1
|
Jewitt S, McClaughlin E, Elliott S, Smallman-Raynor M, Clark M, Dunham S, Tarlinton R. Veterinarians' knowledge and experience of avian influenza and perspectives on control measures in the UK. Vet Rec 2024; 195:e3713. [PMID: 38234070 DOI: 10.1002/vetr.3713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/04/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND The scale of the outbreak of highly pathogenic avian influenza (HPAI) in 2021-23 due to the influenza A/H5N1 virus is unprecedented. METHODS An online survey was designed to explore veterinarians' experiences of and confidence in treating avian species, experiences of dealing with suspected HPAI and perspectives on control measures in the UK. The survey ran between December 2021 and March 2022. RESULTS Survey responses were received from 26 veterinarians. Although veterinarians are well placed to communicate HPAI-related information and guidance, a lack of confidence around treating birds and dealing with suspected cases of HPAI represent key barriers for non-specialist practices, and this limits opportunities to educate clients. LIMITATIONS This study presents the views of a small group of self-selected respondents and may over-represent veterinarians with existing interests in avian species and/or avian influenza and who engage with online fora. CONCLUSIONS Improved training and resources designed to increase confidence with avian species, along with guidance on diagnosing and reporting notifiable diseases, are needed for first opinion practices. Governing bodies should clarify regulations on treating birds in veterinary practices when HPAI outbreak numbers are high.
Collapse
Affiliation(s)
- Sarah Jewitt
- School of Geography, University of Nottingham, Nottingham, UK
| | | | - Sol Elliott
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | - Michael Clark
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Stephen Dunham
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Rachael Tarlinton
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Stiles P, Grant M, Kim H, Comin A, Svensson M, Nilsson J, Nöremark M. Mapping the risk of introduction of highly pathogenic avian influenza to Swedish poultry. Prev Vet Med 2024; 230:106260. [PMID: 38976955 DOI: 10.1016/j.prevetmed.2024.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Outbreaks of highly pathogenic avian influenza (HPAI) have resulted in severe economic impact for national governments and poultry industries globally and in Sweden in recent years. Veterinary authorities can enforce prevention measures, e.g. mandatory indoor housing of poultry, in HPAI high-risk areas. The aim of this study was to conduct a spatiotemporal mapping of the risk of introduction of highly pathogenic avian influenza virus (HPAIV) to Swedish poultry from wild birds, utilising existing data sources. A raster calculation method was used to assess the spatiotemporal risk of introduction of HPAIV to Swedish poultry. The environmental infectious pressure of HPAIV was first calculated in each 5 km by 5 km cell using four risk factors: density of selected species of wild birds, air temperature, presence of agriculture as land cover and presence of HPAI in wild birds based on data from October 2016-September 2021. The relative importance of each risk factor was weighted based on opinion of experts. The estimated environmental infectious pressure was then multiplied with poultry population density to obtain risk values for risk of introduction of HPAIV to poultry. The results showed a large variation in risk both on national and local level. The counties of Skåne and Östergötland particularly stood out regarding environmental infectious pressure, risk of introduction to poultry and detected outbreaks of HPAI. On the other hand, there were counties, identified as having higher risk of introduction to poultry which never experienced any outbreaks. A possible explanation is the variation in poultry production types present in different areas of Sweden. These results indicate that the national and local variation in risk for HPAIV introduction to poultry in Sweden is high, and this would support more targeted compulsory prevention measures than what has previously been employed in Sweden. With the current and evolving HPAI situation in Europe and on the global level, there is a need for continuous updates to the risk map as the virus evolves and circulates in different wild bird species. The study also identified areas of improvement, in relation to data use and data availability, e.g. improvements to poultry registers, inclusion of citizen reported mortality in wild birds, data from standardised wild bird surveys, wild bird migration data as well as results from ongoing risk-factor studies.
Collapse
Affiliation(s)
- Pascale Stiles
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden; Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany
| | - Malin Grant
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden; Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7070, 750 07 Uppsala, Sweden.
| | - Hyeyoung Kim
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden
| | - Arianna Comin
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden
| | - Mikael Svensson
- SLU Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7070, 750 07 Uppsala, Sweden
| | - Johan Nilsson
- SLU Swedish Species Information Centre, Swedish University of Agricultural Sciences, Box 7070, 750 07 Uppsala, Sweden
| | - Maria Nöremark
- Department of Epidemiology, Surveillance and Risk Assessment, National Veterinary Agency, SVA, 751 89 Uppsala, Sweden
| |
Collapse
|
3
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Bortolami A, Guinat C, Harder T, Stegeman A, Terregino C, Lanfranchi B, Preite L, Aznar I, Broglia A, Baldinelli F, Gonzales Rojas JL. Vaccination of poultry against highly pathogenic avian influenza - Part 2. Surveillance and mitigation measures. EFSA J 2024; 22:e8755. [PMID: 38638555 PMCID: PMC11024799 DOI: 10.2903/j.efsa.2024.8755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Selecting appropriate diagnostic methods that take account of the type of vaccine used is important when implementing a vaccination programme against highly pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load is expected in the samples used for diagnosis, making molecular methods with high sensitivity the best choice. Although serological methods can be reasonably sensitive, they may produce results that are difficult to interpret. In addition to routine molecular monitoring, it is recommended to conduct viral isolation, genetic sequencing and phenotypic characterisation of any HPAI virus detected in vaccinated flocks to detect escape mutants early. Following emergency vaccination, various surveillance options based on virological testing of dead birds ('bucket sampling') at defined intervals were assessed to be effective for early detection of HPAIV and prove disease freedom in vaccinated populations. For ducks, virological or serological testing of live birds was assessed as an effective strategy. This surveillance could be also applied in the peri-vaccination zone on vaccinated establishments, while maintaining passive surveillance in unvaccinated chicken layers and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate disease freedom with > 99% confidence and to detect HPAI virus sufficiently early following preventive vaccination, monthly virological testing of all dead birds up to 15 per flock, coupled with passive surveillance in both vaccinated and unvaccinated flocks, is recommended. Reducing the sampling intervals increases the sensitivity of early detection up to 100%. To enable the safe movement of vaccinated poultry during emergency vaccination, laboratory examinations in the 72 h prior to the movement can be considered as a risk mitigation measure, in addition to clinical inspection; sampling results from existing surveillance activities carried out in these 72 h could be used. In this Opinion, several schemes are recommended to enable the safe movement of vaccinated poultry following preventive vaccination.
Collapse
|
4
|
McClaughlin E, Elliott S, Jewitt S, Smallman-Raynor M, Dunham S, Parnell T, Clark M, Tarlinton R. UK flockdown: A survey of smallscale poultry keepers and their understanding of governmental guidance on highly pathogenic avian influenza (HPAI). Prev Vet Med 2024; 224:106117. [PMID: 38277819 DOI: 10.1016/j.prevetmed.2024.106117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
The scale of the current outbreak of highly pathogenic avian influenza (HPAI) due to the A/H5N1 virus in the United Kingdom is unprecedented. In addition to its economic impact on the commercial poultry sector, the disease has devastated wild bird colonies and represents a potential public health concern on account of its zoonotic potential. Although the implementation of biosecurity measures is paramount to reducing the spread of HPAI in domestic and commercial settings, little is known about the attitudes and perspectives of backyard poultry keepers, who often keep their flocks in close proximity to the public. A large nationwide survey of backyard poultry keepers was undertaken in December 2021-March 2022, contemporaneous with the enforcement of an Avian Influenza Prevention Zone (AIPZ) and additional housing measures in England, Scotland and Wales. The survey explored keepers' understanding of the clinical manifestations of HPAI, compliance with housing and biosecurity measures, attitudes towards obligatory culling on confirmation of HPAI in their flocks, and the potential use of vaccination to control HPAI. Summary statistical analysis of the closed question responses was supplemented with qualitative data analysis and corpus linguistic approaches to draw out key themes and salient patterns in responses to open text questions. Survey responses were received from 1559 small-scale poultry keepers across the United Kingdom. Awareness of the HPAI outbreak was very high (99.0%). The majority of respondents learned of it via social media (53%), with Defra (49.7%), British Hen Welfare Trust (33.8%) and the APHA (22.0%) identified as the principal sources of information. Analysis revealed that backyard keepers lacked knowledge of the clinical signs of avian influenza and legal requirements relating to compliance with biosecurity measures. Some respondents dismissed the seriousness of HPAI and were unwilling to comply with the measures in force. The issue of obligatory culling proved highly emotive, and some expressed a lack of trust in authorities. Most respondents (93.1%) indicated a willingness to pay for vaccination if the option was available. Communications on biosecurity measures that are relevant to large-scale industrial setups are inappropriate for backyard contexts. Understanding the barriers that backyard keepers face is essential if official agencies are to communicate biosecurity information effectively to such groups. Lack of trust in authorities is likely to make elimination of the virus in the UK difficult. We make recommendations for tailoring HPAI-related information for backyard contexts, to aid future HPAI control measures in the UK.
