels in tears, aqueous humor, vitreous body and retina, tear volume, and intraocular pressure were measured for 8 h. (3) Results: In vitro, both monomers did not show differences in terms of melatonin loading and release (p ≥ 0.05). In vivo, the melatonin concentration was elevated in tears and aqueous humor after 2 and 4 h of wearing CLs, respectively (p < 0.05). Additionally, the CLs increased tear volume for 2 h (p < 0.05). (4) Conclusions: The melatonin-eluting CLs released their content over the ocular surface for at least 2 h, which was associated with a secretagogue effect on tear volume. However, the increased amount of melatonin found in the aqueous humor had no effect on intraocular pressure.
Collapse
|
17
|
Lledó VE, Alkozi HA, Sánchez-Naves J, Fernandez-Torres MA, Guzman-Aranguez A. Melatonin counteracts oxidative damage in lens by regulation of Nrf2 and NLRP3 inflammasome activity. Exp Eye Res 2021; 215:108912. [PMID: 34965405 DOI: 10.1016/j.exer.2021.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022]
Abstract
Oxidative stress, generated because of an imbalance between reactive oxygen species (ROS) generation and elimination, is associated with lens damage and cataract progression. ROS generation is known to activate NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-cointaining 3) inflammasome, and is believed to be an important link between oxidative stress and inflammation, that is also related to cataract development. Potential oxidative hazard to the lens by white light-emitting diode (LED) light, a source of illumination commonly used nowadays, has been suggested, although available information is limited. In this work, we evaluated the cytotoxicity induced by hydrogen peroxide (an oxidative stressor agent) and white LED light in lens epithelial cells as well as melatonin ability to counteract the effects induced by them. Melatonin is a neurohormone secreted by different ocular structures that could be useful to alleviate oxidative damage induced by different oxidative stressors in lens. Particularly, the modulation of Nrf2 (nuclear erythroid 2-related factor)/Keap 1 (Kelch-like ECH-associated protein 1), an essential oxidative stress regulator, and NLRP3 activity by melatonin was evaluated in lens epithelial cells. ROS levels rose after white LED light exposure and cell viability was reduced after challenge with oxidative stressor agents. Melatonin prevented cell death triggered by hydrogen peroxide and white LED light, precluded ROS generation induced by white LED light and promoted antioxidant lens capacity through upregulation of Nrf2 protein levels and SOD activity. NLRP3, caspase-1 and IL1-β expression significantly increased in human lens cells exposed to H2O2 or irradiated with white LED light. Activation of NLRP3 inflammasome triggered by oxidative stressors was also abrogated by melatonin. Attenuation of inflammatory and cytotoxic effects induced by oxidative stressors provided by melatonin in lens indicate the interest of this molecule as a potential therapeutic agent for cataract prevention/management.
Collapse
Affiliation(s)
- Victoria Eugenia Lledó
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Sánchez-Naves
- Department of Ophthalmology, OPHTHALMEDIC and I.P.O. Institute of Ophthalmology, Balearic Island, Spain
| | - Miguel Angel Fernandez-Torres
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
18
|
Yu H, Wang Q, Wu W, Zeng W, Feng Y. Therapeutic Effects of Melatonin on Ocular Diseases: Knowledge Map and Perspective. Front Pharmacol 2021; 12:721869. [PMID: 34795578 PMCID: PMC8593251 DOI: 10.3389/fphar.2021.721869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
Melatonin plays a critical role in the pathophysiological process including circadian rhythm, apoptosis, and oxidative stress. It can be synthesized in ocular tissues, and its receptors are also found in the eye, triggering more investigations concentrated on the role of melatonin in the eye. In the past decades, the protective and therapeutic potentials of melatonin for ocular diseases have been widely revealed in animal models. Herein, we construct a knowledge map of melatonin in treating ocular diseases through bibliometric analysis and review its current understanding and clinical evidence. The overall field could be divided into twelve topics through keywords co-occurrence analysis, in which the glaucoma, myopia, and retinal diseases were of greatest research interests according to the keywords burst detection. The existing clinical trials of melatonin in ocular diseases mainly focused on the glaucoma, and more research should be promoted, especially for various diseases and drug administration. We also discuss its bioavailability and further research topics including developing melatonin sensors for personalized medication, acting as stem cell therapy assistant drug, and consuming food-derived melatonin for facilitating its clinical transformation.
