1
|
Chen J, Xiong J, Zhang F, Pan W, Cheng S. Association between thyroid dysfunction and diabetic retinopathy: a two-sample bidirectional Mendelian randomization study. Diabetol Metab Syndr 2024; 16:297. [PMID: 39696372 DOI: 10.1186/s13098-024-01552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES To assess the association between thyroid dysfunction and diabetic retinopathy (DR), a two-sample bidirectional Mendelian randomization (MR) study utilizing the Genome-wide Association Study (GWAS) database was conducted to investigate the causal relationship between these two variables. METHODS In this study, GWAS of 48,328,151 single nucleotide polymorphisms(SNP) in the European population from the IEU open GWAS database were utilized as genetic tools for investigating thyroid dysfunction. The total sample size for the study on hyperthyroidism was 460,499 (case group: 3557; control group: 456,942). The total sample size for hypothyroidism was 410,141 (case group: 30,155; control group: 37,986). In addition, the data on DR were extracted from the FinnGen Biobank, comprising a total sample size of 319,046 individuals (10,413 cases and 308,633 controls). For the forward MR analysis, hyperthyroidism and hypothyroidism were considered as exposures with DR as the outcome. Reverse MR analysis was conducted using DR as exposure and hyperthyroidism and hypothyroidism as outcomes. METHODS The main analytical approach employed inverse variance weighting(IVW), supplemented by MR-Egger, Weighted mode method, weighted median, and Simple mode. Cochran's Q test, MR-PRESSO, MR-Egger and leave-one-out analysis were used to evaluate the sensitivity and pleiotropy. RESULTS Two-sample bidirectional MR analysis revealed a significant association between the presence of hyperthyroidism and hypothyroidism and an increased risk of DR in the forward MR analysis (IVW: OR = 1.29, 95% [CI] = 1.12-1.49, P < 0.001; OR = 1.17, 95% CI = 1.10-1.25, P < 0.001). In the reverse MR analysis, DR was found to be associated with an elevated risk of developing hyperthyroidism and hypothyroidism (IVW: OR = 1.56, 95% CI 1.38-1.76, P < 0.001; OR = 1.41, 95% CI 1.25-1.59, P < 0.001). Furthermore, most supplementary MR methods also demonstrated statistically significant differences and exhibited effect sizes consistent with those obtained from IVW. The sensitivity analysis confirmed the relative reliability of our causal findings. CONCLUSIONS Our findings provide genetic evidence supporting a bidirectional causal relationship between thyroid function and DR.
Collapse
Affiliation(s)
- Jiali Chen
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Jianghao Xiong
- Department of Respiratory and Critical Care Medicine, Jiangxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, 330000, Jiangxi, China
| | - Fenfen Zhang
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Wanyu Pan
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Shaomin Cheng
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
2
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
3
|
Tang Q, Buonfiglio F, Böhm EW, Zhang L, Pfeiffer N, Korb CA, Gericke A. Diabetic Retinopathy: New Treatment Approaches Targeting Redox and Immune Mechanisms. Antioxidants (Basel) 2024; 13:594. [PMID: 38790699 PMCID: PMC11117924 DOI: 10.3390/antiox13050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of DR encompass a complex interplay of pathological and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses, vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present, extensive research explores the potential of biomarkers such as cytokines, molecular and cell therapies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-β inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review article aims to introduce the recent molecular research on DR and highlight the current progress in the field, with a particular focus on the emerging and experimental treatment strategies targeting the immune and redox signaling pathways.