Collapse
Affiliation(s)
| | - Sol Elliott
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Sarah Jewitt
- School of Geography, University of Nottingham, UK.
| | | | - Stephen Dunham
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, UK
| | | | - Michael Clark
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rachael Tarlinton
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, UK
| |
Collapse
|
5
|
Gentile N, Carrasquer F, Marco-Fuertes A, Marin C. Backyard poultry: exploring non-intensive production systems. Poult Sci 2024; 103:103284. [PMID: 38056053 PMCID: PMC10749279 DOI: 10.1016/j.psj.2023.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
The concept of backyard poultry historically encompassed "food-producing animals." Nevertheless, a recent shift in livestock production paradigms within developed countries is evident, as backyard poultry owners now raise their birds for purposes beyond self-consumption, raising animals in a familiar way, and fostering emotional bonds with them. Because backyard animals are frequently privately owned, and the resulting products are typically not marketed, very little information is available about the demographic profile of backyard owners and information on flocks' characteristics, husbandry, and welfare. Thus, this review aims to clarify the characteristics of backyard poultry, highlighting the prevalent infectious diseases and the zoonotic risk to which farmers are exposed. According to the FAO, there are different types of poultry production systems: intensive, sub-intensive, and extensive. The system conditions, requirements, and the resulting performance differ extensively due to the type of breed, feeding practices, prevalence of disease, prevention and control of diseases, flock management, and the interactions among all these factors. The presence and transmission of infectious diseases in avian species is a problem that affects both the animals themselves and public health. Bacterial (Escherichia coli, Salmonella, Campylobacter, and Mycoplasma), parasitic (helminths, louses, and mites), and viral (Avian influenza, Newcastle, Marek, Infectious Bronchitis, Gumboro, Infectious Laringotracheitis, and Fowlpox) are the most important pathogens involved in backyard poultry health. In addition, Avian influenza, Salmonella, Campylobacter, and E. coli, could be a risk for backyard farmers and/or backyard-derived products consumers. Thus, proper biosecurity implementation measures are mandatory to control them. While the principles and practices of on-farm biosecurity may be well-versed among commercial farmers, hobbyists, and backyard farmers might not be familiar with the necessary steps to protect their flocks from infectious diseases and curb their transmission. This sector represents the fourth category of poultry farming, characterized by the lowest biosecurity standards. Consequently, it is imperative to address the legal status of backyard poultry, educate owners about biosecurity measures, and promote proper veterinary care and disease control.
Collapse
Affiliation(s)
- Nicla Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Valencia, Spain
| | - Fernando Carrasquer
- H&N International GmbH, 27472 Cuxhaven, Germany; Institute of Science and Animal Technology, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Valencia, Spain
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Valencia, Spain.
| |
Collapse
|
6
|
Lambert S, Bauzile B, Mugnier A, Durand B, Vergne T, Paul MC. A systematic review of mechanistic models used to study avian influenza virus transmission and control. Vet Res 2023; 54:96. [PMID: 37853425 PMCID: PMC10585835 DOI: 10.1186/s13567-023-01219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.
Collapse
Affiliation(s)
| | - Billy Bauzile
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Benoit Durand
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), Paris-Est University, Maisons-Alfort, France
| | | | | |
Collapse
|
7
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Stahl K, Velarde A, Winckler C, Bastino E, Bortolami A, Guinat C, Harder T, Stegeman A, Terregino C, Aznar Asensio I, Mur L, Broglia A, Baldinelli F, Viltrop A. Vaccination of poultry against highly pathogenic avian influenza - part 1. Available vaccines and vaccination strategies. EFSA J 2023; 21:e08271. [PMID: 37822713 PMCID: PMC10563699 DOI: 10.2903/j.efsa.2023.8271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Several vaccines have been developed against highly pathogenic avian influenza (HPAI), mostly inactivated whole-virus vaccines for chickens. In the EU, one vaccine is authorised in chickens but is not fully efficacious to stop transmission, highlighting the need for vaccines tailored to diverse poultry species and production types. Off-label use of vaccines is possible, but effectiveness varies. Vaccines are usually injectable, a time-consuming process. Mass-application vaccines outside hatcheries remain rare. First vaccination varies from in-ovo to 6 weeks of age. Data about immunity onset and duration in the target species are often unavailable, despite being key for effective planning. Minimising antigenic distance between vaccines and field strains is essential, requiring rapid updates of vaccines to match circulating strains. Generating harmonised vaccine efficacy data showing vaccine ability to reduce transmission is crucial and this ability should be also assessed in field trials. Planning vaccination requires selecting the most adequate vaccine type and vaccination scheme. Emergency protective vaccination is limited to vaccines that are not restricted by species, age or pre-existing vector-immunity, while preventive vaccination should prioritise achieving the highest protection, especially for the most susceptible species in high-risk transmission areas. Model simulations in France, Italy and The Netherlands revealed that (i) duck and turkey farms are more infectious than chickens, (ii) depopulating infected farms only showed limitations in controlling disease spread, while 1-km ring-culling performed better than or similar to emergency preventive ring-vaccination scenarios, although with the highest number of depopulated farms, (iii) preventive vaccination of the most susceptible species in high-risk transmission areas was the best option to minimise the outbreaks' number and duration, (iv) during outbreaks in such areas, emergency protective vaccination in a 3-km radius was more effective than 1- and 10-km radius. Vaccine efficacy should be monitored and complement other surveillance and preventive efforts.
Collapse
|
8
|
Jewitt S, Smallman-Raynor M, McClaughlin E, Clark M, Dunham S, Elliott S, Munro A, Parnell T, Tarlinton R. Exploring the responses of smallscale poultry keepers to avian influenza regulations and guidance in the United Kingdom, with recommendations for improved biosecurity messaging. Heliyon 2023; 9:e19211. [PMID: 37662753 PMCID: PMC10470266 DOI: 10.1016/j.heliyon.2023.e19211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Understanding how smallscale ('backyard') poultry keepers interpret and respond to governmental directives designed to reduce the transmission of highly pathogenic avian influenza (HPAI) is of paramount importance in preparing for future HPAI outbreaks. Qualitative insights from open questions in an online survey conducted during the 2021-22 HPAI season (1,559 responses) shed light on smallscale poultry keepers' understanding of, and responses to, governmental directives to control HPAI exposure and onwards transmission. A follow-up participatory workshop (21 participants) explored the HPAI-related information sources used by smallscale poultry keepers, their trust in these sources, perceptions of HPAI-related risk, and interpretation of, opinions on and adherence to government regulations and communications regarding biosecurity and housing measures. This paper draws on a multi-scale behaviour change model to explore barriers to compliance with HPAI-related regulations. Insights from behaviour settings theory reveal how poultry-keeping settings and routines might be 'disrupted' and 're-configured' to improve long-term biosecurity and reduce the risk of HPAI exposure. The findings highlight the need for HPAI-related guidance that is tailored to smallscale poultry keepers. This guidance should include clear action points and simple, practical, affordable and sustainable suggestions for improving compliance with biosecurity measures.