Collapse
Affiliation(s)
- Haozhe Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qicong Wang
- Department of Chinese Medicine of Taiwan, Hong Kong and Macao, Beijing University of Chinese Medicine, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Weizhen Zeng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
19
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
20
|
Non-drug interventions in glaucoma: Putative roles for lifestyle, diet and nutritional supplements. Surv Ophthalmol 2021; 67:675-696. [PMID: 34563531 DOI: 10.1016/j.survophthal.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma is a major ocular neurodegenerative disease characterized by progressive retinal ganglion cells degeneration and sight loss. Current treatment options have been limited to reducing intraocular pressure (IOP), known as the leading risk factor for this disease; however, glaucoma can develop even with low or normal IOP and progress despite controlling IOP values. Lifestyle, dietary habits, and supplementation may influence some of the risk factors and pathophysiological mechanisms underlying glaucoma development and progression; thus, the role of this complementary and alternative medicine in glaucoma has received great interest from both patients and ophthalmologists. We provide a summary of the current evidence concerning the relationship between lifestyle, dietary habits, and effects of supplements on the incidence and progression of glaucoma and their targets and associated mechanisms. The data suggest the existence of a therapeutic potential that needs to be further explored with both preclinical and rigorous clinical studies.
Collapse
|
21
|
Jammoul M, Lawand N. Melatonin: a Potential Shield against Electromagnetic Waves. Curr Neuropharmacol 2021; 20:648-660. [PMID: 34635042 DOI: 10.2174/1570159x19666210609163946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022] Open
Abstract
Melatonin, a vital hormone synthesized by the pineal gland, has been implicated in various physiological functions and in circadian rhythm regulation. Its role in the protection against the non-ionizing electromagnetic field (EMF), known to disrupt the body's oxidative/anti-oxidative balance, has been called into question due to inconsistent results observed across studies. This review provides the current state of knowledge on the interwoven relationship between melatonin, EMF, and oxidative stress. Based on synthesized evidence, we present a model that best describes the mechanisms underlying the protective effects of melatonin against RF/ELF-EMF induced oxidative stress. We show that the free radical scavenger activity of melatonin is enabled through reduction of the radical pair singlet-triplet conversion rate and the concentration of the triplet products. Moreover, this review aims to highlight the potential therapeutic benefits of melatonin against the detrimental effects of EMF, in general, and electromagnetic hypersensitivity (EHS), in particular.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut. Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut. Lebanon
| |
Collapse
|
22
|
Ma WY, Song RJ, Xu BB, Xu Y, Wang XX, Sun HY, Li SN, Liu SZ, Yu MX, Yang F, Ye DY, Gong R, Han ZB, Yu Y, Bamba D, Wang N, Pan ZW, Cai BZ. Melatonin promotes cardiomyocyte proliferation and heart repair in mice with myocardial infarction via miR-143-3p/Yap/Ctnnd1 signaling pathway. Acta Pharmacol Sin 2021; 42:921-931. [PMID: 32839503 PMCID: PMC8149448 DOI: 10.1038/s41401-020-0495-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/29/2020] [Indexed: 01/05/2023] Open
Abstract
The neonatal heart possesses the ability to proliferate and the capacity to regenerate after injury; however, the mechanisms underlying these processes are not fully understood. Melatonin has been shown to protect the heart against myocardial injury through mitigating oxidative stress, reducing apoptosis, inhibiting mitochondrial fission, etc. In this study, we investigated whether melatonin regulated cardiomyocyte proliferation and promoted cardiac repair in mice with myocardial infarction (MI), which was induced by ligation of the left anterior descending coronary artery. We showed that melatonin administration significantly improved the cardiac functions accompanied by markedly enhanced cardiomyocyte proliferation in MI mice. In neonatal mouse cardiomyocytes, treatment with melatonin (1 μM) greatly suppressed miR-143-3p levels. Silencing of miR-143-3p stimulated cardiomyocytes to re-enter the cell cycle. On the contrary, overexpression of miR-143-3p inhibited the mitosis of cardiomyocytes and abrogated cardiomyocyte mitosis induced by exposure to melatonin. Moreover, Yap and Ctnnd1 were identified as the target genes of miR-143-3p. In cardiomyocytes, inhibition of miR-143-3p increased the protein