Collapse
Affiliation(s)
- Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| | | | | | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| |
Collapse
|
4
|
Huang H, Zeng J, Kuang X, He F, Yan J, Li B, Liu W, Shen H. Transcriptional patterns of human retinal pigment epithelial cells under protracted high glucose. Mol Biol Rep 2024; 51:477. [PMID: 38573426 DOI: 10.1007/s11033-024-09479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND The retinal pigment epithelium (RPE) is essential for retinal homeostasis. Comprehensively exploring the transcriptional patterns of diabetic human RPE promotes the understanding of diabetic retinopathy (DR). METHODS AND RESULTS A total of 4125 differentially expressed genes (DEGs) were screened out from the human primary RPE cells subjected to prolonged high glucose (HG). The subsequent bioinformatics analysis is divided into 3 steps. In Step 1, 21 genes were revealed by intersecting the enriched genes from the KEGG, WIKI, and Reactome databases. In Step 2, WGCNA was applied and intersected with the DEGs. Further intersection based on the enrichments with the GO biological processes, GO cellular components, and GO molecular functions databases screened out 12 candidate genes. In Step 3, 13 genes were found to be simultaneously up-regulated in the DEGs and a GEO dataset involving human diabetic retinal tissues. VEGFA and ERN1 were the 2 starred genes finally screened out by overlapping the 3 Steps. CONCLUSION In this study, multiple genes were identified as crucial in the pathological process of RPE under protracted HG, providing potential candidates for future researches on DR. The current study highlights the importance of RPE in DR pathogenesis.
Collapse
Affiliation(s)
- Hao Huang
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510000, China
| | - Fan He
- Amass Ophthalmology, Guangzhou, 510000, China
| | - Jianjun Yan
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Wei Liu
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China.
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Wang R, Rao S, Zhong Z, Xiao K, Chen X, Sun X. Emerging role of ferroptosis in diabetic retinopathy: a review. J Drug Target 2024; 32:393-403. [PMID: 38385350 DOI: 10.1080/1061186x.2024.2316775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a significant complication of diabetes and the primary cause of blindness among working age adults globally. The development of DR is accompanied by oxidative stress, characterised by an overproduction of reactive oxygen species (ROS) and a compromised antioxidant system. Clinical interventions aimed at mitigating oxidative stress through ROS scavenging or elimination are currently available. Nevertheless, these treatments merely provide limited management over the advanced stage of the illness. Ferroptosis is a distinctive form of cell death induced by oxidative stress, which is characterised by irondependent phospholipid peroxidation. PURPOSE This review aims to synthesise recent experimental evidence to examine the involvement of ferroptosis in the pathological processes of DR, as well as to explicate the regulatory pathways governing oxidative stress and ferroptosis in retina. METHODS We systematically reviewed literature available up to 2023. RESULTS This review included 12 studies investigating the involvement of ferroptosis in DR.
Collapse
Affiliation(s)
- Ruohong Wang
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Suyun Rao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zheng Zhong
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ke Xiao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xuhui Chen
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xufang Sun
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
6
|
Chen B, Zou J, Xie L, Cai Y, Li B, Tan W, Huang J, Li F, Xu H. WNT-inhibitory factor 1-mediated glycolysis protects photoreceptor cells in diabetic retinopathy. J Transl Med 2024; 22:245. [PMID: 38448948 PMCID: PMC10918886 DOI: 10.1186/s12967-024-05046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND In diabetic retinopathy (DR), hypoxia-inducible factor (HIF-1α) induces oxidative stress by upregulating glycolysis. This process leads to neurodegeneration, particularly photoreceptor cell damage, which further contributes to retinal microvascular deterioration. Further, the regulation of Wnt-inhibitory factor 1 (WIF1), a secreted Wnt signaling antagonist, has not been fully characterized in neurodegenerative eye diseases. We aimed to explore the impact of WIF1 on photoreceptor function within the context of DR. METHOD Twelve-week-old C57BL/KsJ-db/db mice were intravitreally injected with WIF1 overexpression lentivirus. After 4 