Collapse
Affiliation(s)
- Sarah Jewitt
- School of Geography, University of Nottingham, UK
| | | | | | - Michael Clark
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Stephen Dunham
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Sol Elliott
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, UK
| | | | | | - Rachael Tarlinton
- One Virology, The Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, UK
| |
Collapse
|
9
|
Alhaji NB, Adeiza AM, Godwin EA, Haruna AE, Aliyu MB, Odetokun IA. An assessment of the highly pathogenic avian influenza resurgence at human-poultry-environment interface in North-central Nigeria: Sociocultural determinants and One Health implications. One Health 2023; 16:100574. [PMID: 37363241 PMCID: PMC10288128 DOI: 10.1016/j.onehlt.2023.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Highly pathogenic avian influenza H5N1 resurgence has occurred in Nigerian domestic bird flocks with public health concern. This study assessed poultry farmers' knowledge, perceptions, and biosecurity and biosafety practices regarding H5N1 resurgence, explore risk pathways for viral dissemination and associated socio-cultural and economic drivers in poultry flocks in Nigeria. A cross-sectional survey was carried out in randomly selected two poultry production systems, commercial intensive poultry production system and the backyard traditional free-range poultry production system. A One Health framework model was conceptualized to assess inter-links of biophysical, environmental, and sociocultural activities that interface to drive resurgence for better interventions. Descriptive and analytical statistical analyses were performed at 95% confidence level. Of the 422 recruited poultry farmers, 98.6% (n = 416) participated. Majorities of smallholder commercial farmers (93.5%) and backyard poultry keepers (97.7%) engaged in intensive and extensive management, respectively. Identified significant zoonotic risk pathways for H5N1 virus spread were through consumption of undercooked poultry meat and products, and contacts with infected birds and contaminated fomites. Separation of sick birds from apparently healthy ones, frequent cleaning and disinfection of equipment and premises, movement control of birds to nearby water bodies, use of personal protective equipment, and movement control of persons and vehicles into the flock settlements were significantly practiced biosecurity measures. Presence of nearby water bodies (ponds) close to flock settlements (p < 0.001), frequent contact of wild and domestic birds (p < 0.001), cultural practice of bird exchange between flocks (p < 0.001), and wild waterfowls' seasonal migrations (p < 0.001) significantly influenced resurgence. Understanding determinants interactions in the 'Conceptual One Health framework model' is required for better intercontinental intervention against HPAI H5N1. Reform of socio-cultural and economic activities using One Health approach will not only assure food safety and food security, but also guarantee public and environmental health.
Collapse
Affiliation(s)
- Nma Bida Alhaji
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Federal Capital Territory, Nigeria
| | - Abdulrahman Musa Adeiza
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Enid Abutu Godwin
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Aliyu Evuti Haruna
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
- Niger State Ministry of Livestock and Fisheries, Minna, Nigeria
| | | | - Ismail Ayoade Odetokun
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
10
|
Backyard Poultry Flocks in Morocco: Demographic Characteristics, Husbandry Practices, and Disease and Biosecurity Management. Animals (Basel) 2023; 13:ani13020202. [PMID: 36670742 PMCID: PMC9854736 DOI: 10.3390/ani13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Backyard poultry farming is an important tool for poverty alleviation and food security in rural areas of Morocco. A descriptive epidemiologic survey was conducted in 286 backyard poultry flocks from the provinces of Khemisset and Skhirat-Temara to gain baseline data on the current status of backyard poultry flocks in Morocco as well as its potential implications on the transmission and spread of avian diseases. The findings indicated that 88.8% of flocks were raised in a mixed confinement system, with an average flock size of 30 birds (range 1-352). Chickens accounted for 83% of the overall reported birds. More than two-thirds of respondents (69%) kept chickens only, while the remaining flocks raising multiple bird species in total promiscuity. Diseases were the highest cause of mortality (84.7%), followed by predation (15.3%). According to 56.1% of the owners, respiratory symptoms were among the major disease signs reported, besides ectoparasite infestation. Flock health management revealed a lack of preventive vaccination, lack of veterinary consulting, lack of biosecurity practices, and irrational self-medication of diseased birds using antibiotics, pesticides, and hazardous chemicals that could be a significant health risk for consumers. The need for an outreach program about disease prevention and biosecurity practices, along with prophylactic campaigns, should be emphasized to further mitigate the risks of backyard poultry flocks on the commercial sector and public health.
Collapse
|
11
|
Islam A, Islam S, Amin E, Shano S, Samad MA, Shirin T, Hassan MM, Flora MS. Assessment of poultry rearing practices and risk factors of H5N1 and H9N2 virus circulating among backyard chickens and ducks in rural communities. PLoS One 2022; 17:e0275852. [PMID: 36219598 PMCID: PMC9553037 DOI: 10.1371/journal.pone.0275852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Background The avian influenza virus (AIV) causes significant economic losses by infecting poultry and occasional spillover to humans. Backyard farms are vulnerable to AIV epidemics due to poor health management and biosecurity practices, threatening rural households’ economic stability and nutrition. We have limited information about the risk factors associated with AIV infection in backyard poultry in Bangladesh. Hence, we conducted a cross-sectional survey comprising epidemiological and anthropological investigations to understand the poultry rearing practices and risk factors of AIV circulation among backyard poultry in selected rural communities. Methods We sampled 120 poultry from backyard farms (n = 30) of the three selected communities between February 2017 and January 2018. We tested swab samples for the matrix gene (M gene) followed by H5, H7, and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). We applied multivariable logistic regression for risk factor analysis. Furthermore, we conducted an observational study (42 hours) and informal interviews (n = 30) with backyard farmers to record poultry-raising activities in rural communities. Results We detected that 25.2% of the backyard poultry tested positive for AIV, whereas 5% tested positive for H5N1 and 10.8% tested positive for H9N2. Results showed that scavenging in both household garden and other crop fields has higher odds of AIV than scavenging in the household garden (AOR: 24.811; 95% CI: 2.11–292.28), and keeping a cage inside the house has higher odds (AOR:14.5; 95% CI: 1.06–198.51) than keeping it in the veranda, cleaning the cage twice a week or weekly has a higher risk than cleaning daily (AOR: 34.45; 95% CI: 1.04–1139.65), dumping litter or droppings (AOR: 82.80; 95% CI: 3.91–1754.59) and dead birds or wastage (AOR: 109.92, 95% CI: 4.34–2785.29) near water bodies and bushes have a higher risk than burring in the ground, slaughtering and consuming sick birds also had a higher odd of AIV (AOR: 73.45, 95% CI: 1.56–3457.73) than treating the birds. The anthropological investigation revealed that household members had direct contact with the poultry in different ways, including touching, feeding, slaughtering, and contacting poultry feces. Poultry is usually kept inside the house, sick poultry are traditionally slaughtered and eaten, and most poultry raisers do not know that diseases can transmit from backyard poultry to humans. Conclusions This study showed the circulation of H5N1 and H9N2 virus in backyard poultry in rural communities; associated with species, scavenging area of the poultry, location of the poultry cage, the practice of litter, wastage, droppings, and dead bird disposal, and practice of handling sick poultry. We suggest improving biosecurity practices in backyard poultry and mass awareness campaigns to reduce incidences of AIV in household-level poultry farms in rural communities in Bangladesh.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Australia
- EcoHealth Alliance, New York, New York, United States of America
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
- * E-mail:
| | - Shariful Islam
- EcoHealth Alliance, New York, New York, United States of America
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | - Emama Amin
- EcoHealth Alliance, New York, New York, United States of America
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | - Shahanaj Shano
- EcoHealth Alliance, New York, New York, United States of America
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Queensland, Australia
| | - Meerjady Sabrina Flora
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
- Directorate General of Health Services, Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
12
|
Das Gupta S, Barua B, Fournié G, Hoque MA, Henning J. Village and farm-level risk factors for avian influenza infection on backyard chicken farms in Bangladesh. Sci Rep 2022; 12:13009. [PMID: 35906262 PMCID: PMC9338044 DOI: 10.1038/s41598-022-16489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
A cross-sectional study was conducted with 144 small-scale poultry farmers across 42 Bangladeshi villages to explore risk factors associated with avian influenza H5 and H9 seropositivity on backyard chicken farms. Using mixed-effects logistic regression with village as random effect, we identified crow abundance in garbage dumping places and presence of migratory wild birds within villages to be associated with higher odds of H5 and H9 seropositivity. At farm-level, garbage around poultry houses was also associated with higher odds of H5 and H9 seropositivity. In addition, specific trading practices (such as, purchase of chickens from live bird markets (LBM) and neighboring farms to raise them on their own farms, frequency of visits to LBM, purchase of poultry at LBM for consumption) and contact of backyard chickens with other animals (such as, feeding of different poultry species together, using pond water as drinking source for poultry, access of feral and wild animals to poultry houses) were associated with higher odds of H5 or H9 seropositivity. Resource-constrained small-scale poultry farmers should be able to address risk factors identified in this study without requiring large investments into poultry management, thereby reducing the likelihood of avian influenza virus transmission and ultimately occurrence of avian influenza outbreaks.