expression of Yap and Ctnnd1. Melatonin treatment also enhanced Yap and Ctnnd1 protein levels. Furthermore, Yap siRNA and Ctnnd1 siRNA attenuated melatonin-induced cell cycle re-entry of cardiomyocytes. We showed that the effect of melatonin on cardiomyocyte proliferation and cardiac regeneration was impeded by the melatonin receptor inhibitor luzindole. Silencing miR-143-3p abrogated the inhibition of luzindole on cardiomyocyte proliferation. In addition, both MT1 and MT2 siRNA could cancel the beneficial effects of melatonin on cardiomyocyte proliferation. Collectively, the results suggest that melatonin induces cardiomyocyte proliferation and heart regeneration after MI by regulating the miR-143-3p/Yap/Ctnnd1 signaling pathway, providing a new therapeutic strategy for cardiac regeneration.
Collapse
Affiliation(s)
- Wen-Ya Ma
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Rui-Jie Song
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Bin-Bin Xu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Yan Xu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Xiu-Xiu Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Hong-Yue Sun
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Shuai-Nan Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Shen-Zhen Liu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Mei-Xi Yu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Fan Yang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Dan-Yu Ye
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Rui Gong
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Zhen-Bo Han
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Ying Yu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Djibril Bamba
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Ning Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Zhen-Wei Pan
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China
| | - Ben-Zhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, 150086, China.
- Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, 150086, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150086, China.
| |
Collapse
|
23
|
Toxicology of Blister Agents: Is Melatonin a Potential Therapeutic Option? Diseases 2021; 9:diseases9020027. [PMID: 33920224 PMCID: PMC8167553 DOI: 10.3390/diseases9020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Blister or vesicant chemical warfare agents (CWAs) have been widely used in different military conflicts, including World War I and the Iran-Iraq War. However, their mechanism of action is not fully understood. Sulfur and nitrogen mustard exert toxic effects not only through the alkylation of thiol-bearing macromolecules, such as DNA and proteins, but also produce free radicals that can develop direct toxic effects in target organs such as the eyes, skin, and respiratory system. The lack of effective treatments against vesicant CWAs-induced injury makes us consider, in this complex scenario, the use and development of melatonin-based therapeutic strategies. This multifunctional indoleamine could facilitate neutralization of the oxidative stress, modulate the inflammatory response, and prevent the DNA damage, as well as the long-term health consequences mediated by vesicant CWAs-induced epigenetic mechanisms. In this context, it would be essential to develop new galenic formulations for the use of orally and/or topically applied melatonin for the prophylaxis against vesicant CWAs, as well as the development of post-exposure treatments in the near future.
Collapse
|
24
|
Influence of Circadian Rhythm in the Eye: Significance of Melatonin in Glaucoma. Biomolecules 2021; 11:biom11030340. [PMID: 33668357 PMCID: PMC7996162 DOI: 10.3390/biom11030340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythm and the molecules involved in it, such as melanopsin and melatonin, play an important role in the eye to regulate the homeostasis and even to treat some ocular conditions. As a result, many ocular pathologies like dry eye, corneal wound healing, cataracts, myopia, retinal diseases, and glaucoma are affected by this cycle. This review will summarize the current scientific literature about the influence of circadian patterns on the eye, focusing on its relationship with increased intraocular pressure (IOP) fluctuations and glaucoma. Regarding treatments, two ways should be studied: the first one, to analyze if some treatments could improve their effect on the ocular disease when their posology is established in function of circadian patterns, and the second one, to evaluate new drugs to treat eye pathologies related to the circadian rhythm, as it has been stated with melatonin or its analogs, that not only could be used as the main treatment but as coadjutant, improving the circadian pattern or its antioxidant and antiangiogenic properties.