weeks, optical coherence tomography (OCT), transmission electron microscopy (TEM), H&E staining, and electroretinography (ERG) were used to assess the retinal tissue and function. The potential mechanism of action of WIF1 in photoreceptor cells was explored using single-cell RNA sequencing. Under high-glucose conditions, 661 W cells were used as an in vitro DR model. WIF1-mediated signaling pathway components were assessed using quantitative real-time PCR, immunostaining, and western blotting. RESULT Typical diabetic manifestations were observed in db/db mice. Notably, the expression of WIF1 was decreased at the mRNA and protein levels. These pathological manifestations and visual function improved after WIF1 overexpression in db/db mice. TEM demonstrated that WIF1 restored damaged mitochondria, the Golgi apparatus, and photoreceptor outer segments. Moreover, ERG indicated the recovery of a-wave potential amplitude. Single-cell RNA sequencing and in vitro experiments suggested that WIF1 overexpression prevented the expression of glycolytic enzymes and lactate production by inhibiting the canonical Wnt signaling pathway, HIF-1α, and Glut1, thereby reducing retinal and cellular reactive oxygen species levels and maintaining 661 W cell viability. CONCLUSIONS WIF1 exerts an inhibitory effect on the Wnt/β-catenin-HIF-1α-Glut1 glycolytic pathway, thereby alleviating oxidative stress levels and mitigating pathological structural characteristics in retinal photoreceptor cells. This mechanism helps preserve the function of photoreceptor cells in DR and indicates that WIF1 holds promise as a potential therapeutic candidate for DR and other neurodegenerative ocular disorders.
Collapse
Affiliation(s)
- Bolin Chen
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Zou
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lihui Xie
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yinjun Cai
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, Xiangtan Central Hospital, Xiangtan, 411199, Hunan, China
| | - Jinhaohao Huang
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fangling Li
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Sun F, Sun Y, Wang X, Zhu J, Chen S, Yu Y, Zhu M, Xu W, Qian H. Engineered mesenchymal stem cell-derived small extracellular vesicles for diabetic retinopathy therapy through HIF-1α/EZH2/PGC-1α pathway. Bioact Mater 2024; 33:444-459. [PMID: 38076648 PMCID: PMC10697990 DOI: 10.1016/j.bioactmat.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 09/04/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness worldwide with limited treatment options. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) hold promise as a cell-free therapy for retinal diseases. In this study, we present evidence that the intravitreal injection of MSC-sEVs improved retinal function and alleviated retinal apoptosis, inflammation, and angiogenesis in both db/db mice and streptozotocin-induced diabetic rats. Mechanistically, hyperglycemia-induced activation of hypoxia-inducible factor-1α (HIF-1α) inhibited the tripartite motif 21 (TRIM21)-mediated ubiquitination and degradation of enhancer of zeste homologue 2 (EZH2), ultimately resulting in the downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) through EZH2-induced methylation modification. The presence of miR-5068 and miR-10228 in MSC-sEVs targeted the HIF-1α/EZH2/PGC-1α pathway. The blockade of miR-5068 and miR-10228 abolished the retinal therapeutic effects of MSC-sEVs. Additionally, we engineered MSC-sEVs with elevated levels of miR-5068 and miR-10228 to enhance retinal repair efficiency. Together, our findings provide novel insights into the mechanism underlying DR progress and highlight the potential of MSC-sEVs, especially engineered MSC-sEVs, as a therapeutic option for DR.
Collapse
Affiliation(s)
- Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361006, Fujian, China
| | - Junyan Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shenyuan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yifan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Mengyao Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| |
Collapse
|
8
|
Crespo-Garcia S, Fournier F, Diaz-Marin R, Klier S, Ragusa D, Masaki L, Cagnone G, Blot G, Hafiane I, Dejda A, Rizk R, Juneau R, Buscarlet M, Chorfi S, Patel P, Beltran PJ, Joyal JS, Rezende FA, Hata M, Nguyen A, Sullivan L, Damiano J, Wilson AM, Mallette FA, David NE, Ghosh A, Tsuruda PR, Dananberg J, Sapieha P. Therapeutic targeting of cellular senescence in diabetic macular edema: preclinical and phase 1 trial results. Nat Med 2024; 30:443-454. [PMID: 38321220 DOI: 10.1038/s41591-024-02802-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884 .