Collapse
Affiliation(s)
- Suman Das Gupta
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia.
| | - Brishti Barua
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Guillaume Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Md Ahasanul Hoque
- Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Joerg Henning
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
13
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview September - December 2021. EFSA J 2021; 19:e07108. [PMID: 34987626 PMCID: PMC8698678 DOI: 10.2903/j.efsa.2021.7108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Between 16 September and 8 December 2021, 867 highly pathogenic avian influenza (HPAI) virus detections were reported in 27 EU/EEA countries and the UK in poultry (316), in wild (523) and in captive birds (28). The detections in poultry were mainly reported by Italy (167) followed by Hungary and Poland (35 each). Tha majority of the detections in wild birds were reported by Germany (280), Netherlands (65) and United Kingdom (53). The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. The frequent occurrence of HPAI A(H5) incursions in commercial farms (including poultry production types considered at low avian influenza risk) raises concern about the capacity of the applied biosecurity measures to prevent virus introduction. Short-term preparedness and medium- and long-term prevention strategies, including revising and reinforcing biosecurity measures, reduction of the density of commercial poultry farms and possible appropriate vaccination strategies, should be implemented. The results of the genetic analysis indicate that the viruses characterised during this reporting period belong to clade 2.3.4.4b. Some of the characterized HPAI A(H5N1) viruses detected in Sweden, Germany, Poland and United Kingdom are related to the viruses which have been circulating in Europe since October 2020; in North, Central, South and East Europe novel reassortant A(H5N1) virus has been introduced starting from October 2021. HPAI A(H5N1) was also detected in wild mammal species in Sweden, Estonia and Finland; some of these strains characterised so far present an adaptive marker that is associated with increased virulence and replication in mammals. Since the last report, 13 human infections due to HPAI A(H5N6) and two human cases due to LPAI A(H9N2) virus have been reported from China. Some of these A(H5N6) cases were caused by a reassortant virus of clade 2.3.4.4b, which possessed an HA gene closely related to the A(H5) viruses circulating in Europe. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium, with large uncertainty due to the high diversity of circulating viruses in the bird populations.
Collapse
|
14
|
Seymour RG, Kypraios T, O’Neill PD, Hagenaars TJ. A Bayesian nonparametric analysis of the 2003 outbreak of highly pathogenic avian influenza in the Netherlands. J R Stat Soc Ser C Appl Stat 2021. [DOI: 10.1111/rssc.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Theodore Kypraios
- School of Mathematical Sciences University of Nottingham Nottingham UK
| | - Philip D. O’Neill
- School of Mathematical Sciences University of Nottingham Nottingham UK
| | | |
Collapse
|
15
|
Chaudhry M, Rashid HB, Thrusfield M, Eisler MC, Welburn SC. Serosurvey of Avian Influenza Viruses (H5, H7, and H9) and Associated Risk Factors in Backyard Poultry Flocks of Lahore District, Pakistan. Front Vet Sci 2021; 8:631164. [PMID: 33842573 PMCID: PMC8024624 DOI: 10.3389/fvets.2021.631164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Rural poultry constitutes 56% of the total poultry population in Pakistan; however, epidemiological information about avian influenza viruses (AIVs) in backyard poultry flocks is lacking. A cross-sectional survey of villages of Lahore district was conducted from July 2009 to August 2009 using two-stage cluster sampling and probability proportional to size (PPS) sampling to estimate seroprevalence and its associated risk factors. A random selection of 35 clusters from 308 villages of Lahore were considered, and from each cluster, six chickens aged >2 months were selected. A total of 210 serum samples were collected and examined by the hemagglutination inhibition (HI) test for specific antibodies against AIV subtypes H5, H7, and H9. Overall weighted seroprevalence for AIVs was 65.2% (95% CI: 55.6–74.8%), and for subtype H5, H7 & H9 was 6.9% (95% CI: 10.8–23.0%), 0% (95% CI: 0–1.7%), and 62.0% (95% CI: 52.2–71.8%) respectively. However, none of the samples were positive for H7. The average flock size was 17.3 birds, and the main purpose of keeping poultry was for eggs/meat (70.6%, 95% CI: 59.7–81.4). A majority of them were reared in a semi-caged system (83%, 95% CI: 74.5–91.3). Backyard birds were received from different sources, that is, purchased from the market or received as a gift from friends or any NGO, and were 5.7 times more likely to become avian influenza (AI) seropositive than those that were not exposed to these sources (CI 95%: 2.0–716.0). Backyard birds which were received from different sources, that is, purchased from the market or received from friends or any NGO, were 5.7 times more likely to become AI seropositive compared to those that were not (CI 95%: 2.5–18.7). To reduce the risk of AIV in Pakistan, continuous surveillance of backyard poultry would be needed.
Collapse
Affiliation(s)
- Mamoona Chaudhry
- Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,Deptarment of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hamad Bin Rashid
- Deptarment of Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Michael Thrusfield
- Royal (Dick) School of Veterinary Studies, College of Medicine and Veterinary Medicine, University of Edinburgh-Easter Bush Campus, Roslin, United Kingdom
| | - Mark C Eisler
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Susan C Welburn
- Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
16
|
Ahmed T, Ameer HA, Javed S. Pakistan's backyard poultry farming initiative: impact analysis from a public health perspective. Trop Anim Health Prod 2021; 53:210. [PMID: 33733340 DOI: 10.1007/s11250-021-02659-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Commercial poultry rearing in Pakistan dates back to the 1960s. Meanwhile, backyard poultry setups have been providing meat and eggs for human consumption and supplementing the livelihood of farmers in many rural setups for ages. Different poultry rearing practices have varied approaches to feed supplementation, administration, biosafety practices, and flock size. All are important factors affecting disease spread and vulnerability. Recently, the Pakistani government announced the prime minister's Backyard Poultry Initiative under the National Agricultural Emergency program to economically develop farmers, especially women. Widespread adoption of this scheme with little to no training of inexperienced farmers may lead to the emergence of zoonotic infections in the population. The focus of the current review is to examine the probable impact of the promotion of backyard poultry farming practices by the government on the spread of zoonotic illnesses, both in the farmers and consumer population.
Collapse
Affiliation(s)
- Taliha Ahmed
- COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan
| | - Hafiza Aqsa Ameer
- COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan
| | - Sundus Javed
- COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, Pakistan.
| |
Collapse
|
17
|
Patyk KA, McCool-Eye MJ, South DD, Burdett CL, Maroney SA, Fox A, Kuiper G, Magzamen S. Modelling the domestic poultry population in the United States: A novel approach leveraging remote sensing and synthetic data methods. GEOSPATIAL HEALTH 2020; 15. [PMID: 33461269 DOI: 10.4081/gh.2020.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Comprehensive and spatially accurate poultry population demographic data do not currently exist in the United States; however, these data are critically needed to adequately prepare for, and efficiently respond to and manage disease outbreaks. In response to absence of these data, this study developed a national-level poultry population dataset by using a novel combination of remote sensing and probabilistic modelling methodologies. The Farm Location and Agricultural Production Simulator (FLAPS) (Burdett et al., 2015) was used to provide baseline national-scale data depicting the simulated locations and populations of individual poultry operations. Remote sensing methods (identification using aerial imagery) were used to identify actual locations of buildings having the characteristic size and shape of commercial poultry barns. This approach was applied to 594 U.S. counties with > 100,000 birds in 34 states based on the 2012 U.S. Department of Agriculture (USDA), National Agricultural Statistics Service (NASS), Census of Agriculture (CoA). The two methods were integrated in a hybrid approach to develop an automated machine learning process to locate commercial poultry operations and predict the number and type of poultry for each operation across the coterminous United States. Validation illustrated that the hybrid model had higher locational accuracy and more realistic distribution and density patterns when compared to purely simulated data. The resulting national poultry population dataset has significant potential for application in animal disease spread modelling, surveillance, emergency planning and response, economics, and other fields, providing a versatile asset for further agricultural research.