Collapse
|
25
|
Franco R, Rivas‐Santisteban R, Reyes-Resina I, Navarro G. The Old and New Visions of Biased Agonism Through the Prism of Adenosine Receptor Signaling and Receptor/Receptor and Receptor/Protein Interactions. Front Pharmacol 2021; 11:628601. [PMID: 33584311 PMCID: PMC7878529 DOI: 10.3389/fphar.2020.628601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Biased signaling is a concept that has arisen in the G protein-coupled receptor (GCPR) research field, and holds promise for the development of new drug development strategies. It consists of different signaling outputs depending on the agonist's chemical structure. Here we review the most accepted mechanisms for explaining biased agonism, namely the induced fit hypothesis and the key/lock hypothesis, but we also consider how bias can be produced by a given agonist. In fact, different signaling outputs may originate at a given receptor when activated by, for instance, the endogenous agonist. We take advantage of results obtained with adenosine receptors to explain how such mechanism of functional selectivity depends on the context, being receptor-receptor interactions (heteromerization) one of the most relevant and most studied mechanisms for mammalian homeostasis. Considering all the possible mechanisms underlying functional selectivity is essential to optimize the selection of biased agonists in the design of drugs targeting GPCRs.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
| | - Rafael Rivas‐Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
| | - Irene Reyes-Resina
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int J Mol Sci 2020; 21:ijms21239267. [PMID: 33291737 PMCID: PMC7730513 DOI: 10.3390/ijms21239267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Melatonin is of great importance for regulating several eye processes, including pressure homeostasis. Melatonin in combination with agomelatine has been recently reported to reduce intraocular pressure (IOP) with higher efficacy than each compound alone. Here, we used the methylcellulose (MCE) rat model of hypertensive glaucoma, an optic neuropathy characterized by the apoptotic death of retinal ganglion cells (RGCs), to evaluate the hypotensive and neuroprotective efficacy of an eye drop nanomicellar formulation containing melatonin/agomelatine. Eye tissue distribution of melatonin/agomelatine in healthy rats was evaluated by HPLC/MS/MS. In the MCE model, we assessed by tonometry the hypotensive efficacy of melatonin/agomelatine. Neuroprotection was revealed by electroretinography; by levels of inflammatory and apoptotic markers; and by RGC density. The effects of melatonin/agomelatine were compared with those of timolol (a beta blocker with prevalent hypotensive activity) or brimonidine (an alpha 2 adrenergic agonist with potential neuroprotective efficacy), two drugs commonly used to treat glaucoma. Both melatonin and agomelatine penetrate the posterior segment of the eye. In the MCE model, IOP elevation was drastically reduced by melatonin/agomelatine with higher efficacy than that of timolol or brimonidine. Concomitantly, gliosis-related inflammation and the Bax-associated apoptosis were partially prevented, thus leading to RGC survival and recovered retinal dysfunction. We suggest that topical melatoninergic compounds might be beneficial for ocular health.
Collapse
|
27
|
Yoshikawa T, Obayashi K, Miyata K, Saeki K, Ogata N. Decreased melatonin secretion in patients with glaucoma: Quantitative association with glaucoma severity in the LIGHT study. J Pineal Res 2020; 69:e12662. [PMID: 32333450 DOI: 10.1111/jpi.12662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Glaucoma may be associated with circadian disruption due to its association with a loss of intrinsically photosensitive retinal ganglion cells. Clinical evidence demonstrating an association between glaucoma and circadian disruption is limited, and no large-scale studies have been performed. The purpose of this cross-sectional study was to determine whether the presence and severity of glaucoma is correlated with the urinary 6-sulfatoxymelatonin levels as a circadian rhythm parameter. We measured the level of urinary 6-sulfatoxymelatonin excretion (UME) in 118 glaucoma patients and 395 control participants without glaucoma. The UME in the glaucoma group was significantly lower than that of the control group without glaucoma (3.05 and 3.24 log ng/mg creatinine, respectively; P = .010). Next, we examined association of the severity of glaucoma and melatonin levels. In stratification analysis of the glaucoma groups, multivariable linear regression analyses adjusted for potential confounders indicated significantly lower UME by 0.30 log ng/mg creatinine in patients with functional severe glaucoma (visual field mean deviation ≤ -6 dB) compared with mild glaucoma (mean deviation > -6 dB; P = .040) and lower UME by 0.05 log ng/mg creatinine with each 10 μm thinning of the circumpapillary retinal nerve fiber layer thickness as the index of structural severity of glaucoma (P = .011). In conclusion, significant association between glaucoma and lower urinary 6-sulfatoxymelatonin was found. In addition, patients with functional and structural severe glaucoma were significantly associated with lower urinary 6-sulfatoxymelatonin levels. Our results indicate the possibility of a circadian disruption in patients with glaucoma.