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- École d'optométrie, University of Montreal, Montreal, Quebec, Canada
| | - Frédérik Fournier
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Sharon Klier
- UNITY Biotechnology, South San Francisco, CA, USA
| | - Derek Ragusa
- UNITY Biotechnology, South San Francisco, CA, USA
| | | | - Gael Cagnone
- Departments of Pediatrics Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Sainte Justine Research Center, Montreal, Quebec, Canada
| | - Guillaume Blot
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Ikhlas Hafiane
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Rana Rizk
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Rachel Juneau
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Manuel Buscarlet
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Sarah Chorfi
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Jean-Sebastien Joyal
- Departments of Pediatrics Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Sainte Justine Research Center, Montreal, Quebec, Canada
| | - Flavio A Rezende
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Masayuki Hata
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Alex Nguyen
- UNITY Biotechnology, South San Francisco, CA, USA
| | | | | | - Ariel M Wilson
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Frédérick A Mallette
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO-HMR) Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada.
- UNITY Biotechnology, South San Francisco, CA, USA.
| |
Collapse
|
9
|
Szeto SK, Lai TY, Vujosevic S, Sun JK, Sadda SR, Tan G, Sivaprasad S, Wong TY, Cheung CY. Optical coherence tomography in the management of diabetic macular oedema. Prog Retin Eye Res 2024; 98:101220. [PMID: 37944588 DOI: 10.1016/j.preteyeres.2023.101220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Diabetic macular oedema (DMO) is the major cause of visual impairment in people with diabetes. Optical coherence tomography (OCT) is now the most widely used modality to assess presence and severity of DMO. DMO is currently broadly classified based on the involvement to the central 1 mm of the macula into non-centre or centre involved DMO (CI-DMO) and DMO can occur with or without visual acuity (VA) loss. This classification forms the basis of management strategies of DMO. Despite years of research on quantitative and qualitative DMO related features assessed by OCT, these do not fully inform physicians of the prognosis and severity of DMO relative to visual function. Having said that, recent research on novel OCT biomarkers development and re-defined classification of DMO show better correlation with visual function and treatment response. This review summarises the current evidence of the association of OCT biomarkers in DMO management and its potential clinical importance in predicting VA and anatomical treatment response. The review also discusses some future directions in this field, such as the use of artificial intelligence to quantify and monitor OCT biomarkers and retinal fluid and identify phenotypes of DMO, and the need for standardisation and classification of OCT biomarkers to use in future clinical trials and clinical practice settings as prognostic markers and secondary treatment outcome measures in the management of DMO.
Collapse
Affiliation(s)
- Simon Kh Szeto
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Timothy Yy Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Jennifer K Sun
- Beetham Eye Institute, Harvard Medical School, Boston, USA
| | - SriniVas R Sadda
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, USA
| | - Gavin Tan
- Singapore Eye Research Institute, SingHealth Duke-National University of Singapore, Singapore
| | - Sobha Sivaprasad
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Tien Y Wong
- Tsinghua Medicine, Tsinghua University, Beijing, China; Singapore Eye Research Institute, Singapore
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
10
|
McLaughlin T, Wang G, Medina A, Perkins J, Nihlawi R, Seyfried D, Hu Z, Wang JJ, Zhang SX. Essential Role of XBP1 in Maintaining Photoreceptor Synaptic Integrity in Early Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:40. [PMID: 38015176 PMCID: PMC10691399 DOI: 10.1167/iovs.64.14.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults characterized by retinal dysfunction and neurovascular degeneration. We previously reported that deletion of X-box binding protein 1 (XBP1) leads to accelerated retinal neurodegeneration in diabetes; however, the mechanisms remain elusive. The goal of this study is to determine the role of XBP1 in the regulation of photoreceptor synaptic integrity in early DR. Methods Diabetes was induced by streptozotocin in retina-specific XBP1 conditional knockout (cKO) or wild-type (WT) mice to generate diabetic cKO (cKO/DM) or WT/DM mice for comparison with nondiabetic cKO (cKO/NDM) and WT/NDM mice. Retinal morphology, structure, and function were assessed by immunohistochemistry, optical coherence tomography, and electroretinogram (ERG) after 3 months of diabetes. The synapses between photoreceptors and bipolar cells were examined by confocal microscopy, and synaptic integrity was quantified using the QUANTOS algorithm. Results We found a thinning of the outer nuclear layer and a decline in the b-wave amplitude in dark- and light-adapted ERG in cKO/DM mice compared to all other groups. In line with these changes, cKO mice showed increased loss of synaptic integrity compared to WT mice, regardless of diabetes status. In searching for candidate molecules responsible for the loss of photoreceptor synaptic integrity in diabetic and XBP1-deficient retinas, we found decreased mRNA and protein levels of DLG4/PSD-95 in cKO/DM retina compared to WT/DM. Conclusions These findings suggest that XBP1 is a crucial regulator in maintaining synaptic integrity and retinal function, possibly through regulation of synaptic scaffold proteins.