Collapse
Affiliation(s)
- Kelly A Patyk
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Veterinary Services, Strategy and Policy, Center for Epidemiology and Animal Health.
| | - Mary J McCool-Eye
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Veterinary Services, Strategy and Policy, Center for Epidemiology and Animal Health.
| | - David D South
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Veterinary Services, Strategy and Policy, Center for Epidemiology and Animal Health.
| | - Christopher L Burdett
- Colorado State University, Department of Environmental and Radiological Health Sciences, Fort Collins, CO.
| | - Susan A Maroney
- Colorado State University, Department of Environmental and Radiological Health Sciences, Fort Collins, CO.
| | - Andrew Fox
- United States Department of Agriculture, Animal Plant and Health Inspection Service, Veterinary Services, Strategy and Policy, Center for Epidemiology and Animal Health.
| | - Grace Kuiper
- Colorado State University, Department of Environmental and Radiological Health Sciences, Fort Collins, CO.
| | - Sheryl Magzamen
- Colorado State University, Department of Environmental and Radiological Health Sciences, Fort Collins, CO.
| |
Collapse
|
18
|
Hillman AE, Smith RP, Batey N, Verheyen KL, Pittman M, Brown IH, Breed AC. Serological surveillance reveals patterns of exposure to H5 and H7 influenza A viruses in European poultry. Transbound Emerg Dis 2019; 67:592-603. [PMID: 31549792 DOI: 10.1111/tbed.13371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/29/2022]
Abstract
Influenza A viruses of H5 and H7 subtype in poultry can circulate subclinically and subsequently mutate from low to high pathogenicity with potentially devastating economic and welfare consequences. European Union Member States undertake surveillance of commercial and backyard poultry for early detection and control of subclinical H5 and H7 influenza A infection. This surveillance has moved towards a risk-based sampling approach in recent years; however, quantitative measures of relative risk associated with risk factors utilized in this approach are necessary for optimization. This study describes serosurveillance for H5 and H7 influenza A in domestic and commercial poultry undertaken in the European Union from 2004 to 2010, where a random sampling and thus representative approach to serosurveillance was undertaken. Using these representative data, this study measured relative risk of seropositivity across poultry categories and spatially across the EU. Data were analysed using multivariable logistic regression. Domestic waterfowl, game birds, fattening turkeys, ratites, backyard poultry and the 'other' poultry category holdings had relatively increased probability of H5 and/or H7 influenza A seropositivity, compared to laying-hen holdings. Amongst laying-hen holdings, free-range rearing was associated with increased probability of H7 seropositivity. Spatial analyses detected 'hotspots' for H5 influenza A seropositivity in western France and England, and H7 influenza A seropositivity in Italy and Belgium, which may be explained by the demographics and distribution of poultry categories. Findings suggest certain poultry category holdings are at increased risk of subclinical H5 and/or H7 influenza A circulation, and free-range rearing increases the likelihood of exposure to H7 influenza A. These findings may be used in further refining risk-based surveillance strategies and prioritizing management strategies in influenza A outbreaks.
Collapse
Affiliation(s)
| | | | - Nicole Batey
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - Maria Pittman
- European Commission, Directorate for Health and Food Safety, Brussels, Belgium
| | - Ian H Brown
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | - Andrew C Breed
- Animal and Plant Health Agency, Weybridge, Addlestone, UK.,School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Derksen T, Lampron R, Hauck R, Pitesky M, Gallardo RA. Biosecurity Assessment and Seroprevalence of Respiratory Diseases in Backyard Poultry Flocks Located Close to and Far from Commercial Premises. Avian Dis 2019; 62:1-5. [PMID: 29620463 DOI: 10.1637/11672-050917-reg.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Raising backyard chickens is an ever-growing hobby in the United States. These flocks can be a substrate for respiratory disease amplification and transmission to commercial facilities. Five hundred fifty-four chickens from 41 backyard flocks were sampled in this study. ELISA kits were used to detect antibodies against avian influenza (AI), infectious laryngotracheitis (ILT), Newcastle disease (ND), infectious bronchitis (IB), Ornithobacterium rhinotracheale (ORT), Mycoplasma gallisepticum (MG), and Mycoplasma synoviae (MS). All visited flock owners answered a biosecurity questionnaire that assessed biosecurity measures. The questionnaire revealed that backyard poultry owners lack simple biosecurity measures such as use of dedicated shoes, their chicken sources are unreliable, and few of them benefit from veterinary oversight. Only one flock had a clear vaccination history against ND and IB. ORT, ND, IB, MS, MG, and ILT were the most seroprevalent in backyard poultry flocks with 97% (41/42), 77.5% (31/40), 75% (30/40), 73% (31/42), 69% (29/42), and 45% (19/42), respectively. The vaccinated flock was not considered in these calculations. When examining the distance between backyard flocks and the nearest commercial poultry facility, ND and MG were significantly more likely to be found in backyard flocks close to (<4 miles) whereas ORT was significantly more likely in backyard chickens located far from (>4 miles) commercial poultry. Birds purchased directly from National Poultry Improvement Plan hatcheries showed a reduced ND, MG, and MS antibody prevalence. Wearing dedicated shoes decreased MS antibody-positive birds. Finally, history of wild bird contact had a clear effect on an increased seroprevalence of NDV and MG. Serological results suggest that backyard poultry flocks have the potential to serve as a reservoir or amplifier for poultry respiratory diseases. The information generated in this project should direct extension efforts toward emphasizing the importance of small flock biosecurity and chick acquisition sources.
Collapse
Affiliation(s)
- T Derksen
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - R Lampron
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - R Hauck
- B Department of Pathobiology and Department of Poultry Science, Auburn University, 302J Poultry Science Building, 260 Lem Morrison Drive, Auburn, AL 36849
| | - M Pitesky
- C University of California, School of Veterinary Medicine, Cooperative Extension, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| | - R A Gallardo
- A Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive VM3B, Davis, CA 95616
| |
Collapse
|
20
|
Abstract
In the last several decades, avian influenza virus has caused numerous outbreaks around the world. These outbreaks pose a significant threat to the poultry industry and also to public health. When an avian influenza (AI) outbreak occurs, it is critical to make informed decisions about the potential risks, impact, and control measures. To this end, many modeling approaches have been proposed to acquire knowledge from different sources of data and perspectives to enhance decision making. Although some of these approaches have shown to be effective, they do not follow the process of knowledge discovery in databases (KDD). KDD is an iterative process, consisting of five steps, that aims at extracting unknown and useful information from the data. The present review attempts to survey AI modeling methods in the context of KDD process. We first divide the modeling techniques used in AI into two main categories: data-intensive modeling and small-data modeling. We then investigate the existing gaps in the literature and suggest several potential directions and techniques for future studies. Overall, this review provides insights into the control of AI in terms of the risk of introduction and spread of the virus.
Collapse
|
21
|
Brochu NM, Guerin MT, Varga C, Lillie BN, Brash ML, Susta L. A two-year prospective study of small poultry flocks in Ontario, Canada, part 1: prevalence of viral and bacterial pathogens. J Vet Diagn Invest 2019; 31:327-335. [PMID: 30973091 DOI: 10.1177/1040638719843577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Ontario, within the past few years, there has been a marked increase in the number of non-commercial poultry flocks (referred to as "small flocks"). Small poultry flocks may act as a reservoir of avian and zoonotic pathogens, given the flocks' limited access to veterinary services, inadequate biosecurity practices, and increased risk of contact with wild birds. Despite these potential risks, there is a scarcity of data concerning the prevalence of poultry and zoonotic pathogens among these flocks. To assess the baseline prevalence of bacterial and viral infectious pathogens, prospective surveillance of small flock postmortem submissions to the Animal Health Laboratory was conducted over a 2-y period. With the owner's consent, a postmortem examination and pre-set tests for infectious agents were conducted. A total of 160 submissions, mainly chickens (84%), were received. Among bacterial pathogens, Brachyspira spp., Mycoplasma synoviae, Campylobacter spp., Mycoplasma gallisepticum, and Salmonella spp. were detected in 37%, 36%, 35%, 23%, and 3% of tested submissions, respectively. Among viral pathogens, infectious bronchitis virus, fowl adenovirus, infectious laryngotracheitis virus, avian reovirus, and infectious bursal disease virus were detected in 39%, 35%, 15%, 4%, and 1% of submissions, respectively. We detected non-virulent avian avulavirus 1 from two chickens in a single submission, and low-pathogenic H10N8 influenza A virus from a single turkey submission. Our study provides baseline prevalence of viral and bacterial pathogens circulating in Ontario small flocks and may help animal and human health professionals to educate small flock owners about disease prevention.