Collapse
Affiliation(s)
- Tadanobu Yoshikawa
- Department of Ophthalmology, Nara Medical University School of Medicine, Nara, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kimie Miyata
- Department of Ophthalmology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
28
|
Yazdankhah M, Shang P, Ghosh S, Hose S, Liu H, Weiss J, Fitting CS, Bhutto IA, Zigler JS, Qian J, Sahel JA, Sinha D, Stepicheva NA. Role of glia in optic nerve. Prog Retin Eye Res 2020; 81:100886. [PMID: 32771538 DOI: 10.1016/j.preteyeres.2020.100886] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Glial cells are critically important for maintenance of neuronal activity in the central nervous system (CNS), including the optic nerve (ON). However, the ON has several unique characteristics, such as an extremely high myelination level of retinal ganglion cell (RGC) axons throughout the length of the nerve (with virtually all fibers myelinated by 7 months of age in humans), lack of synapses and very narrow geometry. Moreover, the optic nerve head (ONH) - a region where the RGC axons exit the eye - represents an interesting area that is morphologically distinct in different species. In many cases of multiple sclerosis (demyelinating disease of the CNS) vision problems are the first manifestation of the disease, suggesting that RGCs and/or glia in the ON are more sensitive to pathological conditions than cells in other parts of the CNS. Here, we summarize current knowledge on glial organization and function in the ON, focusing on glial support of RGCs. We cover both well-established concepts on the important role of glial cells in ON health and new findings, including novel insights into mechanisms of remyelination, microglia/NG2 cell-cell interaction, astrocyte reactivity and the regulation of reactive astrogliosis by mitochondrial fragmentation in microglia.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institut de la Vision, INSERM, CNRS, Sorbonne Université, F-75012, Paris, France
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Current Medical Therapy and Future Trends in the Management of Glaucoma Treatment. J Ophthalmol 2020; 2020:6138132. [PMID: 32774906 PMCID: PMC7391108 DOI: 10.1155/2020/6138132] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive loss of retinal ganglion cells and their axons. Lowering of intraocular pressure (IOP) is currently the only proven treatment strategy for glaucoma. However, some patients show progressive loss of visual field and quality of life despite controlled IOP which indicates that other factors are implicated in glaucoma. Therefore, approaches that could prevent or decrease the rate of progression and do not rely on IOP lowering have gained much attention. Effective neuroprotection has been reported in animal models of glaucoma, but till now, no neuroprotective agents have been clinically approved. The present update provides an overview of currently available IOP-lowering medications. Moreover, potential new treatment targets for IOP-lowering and neuroprotective therapy are discussed. Finally, future trends in glaucoma therapy are addressed, including sustained drug delivery systems and progress toward personalized medicine.