Collapse
Affiliation(s)
- Todd McLaughlin
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Grant Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Jacob Perkins
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Rhudwan Nihlawi
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Don Seyfried
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Zihua Hu
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
- Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, New York, United States
| | - Joshua J. Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
- Department of Biochemistry, State University of New York, Buffalo, New York, United States
| | - Sarah X. Zhang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
- Department of Biochemistry, State University of New York, Buffalo, New York, United States
| |
Collapse
|
11
|
Gabrielle PH, Mehta H, Barthelmes D, Daien V, Nguyen V, Gillies MC, Creuzot-Garcher CP. From randomised controlled trials to real-world data: Clinical evidence to guide management of diabetic macular oedema. Prog Retin Eye Res 2023; 97:101219. [PMID: 37898362 DOI: 10.1016/j.preteyeres.2023.101219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023]
Abstract
Randomised clinical trials (RCTs) are generally considered the gold-standard for providing scientific evidence for treatments' effectiveness and safety but their findings may not always be generalisable to the broader population treated in routine clinical practice. RCTs include highly selected patient populations that fit specific inclusion and exclusion criteria. Although they may have a lower level of certainty than RCTs on the evidence hierarchy, real-world data (RWD), such as observational studies, registries and databases, provide real-world evidence (RWE) that can complement RCTs. For example, RWE may help satisfy requirements for a new indication of an already approved drug and help us better understand long-term treatment effectiveness, safety and patterns of use in clinical practice. Many countries have set up registries, observational studies and databases containing information on patients with retinal diseases, such as diabetic macular oedema (DMO). These DMO RWD have produced significant clinical evidence in the past decade that has changed the management of DMO. RWD and medico-administrative databases are a useful resource to identify low frequency safety signals. They often have long-term follow-up with a large number of patients and minimal exclusion criteria. We will discuss improvements in healthcare information exchange technologies, such as blockchain technology and FHIR (Fast Healthcare Interoperability Resources), which will connect and extend databases already available. These registries can be linked with existing or emerging retinal imaging modalities using artificial intelligence to aid diagnosis, treatment decisions and provide prognostic information. The results of RCTs and RWE are combined to provide evidence-based guidelines.