Collapse
Affiliation(s)
- Nancy M Brochu
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Michele T Guerin
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Csaba Varga
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Brandon N Lillie
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Marina L Brash
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| | - Leonardo Susta
- Departments of Pathobiology (Brochu, Lillie, Susta).,Population Medicine (Guerin), University of Guelph, Guelph, Ontario, Canada.,Ontario Veterinary College, and Animal Health Laboratory (Brash), University of Guelph, Guelph, Ontario, Canada.,Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada (Varga)
| |
Collapse
|
22
|
Bo F, Yang WT, Shonyela SM, Jin YB, Huang KY, Shao LN, Wang C, Zhou Y, Li QY, Jiang YL, Huang HB, Shi CW, Wang JZ, Wang G, Kang YH, Yang GL, Wang CF. Immune responses of mice inoculated with recombinant Lactobacillus plantarum NC8 expressing the fusion gene HA2 and 3M2e of the influenza virus and protection against different subtypes of influenza virus. Virus Res 2019; 263:64-72. [DOI: 10.1016/j.virusres.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 01/05/2023]
|
23
|
Souvestre M, Guinat C, Niqueux E, Robertet L, Croville G, Paul M, Schmitz A, Bronner A, Eterradossi N, Guérin JL. Role of Backyard Flocks in Transmission Dynamics of Highly Pathogenic Avian Influenza A(H5N8) Clade 2.3.4.4, France, 2016-2017. Emerg Infect Dis 2019; 25:551-554. [PMID: 30623754 PMCID: PMC6390754 DOI: 10.3201/eid2503.181040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza A(H5N8) clade 2.3.4.4 spread in France during 2016–2017. We assessed the biosecurity and avian influenza virus infection status of 70 backyard flocks near H5N8-infected commercial farms. One flock was seropositive for clade 2.3.4.4. Backyard flocks linked to commercial farms had elevated risk for H5 infection.
Collapse
|
24
|
Gonzales JL, Roberts H, Smietanka K, Baldinelli F, Ortiz-Pelaez A, Verdonck F. Assessment of low pathogenic avian influenza virus transmission via raw poultry meat and raw table eggs. EFSA J 2018; 16:e05431. [PMID: 32625713 PMCID: PMC7009628 DOI: 10.2903/j.efsa.2018.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A rapid qualitative assessment has been done by performing a theoretical analysis on the transmission of low pathogenic avian influenza (LPAI) via fresh meat from poultry reared or kept in captivity for the production of meat (raw poultry meat) or raw table eggs. A predetermined transmission pathway followed a number of steps from a commercial or non-commercial poultry establishment within the EU exposed to LPAI virus (LPAIV) to the onward virus transmission to animals and humans. The combined probability of exposure and subsequent LPAIV infection via raw poultry meat containing LPAIV is negligible for commercial poultry and humans exposed via consumption whereas it is very unlikely for non-commercial poultry, wild birds and humans exposed via handling and manipulation. The probability of LPAIV transmission from an individual infected via raw poultry meat containing LPAIV is negligible for commercial poultry and humans, whereas it is very unlikely for non-commercial poultry and wild birds. The combined probability of exposure and subsequent LPAIV infection via raw table eggs containing LPAIV is negligible for commercial poultry and humans and extremely unlikely to negligible for non-commercial poultry and wild birds. The probability of LPAIV transmission from an individual infected via raw table eggs containing LPAIV is negligible for commercial poultry and humans and very unlikely to negligible for non-commercial poultry and wild birds. Although the presence of LPAIV in raw poultry meat and table eggs is very unlikely to negligible, there is in general a high level of uncertainty on the estimation of the subsequent probabilities of key steps of the transmission pathways for poultry and wild birds, mainly due to the limited number of studies available, for instance on the viral load required to infect a bird via raw poultry meat or raw table eggs containing LPAIV.
Collapse
|
25
|
Delpont M, Blondel V, Robertet L, Duret H, Guerin JL, Vaillancourt JP, Paul MC. Biosecurity practices on foie gras duck farms, Southwest France. Prev Vet Med 2018; 158:78-88. [PMID: 30220399 DOI: 10.1016/j.prevetmed.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 07/02/2018] [Accepted: 07/23/2018] [Indexed: 11/26/2022]
Abstract
On-farm biosecurity can be assessed by analyzing patterns of practices to better tailor technical advice to producers. Given their close contact with environmental and wildlife disease reservoirs, free-range duck farms are exposed to multiple risk factors of pathogen exposure that are rare or absent in indoor production. The recurrent emergence of Highly Pathogenic Avian Influenza (HPAI) viruses in Southeast Asia and Europe has emphasized the importance of farm-level biosecurity on free-range duck farms. This study was conducted on 46 French duck farms. The farms were visited and an 80-question survey was administered to assess biosecurity practices. Patterns of practices were explored with multiple correspondence analysis and hierarchical cluster analysis. Farms were assigned to one of three clusters in which specific farm types were overrepresented: farms specialized in rearing to grow-out phases and open-circuit full cycle (i.e., all production phases on the farm) farms in cluster 1, closed-circuit full cycle farms in cluster 2, and farms specialized in gavage in cluster 3. Differences in practices might be linked with differences in production constraints. This study provides a baseline assessment of biosecurity practices on foie gras duck farms in Southwest France and will help efforts to adapt biosecurity programs to farm types.
Collapse
Affiliation(s)
| | - Vincent Blondel
- Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Luc Robertet
- Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Hugues Duret
- Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | | | | | | |
Collapse
|
26
|
Waziri MI, Abdu PA, Sa'idu L, Bello M. Seroepidemiology and assessment of risk factors for the spread of avian influenza in birds in two Nigerian states. Vet Med Sci 2017; 3:227-238. [PMID: 29152316 PMCID: PMC5677776 DOI: 10.1002/vms3.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite modified stamping out eradication policy adopted in Nigeria, there was resurgence in 2015 of highly pathogenic avian influenza (HPAI) H5N1 with greater infectivity. A survey of the risk of spread of HPAI in two HPAI‐infected and ‐uninfected Nigerian states were studied. A cross‐sectional study to detect avian influenza (AI) H5 antibodies was conducted using haemagglutination inhibition (HI) test and enzyme‐linked immunosorbent assay (ELISA). A total of 950 birds’ sera were tested for AI H5 antibodies. Questionnaires were also administered to evaluate risks of AI spread in two states of Nigeria in 2013. AI H5 seroprevalence of 3% and 5% were obtained in Bauchi and Gombe states, respectively. Free flying and captive wild birds had 15% and 11% seroprevalence, respectively. Ninety‐two per cent AI awareness and 90% preparedness to report outbreaks of poultry diseases were recorded. Veterinary personnel, radio and television contributed 87% to HPAI awareness. Of the 10 risk categories evaluated, Gombe state had 3 moderate and 1 high risk of AI virus spread. Bauchi state recorded 5 moderate and 1 high risk of AI virus spread. Chi‐square analysis showed associations of altitude, temperature, rainfall and presence of live bird markets (LBMs) (P < 0.05) to AI seroprevalence. Odds ratio at 95% CI (1.313–6.333) indicated LBMs presence to be three times more likely to influence AI occurrence. HPAI H5N1 resurged in many states and occurred for the first time in Gombe state in 2015. Veterinary personnel, radio and television may be reliable in changing farmers’ attitudes to adopt good biosecurity practices.
Collapse
Affiliation(s)
| | - Paul A Abdu
- Department of Veterinary MedicineAhmadu Bello University ZariaZariaNigeria
| | - Lawal Sa'idu
- Veterinary Teaching HospitalDepartment of Veterinary Public Health and Preventive MedicineAhmadu Bello University ZariaZariaNigeria
| | - Mohammed Bello
- Department of Public Health and Preventive MedicineAhmadu Bello UniversityZariaNigeria
| |
Collapse
|
27
|
Ssematimba A, Okike I, Ahmed GM, Yamage M, Boender GJ, Hagenaars TJ, Bett B. Estimating the between-farm transmission rates for highly pathogenic avian influenza subtype H5N1 epidemics in Bangladesh between 2007 and 2013. Transbound Emerg Dis 2017; 65:e127-e134. [PMID: 28805017 DOI: 10.1111/tbed.12692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 11/29/2022]
Abstract
Highly Pathogenic Avian Influenza (HPAI) is classified by the World Organization for Animal Health as one of the notifiable diseases. Its occurrence is associated with severe socio-economic impacts and is also zoonotic. Bangladesh HPAI epidemic data for the period between 2007 and 2013 were obtained and split into epidemic waves based on the time lag between outbreaks. By assuming the number of newly infected farms to be binomially distributed, we fit a Generalized Linear Model to the data to estimate between-farm transmission rates (β). These parameters are then used together with the calculated infectious periods to estimate the respective basic reproduction numbers (R0 ). The change in β and R0 with time during the course of each epidemic wave was explored. Finally, sensitivity analyses of the effects of reducing the delay in detecting infection on a farm as well as extended infectiousness of a farm beyond the day of culling were assessed. The point estimates obtained for β ranged from 0.08 (95% CI: 0.06-0.10) to 0.11 (95% CI: 0.08-0.20) per infectious farm per day while R0 ranged from 0.85 (95% CI: 0.77-1.02) to 0.96 (95% CI: 0.72-1.20). Sensitivity analyses reveal that the estimates are quite robust to changes in the assumptions about the day in reporting infection and extended infectiousness. In the analysis allowing for time-varying transmission parameters, the rising and declining phases observed in the epidemic data were synchronized with the moments when R0 was greater and less than one, respectively. From an epidemiological perspective, the consistency of these estimates and their magnitude (R0 ≈ 1) indicate that the effectiveness of the deployed control measures was largely invariant between epidemic waves and the trend of the time-varying R0 supports the hypothesis of sustained farm-to-farm transmission that is possibly initiated by a few unique introductions.