Collapse
|
30
|
Liu Y, Wang J, Jin X, Xin Z, Wu X, Tong X, Tao Y, Wang D. A novel rat model of ocular hypertension by a single intracameral injection of cross-linked hyaluronic acid hydrogel (Healaflow ® ). Basic Clin Pharmacol Toxicol 2020; 127:361-370. [PMID: 32383327 DOI: 10.1111/bcpt.13430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022]
Abstract
To create a novel animal model of ocular hypertension via the intracameral injection of Healaflow. Unilateral chronic ocular hypertension model of rats was created by the intracameral injection of 3 μL Healaflow. The IOP of subjects was monitored. Dynamic morphological changes were evaluated by fundus imaging, OCT and histological examination. Visual function changes were measured by electroretinography and flash visual-evoked potentials. 24 and 72 hours after injection, the retinal tissue was collected for transcriptome analysis. The expression levels of related genes and proteins were further evaluated by qRT-PCR and Western blotting. The IOP peaked within 1 day after a single intracameral injection of Healaflow and then decreased gradually within 4 weeks. Furthermore, the persistently degenerating retinal ganglion cells occurred within 4 weeks. The visual function of these rats was also impaired. The results of transcriptome analyses, qRT-PCR and Western blotting showed that the expression levels of B2m, Ikzf1 and Stat3 were up-regulated, while the expression levels of Six3 and Prss56 were down-regulated in the retinal tissues. Intracameral injection of Healaflow is an effective approach to induce glaucomatous neurodegeneration in rats. Six3 and Prss56 may be involved in the pathogenesis of progressive glaucomatous damage.
Collapse
Affiliation(s)
- Ying Liu
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jichen Wang
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Xin Jin
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiyuan Xin
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xing Wu
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Tong
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People's Hospital, People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Dajiang Wang
- Department of ophthalmology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
31
|
A Dietary Combination of Forskolin with Homotaurine, Spearmint and B Vitamins Protects Injured Retinal Ganglion Cells in a Rodent Model of Hypertensive Glaucoma. Nutrients 2020; 12:nu12041189. [PMID: 32340314 PMCID: PMC7230514 DOI: 10.3390/nu12041189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is indication that nutritional supplements protect retinal cells from degeneration. In a previous study, we demonstrated that dietary supplementation with an association of forskolin, homotaurine, spearmint extract and B vitamins efficiently counteracts retinal dysfunction associated with retinal ganglion cell (RGC) death caused by optic nerve crush. We extended our investigation on the efficacy of dietary supplementation with the use of a mouse model in which RGC degeneration depends as closely as possible on intraocular pressure (IOP) elevation. In this model, injecting the anterior chamber of the eye with methylcellulose (MCE) causes IOP elevation leading to RGC dysfunction. The MCE model was characterized in terms of IOP elevation, retinal dysfunction as determined by electrophysiological recordings, RGC loss as determined by brain-specific homeobox/POU domain protein 3A immunoreactivity and dysregulated levels of inflammatory and apoptotic markers. Except for IOP elevation, dysfunctional retinal parameters were all recovered by dietary supplementation indicating the involvement of non-IOP-related neuroprotective mechanisms of action. Our hypothesis is that the diet supplement may be used to counteract the inflammatory processes triggered by glial cell activation, thus leading to spared RGC loss and the preservation of visual dysfunction. In this respect, the present compound may be viewed as a potential remedy to be added to the currently approved drug therapies for improving RGC protection.
Collapse
|
32
|
Hypotensive Effect of Nanomicellar Formulation of Melatonin and Agomelatine in a Rat Model: Significance for Glaucoma Therapy. Diagnostics (Basel) 2020; 10:diagnostics10030138. [PMID: 32138160 PMCID: PMC7151109 DOI: 10.3390/diagnostics10030138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Melatoninergic agents are known to reduce intraocular pressure (IOP). The present study was performed to evaluate the effect of nanomicellar formulations of melatoninergic agents on IOP in the rat. METHODS Tonometry was used to measure IOP in eyes instilled with melatonin or agomelatine. Ocular hypertension was induced by the injection of methylcellulose in the anterior chamber. RESULTS Melatonin formulated in nanomicelles had a longer lasting hypotonizing effect on IOP with respect to melatonin in saline. Nanomicellar formulations of melatonin and agomelatine, either alone or in combination, had lowering effects that did not depend on their concentration or their combination, which, however, resulted in an increased duration of the hypotonizing effect. The duration of the lowering effect was further increased by the addition of lipoic acid. CONCLUSIONS We demonstrated the effective hypotonizing activity of melatonin and agomelatine in combination with lipoic acid. Although results in animals cannot be directly translated to humans, the possibility of developing novel therapeutical approaches for patients suffering from hypertensive glaucoma should be considered.
Collapse
|