Collapse
Affiliation(s)
- Pierre-Henry Gabrielle
- Department of Ophthalmology, Dijon University Hospital, Dijon, Burgundy, France; The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Hemal Mehta
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Ophthalmology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Daniel Barthelmes
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Ophthalmology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Vincent Daien
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Ophthalmology, Montpellier University Hospital, Montpellier, France; Institute for Neurosciences of Montpellier, Univ Montpellier, INSERM, Montpellier, France
| | - Vuong Nguyen
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark C Gillies
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
12
|
Hu Z, Wang J, Pan T, Li X, Tao C, Wu Y, Wang X, Zhang Z, Liu Y, Zhang W, Xu C, Wu X, Gu Q, Fan Y, Qian H, Mugisha A, Yuan S, Liu Q, Xie P. The Exosome-Transmitted lncRNA LOC100132249 Induces Endothelial Dysfunction in Diabetic Retinopathy. Diabetes 2023; 72:1307-1319. [PMID: 37347724 DOI: 10.2337/db22-0435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Diabetic retinopathy (DR), one of the most common microangiopathic complications in diabetes, causes severe visual damage among working-age populations. Retinal vascular endothelial cells, the key cell type in DR pathogenesis, are responsible for abnormal retinal angiogenesis in advanced stages of DR. The roles of exosomes in DR have been largely unknown. In this study, we report the first evidence that exosomes derived from the vitreous humor of patients with proliferative DR (PDR-exo) promote proliferation, migration, and tube formation of human retinal vascular endothelial cells (HRVECs). We identified long noncoding RNA (lncRNA) LOC100132249 enrichment in PDR-exo via high-throughput sequencing. This lncRNA, also mainly derived from HRVECs, promoted angiogenesis both in vitro and in vivo. Mechanistically, LOC100132249 acted as a competing endogenous sponge of miRNA-199a-5p (miR-199a-5p), thus regulating the endothelial-mesenchymal transition promoter SNAI1 via activation of the Wnt/β-catenin pathway and ultimately resulting in endothelial dysfunction. In conclusion, our findings underscored the pathogenic role of endothelial-derived exosomes via the LOC100132249/miR-199a-5p/SNAI1 axis in DR angiogenesis and may shed light on new therapeutic strategies for future treatment of DR. ARTICLE HIGHLIGHTS This study provides the first evidence that exosomes derived from vitreous humor from patients with proliferative diabetic retinopathy participate in angiogenesis. The findings demonstrate an unreported long noncoding RNA (lncRNA), LOC100132249, by exosomal sequencing of vitreous humor. The newly found lncRNA LOC100132249, mainly derived from endothelial cells, promotes angiogenesis via an miRNA-199a-5p/SNAI1/Wnt/β-catenin axis in a pro-endothelial-mesenchymal transition manner.
Collapse
Affiliation(s)
- Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xinsheng Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Tao
- MOE Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingxing Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengyu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiwei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changlin Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinjing Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Fan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiming Qian
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aime Mugisha
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Simó R, Hernández C. What else can we do to prevent diabetic retinopathy? Diabetologia 2023; 66:1614-1621. [PMID: 37277664 PMCID: PMC10390367 DOI: 10.1007/s00125-023-05940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/31/2023] [Indexed: 06/07/2023]
Abstract
The classical modifiable factors associated with the onset and progression of diabetic retinopathy are the suboptimal control of blood glucose levels and hypertension, as well as dyslipidaemia. However, there are other less recognised modifiable factors that can play a relevant role, such as the presence of obesity or the abnormal distribution of adipose tissue, and others related to lifestyle such as the type of diet, vitamin intake, exercise, smoking and sunlight exposure. In this article we revisit the prevention of diabetic retinopathy based on modulating the modifiable risk factors, as well as commenting on the potential impact of glucose-lowering drugs on the condition. The emerging concept that neurodegeneration is an early event in the development of diabetic retinopathy points to neuroprotection as a potential therapeutic strategy to prevent the advanced stages of the disease. In this regard, the better phenotyping of very early stages of diabetic retinopathy and the opportunity of arresting its progression using treatments targeting the neurovascular unit (NVU) are discussed.