Collapse
Affiliation(s)
- A Ssematimba
- Department of Mathematics, Faculty of Science, Gulu University, Gulu, Uganda
| | - I Okike
- International Livestock Research Institute, Ibadan, Nigeria
| | - G M Ahmed
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Dhaka, Bangladesh
| | - M Yamage
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Dhaka, Bangladesh
| | - G J Boender
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - T J Hagenaars
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - B Bett
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
28
|
Abstract
The distribution, composition, and management characteristics of small "backyard" poultry flocks may have important implications in the spread of both avian diseases and zoonoses of public health concern. Although the prevalence of small poultry flocks has increased in Alberta, Canada, in recent years, there is minimal demographic information available for these populations. To gain initial epidemiologic insight into this growing population and potential areas of risk, a survey was conducted to characterize the sector. Information on flock demographics and bird health, as well as production and biosecurity practices, were gathered and analyzed from 206 surveys, representing respondents from 43 counties. These results revealed great diversity of both owners and flocks, characterized by wide variations in flock sizes and composition. Laying hens were the most commonly reported type of bird (93.4%), followed by ducks and geese (35.3%), turkeys, (33.8%), and broiler chickens (33.1%). Notably, 58.1% of owners reported having more than one type of bird in their flock, with many owners never, or only sometimes, separating flocks based on species or purpose. Personal consumption (81.8%) and sale of eggs (48.2%) were the most frequently cited purposes for owning a flock. Our findings suggest that owners in Alberta are predominantly new to production; most (73.1%) have kept birds for less than 5 yr and 25.6% for less than 1 yr. Flock health parameters revealed inconsistent use of medical interventions, such as vaccinations, treatments, and veterinary consultation. Data on the sourcing, housing, and movement of birds, as well as movement of people and visitors, reveal substantial potential for contact to occur directly and indirectly between flocks and humans. Additionally, basic husbandry and biosecurity practices were found to be inconsistent and often inadequate, highlighting important gaps and opportunities to improve the health of Alberta's small poultry flocks and mitigate risks to public health. These quantitative and qualitative results provide a baseline characterization of the sector and identify risks and challenges that may serve to inform the development and delivery of future study and interventions.
Collapse
Affiliation(s)
- Chunu Mainali
- Animal Policy and Epidemiology Section, Animal Health Branch, Animal Health and Assurance Division, Alberta Agriculture and Forestry, O.S. Longman Building, 6909 116th Street, Edmonton, Alberta, Canada, T6H 4P2
| | - Ilona Houston
- Animal Policy and Epidemiology Section, Animal Health Branch, Animal Health and Assurance Division, Alberta Agriculture and Forestry, O.S. Longman Building, 6909 116th Street, Edmonton, Alberta, Canada, T6H 4P2
| |
Collapse
|
29
|
Todd Weaver J, Malladi S, Bonney PJ, Patyk KA, Bergeron JG, Middleton JL, Alexander CY, Goldsmith TJ, Halvorson DA. A Simulation-Based Evaluation of Premovement Active Surveillance Protocol Options for the Managed Movement of Turkeys to Slaughter During an Outbreak of Highly Pathogenic Avian Influenza in the United States. Avian Dis 2017; 60:132-45. [PMID: 27309049 DOI: 10.1637/11108-042415-reg] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Risk management decisions associated with live poultry movement during a highly pathogenic avian influenza (HPAI) outbreak should be carefully considered. Live turkey movements may pose a risk for disease spread. On the other hand, interruptions in scheduled movements can disrupt business continuity. The Secure Turkey Supply (STS) Plan was developed through an industry-government-academic collaboration to address business continuity concerns that might arise during a HPAI outbreak. STS stakeholders proposed outbreak response measure options that were evaluated through risk assessment. The developed approach relies on 1) diagnostic testing of two pooled samples of swabs taken from dead turkeys immediately before movement via the influenza A matrix gene real-time reverse transcriptase polymerase chain reaction (rRT-PCR) test; 2) enhanced biosecurity measures in combination with a premovement isolation period (PMIP), restricting movement onto the premises for a few days before movement to slaughter; and 3) incorporation of a distance factor from known infected flocks such that exposure via local area spread is unlikely. Daily exposure likelihood estimates from spatial kernels from past HPAI outbreaks were coupled with simulation models of disease spread and active surveillance to evaluate active surveillance protocol options that differ with respect to the number of swabs per pooled sample and the timing of the tests in relation to movement. Simulation model results indicate that active surveillance testing, in combination with strict biosecurity, substantially increased HPAI virus detection probability. When distance from a known infected flock was considered, the overall combined likelihood of moving an infected, undetected turkey flock to slaughter was predicted to be lower at 3 and 5 km. The analysis of different active surveillance protocol options is designed to incorporate flexibility into HPAI emergency response plans.
Collapse
Affiliation(s)
- J Todd Weaver
- A U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Science Technology and Analysis Services, Center for Epidemiology and Animal Health, Natural Resource Research Center, Building B, 2150 Centre Avenue, Fort Collins, CO 80526
| | - Sasidhar Malladi
- B University of Minnesota, Center for Animal Health and Food Safety, 136 Andrew Boss Laboratory, 1354 Eckles Avenue, St. Paul, MN 55108
| | - Peter J Bonney
- B University of Minnesota, Center for Animal Health and Food Safety, 136 Andrew Boss Laboratory, 1354 Eckles Avenue, St. Paul, MN 55108
| | - Kelly A Patyk
- A U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Science Technology and Analysis Services, Center for Epidemiology and Animal Health, Natural Resource Research Center, Building B, 2150 Centre Avenue, Fort Collins, CO 80526
| | - Justin G Bergeron
- B University of Minnesota, Center for Animal Health and Food Safety, 136 Andrew Boss Laboratory, 1354 Eckles Avenue, St. Paul, MN 55108
| | - Jamie L Middleton
- B University of Minnesota, Center for Animal Health and Food Safety, 136 Andrew Boss Laboratory, 1354 Eckles Avenue, St. Paul, MN 55108
| | - Catherine Y Alexander
- B University of Minnesota, Center for Animal Health and Food Safety, 136 Andrew Boss Laboratory, 1354 Eckles Avenue, St. Paul, MN 55108
| | - Timothy J Goldsmith
- B University of Minnesota, Center for Animal Health and Food Safety, 136 Andrew Boss Laboratory, 1354 Eckles Avenue, St. Paul, MN 55108
| | - David A Halvorson
- C University of Minnesota, College of Veterinary Medicine, 1971 Commonwealth Avenue, St. Paul, MN 55108
| |
Collapse
|
30
|
Pohjola L, Tammiranta N, Ek-Kommonen C, Soveri T, Hänninen ML, Fredriksson Ahomaa M, Huovilainen A. A survey for selected avian viral pathogens in backyard chicken farms in Finland. Avian Pathol 2016; 46:166-172. [DOI: 10.1080/03079457.2016.1232804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- L. Pohjola
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - N. Tammiranta
- Veterinary Virology, Finnish Food Safety Authority Evira, Helsinki, Finland
| | - C. Ek-Kommonen
- Veterinary Virology, Finnish Food Safety Authority Evira, Helsinki, Finland
| | - T. Soveri
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - M. L. Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - M. Fredriksson Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - A. Huovilainen
- Veterinary Virology, Finnish Food Safety Authority Evira, Helsinki, Finland
| |
Collapse
|
31
|
Malladi S, Weaver JT, Alexander CY, Middleton JL, Goldsmith TJ, Snider T, Tilley BJ, Gonder E, Hermes DR, Halvorson DA. Quantitative Estimation of the Number of Contaminated Hatching Eggs Released from an Infected, Undetected Turkey Breeder Hen Flock During a Highly Pathogenic Avian Influenza Outbreak. Avian Dis 2015; 59:355-67. [PMID: 26478153 DOI: 10.1637/11001-120814-reg.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The regulatory response to an outbreak of highly pathogenic avian influenza (HPAI) in the United States may involve quarantine and stop movement orders that have the potential to disrupt continuity of operations in the U.S. turkey industry--particularly in the event that an uninfected breeder flock is located within an HPAI Control Area. A group of government-academic-industry leaders developed an approach to minimize the unintended consequences associated with outbreak response, which incorporates HPAI control measures to be implemented prior to moving hatching eggs off of the farm. Quantitative simulation models were used to evaluate the movement of potentially contaminated hatching eggs from a breeder henhouse located in an HPAI Control Area, given that active surveillance testing, elevated biosecurity, and a 2-day on-farm holding period were employed. The risk analysis included scenarios of HPAI viruses differing in characteristics as well as scenarios in which infection resulted from artificial insemination. The mean model-predicted number of internally contaminated hatching eggs released per movement from an HPAI-infected turkey breeder henhouse ranged from 0 to 0.008 under the four scenarios evaluated. The results indicate a 95% chance of no internally contaminated eggs being present per movement from an infected house before detection. Sensitivity analysis indicates that these results are robust to variation in key transmission model parameters within the range of their estimates from available literature. Infectious birds at the time of egg collection are a potential pathway of external contamination for eggs stored and then moved off of the farm; the predicted number of such infectious birds was estimated to be low. To date, there has been no evidence of vertical transmission of HPAI virus or low pathogenic avian influenza virus to day-old poults from hatching eggs originating from infected breeders. The application of risk analysis methods was beneficial for evaluating outbreak measures developed through emergency response planning initiatives that consider the managed movement of hatching eggs from monitored premises in an HPAI Control Area.