Collapse
Affiliation(s)
- Rafael Simó
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM, ID CB15/00071), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Cristina Hernández
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM, ID CB15/00071), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
14
|
Balaratnasingam C, An D, Hein M, Yu P, Yu DY. Studies of the retinal microcirculation using human donor eyes and high-resolution clinical imaging: Insights gained to guide future research in diabetic retinopathy. Prog Retin Eye Res 2022; 94:101134. [PMID: 37154065 DOI: 10.1016/j.preteyeres.2022.101134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The microcirculation plays a key role in delivering oxygen to and removing metabolic wastes from energy-intensive retinal neurons. Microvascular changes are a hallmark feature of diabetic retinopathy (DR), a major cause of irreversible vision loss globally. Early investigators have performed landmark studies characterising the pathologic manifestations of DR. Previous works have collectively informed us of the clinical stages of DR and the retinal manifestations associated with devastating vision loss. Since these reports, major advancements in histologic techniques coupled with three-dimensional image processing has facilitated a deeper understanding of the structural characteristics in the healthy and diseased retinal circulation. Furthermore, breakthroughs in high-resolution retinal imaging have facilitated clinical translation of histologic knowledge to detect and monitor progression of microcirculatory disturbances with greater precision. Isolated perfusion techniques have been applied to human donor eyes to further our understanding of the cytoarchitectural characteristics of the normal human retinal circulation as well as provide novel insights into the pathophysiology of DR. Histology has been used to validate emerging in vivo retinal imaging techniques such as optical coherence tomography angiography. This report provides an overview of our research on the human retinal microcirculation in the context of the current ophthalmic literature. We commence by proposing a standardised histologic lexicon for characterising the human retinal microcirculation and subsequently discuss the pathophysiologic mechanisms underlying key manifestations of DR, with a focus on microaneurysms and retinal ischaemia. The advantages and limitations of current retinal imaging modalities as determined using histologic validation are also presented. We conclude with an overview of the implications of our research and provide a perspective on future directions in DR research.
Collapse
Affiliation(s)
- Chandrakumar Balaratnasingam
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia; Department of Ophthalmology, Sir Charles Gairdner Hospital, Western Australia, Australia.
| | - Dong An
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Martin Hein
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Paula Yu
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Dao-Yi Yu
- Lions Eye Institute, Nedlands, Western Australia, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| |
Collapse
|
15
|
Bianco L, Arrigo A, Aragona E, Antropoli A, Berni A, Saladino A, Battaglia Parodi M, Bandello F. Neuroinflammation and neurodegeneration in diabetic retinopathy. Front Aging Neurosci 2022; 14:937999. [PMID: 36051309 PMCID: PMC9424735 DOI: 10.3389/fnagi.2022.937999] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes and has been historically regarded as a microangiopathic disease. Now, the paradigm is shifting toward a more comprehensive view of diabetic retinal disease (DRD) as a tissue-specific neurovascular complication, in which persistently high glycemia causes not only microvascular damage and ischemia but also intraretinal inflammation and neuronal degeneration. Despite the increasing knowledge on the pathogenic pathways involved in DR, currently approved treatments are focused only on its late-stage vasculopathic complications, and a single molecular target, vascular endothelial growth factor (VEGF), has been extensively studied, leading to drug development and approval. In this review, we discuss the state of the art of research on neuroinflammation and neurodegeneration in diabetes, with a focus on pathophysiological studies on human subjects, in vivo imaging biomarkers, and clinical trials on novel therapeutic options.
Collapse
Affiliation(s)
| | - Alessandro Arrigo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Sabnis R. Novel Plasma Kallikrein Inhibitors for Treating Hereditary Angioedema, Diabetic Macular Edema, and Diabetic Retinopathy. ACS Med Chem Lett 2022; 13:1217-1218. [PMID: 35978687 PMCID: PMC9377320 DOI: 10.1021/acsmedchemlett.2c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram
W. Sabnis
- Smith, Gambrell &
Russell LLP, 1105 West Peachtree Street NE, Suite
1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
17
|
Sabnis RW. Novel Plasma Kallikrein Inhibitors for Treating Hereditary Angioedema, Diabetic Macular Edema, and Diabetic Retinopathy. ACS Med Chem Lett 2022; 13:883-884. [DOI: 10.1021/acsmedchemlett.2c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 West Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|