Collapse
|
32
|
Controlling highly pathogenic avian influenza outbreaks: An epidemiological and economic model analysis. Prev Vet Med 2015; 121:142-50. [PMID: 26087887 DOI: 10.1016/j.prevetmed.2015.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 11/23/2022]
Abstract
Outbreaks of highly pathogenic avian influenza (HPAI) can cause large losses for the poultry sector and for animal disease controlling authorities, as well as risks for animal and human welfare. In the current simulation approach epidemiological and economic models are combined to compare different strategies to control highly pathogenic avian influenza in Dutch poultry flocks. Evaluated control strategies are the minimum EU strategy (i.e., culling of infected flocks, transport regulations, tracing and screening of contact flocks, establishment of protection and surveillance zones), and additional control strategies comprising pre-emptive culling of all susceptible poultry flocks in an area around infected flocks (1 km, 3 km and 10 km) and emergency vaccination of all flocks except broilers around infected flocks (3 km). Simulation results indicate that the EU strategy is not sufficient to eradicate an epidemic in high density poultry areas. From an epidemiological point of view, this strategy is the least effective, while pre-emptive culling in 10 km radius is the most effective of the studied strategies. But these two strategies incur the highest costs due to long duration (EU strategy) and large-scale culling (pre-emptive culling in 10 km radius). Other analysed pre-emptive culling strategies (i.e., in 1 km and 3 km radius) are more effective than the analysed emergency vaccination strategy (in 3 km radius) in terms of duration and size of the epidemics, despite the assumed optimistic vaccination capacity of 20 farms per day. However, the total costs of these strategies differ only marginally. Extending the capacity for culling substantially reduces the duration, size and costs of the epidemic. This study demonstrates the strength of combining epidemiological and economic model analysis to gain insight in a range of consequences and thus to serve as a decision support tool in the control of HPAI epidemics.
Collapse
|
33
|
Brown M, Moore L, McMahon B, Powell D, LaBute M, Hyman JM, Rivas A, Jankowski M, Berendzen J, Loeppky J, Manore C, Fair J. Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks. PLoS One 2015; 10:e0124037. [PMID: 25946164 PMCID: PMC4422680 DOI: 10.1371/journal.pone.0124037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities of potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.
Collapse
Affiliation(s)
- Mac Brown
- University of California-Santa Barbara, Department of Economics, Santa Barbara, California, 93111, United States of America
| | - Leslie Moore
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States of America
| | - Benjamin McMahon
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico, 87545, United States of America
| | - Dennis Powell
- Energy and Infrastructure Analysis, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States of America
| | - Montiago LaBute
- Lawrence Livermore National Laboratory, Applied Statistics Group—Computational Engineering Division, Mailstop L-174, 7000 East Ave. Livermore, California, 94550, United States of America
| | - James M. Hyman
- Department of Mathematics, Tulane University, New Orleans, Louisiana, 70118, United States of America
| | - Ariel Rivas
- Center for Global Health, Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, 87131, United States of America
| | - Mark Jankowski
- Minnesota Pollution Control Agency, Environmental Analysis & Outcomes Division, St. Paul, Minnesota, 55155, United States of America
| | - Joel Berendzen
- Los Alamos National Laboratory, Applied Modern Physics, Mailstop D454, Los Alamos, New Mexico, 87545, United States of America
| | - Jason Loeppky
- University of British Columbia, Okanagan, 3333 University Way, Kelowna, B.C. V1V 1V7, Canada
| | - Carrie Manore
- Center for Computational Science, Tulane University, New Orleans, Louisiana, 70118, United States of America
| | - Jeanne Fair
- Los Alamos National Laboratory, Environmental Stewardship, K404, Los Alamos, New Mexico, 87545, United States of America
| |
Collapse
|
34
|
Pohjola L, Rossow L, Huovilainen A, Soveri T, Hänninen ML, Fredriksson-Ahomaa M. Questionnaire study and postmortem findings in backyard chicken flocks in Finland. Acta Vet Scand 2015; 57:3. [PMID: 25608622 PMCID: PMC4307913 DOI: 10.1186/s13028-015-0095-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 01/14/2015] [Indexed: 11/14/2022] Open
Abstract
Background Although modern commercial poultry production today is based on large farms and intensive husbandry, keeping backyard poultry has regained popularity in industrialized countries. However, the health status of backyard flocks is still relatively poorly documented. A questionnaire was sent to the owners of 376 backyard poultry flocks (<500 birds) in order to study health management procedures and characterize backyard poultry populations in Finland. Information was also collected on the postmortem findings from non-commercial flocks using necropsy data from the Finnish Food Safety Authority (Evira). Results Backyard flocks in Finland are small in size (<50 birds), comprising mainly chickens. Based on the results of the questionnaire, the health of such flocks is good, mortality low and vaccinations are not commonly used. Most of the flocks were registered in the national poultry register. The standard biosecurity practices are not generally applied and contact with wild birds, pets and farm animals is frequent, which can make the flocks more prone to infectious diseases. We conducted an 11-year retrospective study of the postmortem necropsy findings of the Evira in order to document the diseases, which caused mortality in backyard chickens in Finland. Necropsy was performed on a total of 132 non-commercial laying hens during 2000 – 2011. The most common postmortem findings were Marek’s disease (27%) and colibacillosis (17%). Conclusions This study is the first to report data on characteristics of and management practices for backyard chicken flocks in Finland. Close connections with commercial flocks are rare and farms are usually distantly located suggesting that the risk that these backyard flocks pose to commercial poultry is low.
Collapse
|
35
|
Evaluating the risk of avian influenza introduction and spread among poultry exhibition flocks in Australia. Prev Vet Med 2014; 118:128-41. [PMID: 25496909 DOI: 10.1016/j.prevetmed.2014.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022]
Abstract
Some practices undertaken by poultry exhibitors, such as allowing wild birds to contact domestic birds, the high frequency of bird movements and the lack of appropriate isolation for incoming birds, pose a risk for disease introduction and spread. The aim of the current study was to quantitatively assess the probability of introduction of low pathogenic avian influenza (LPAI) viruses from wild waterfowl into poultry exhibition flocks and the subsequent spread to other poultry flocks. Exposure and consequence assessments, using scenario trees and Monte Carlo stochastic simulation modelling, were conducted to identify potential pathways of introduction and spread and calculate the probabilities of these pathways occurring. Input parameters were estimated from two recently conducted cross-sectional studies among poultry exhibitors in Australia (Dusan et al., 2010; Hernández-Jover et al., 2013) and other scientific literature. According to reported practices of poultry exhibitors and the LPAI prevalence in wild birds in Australia, this assessment estimates a median (5-95%) probability of exposure of a bird kept by a poultry exhibitor of 0.004 (0.003-0.005). Due to the higher susceptibility of infection of turkeys and waterfowl, this probability is higher in flocks keeping these bird species than in those keeping chickens or pigeons only. Similarly, once exposure has occurred, establishment of infection and subsequent spread are more likely in those flocks keeping waterfowl and turkeys than in those keeping chicken and pigeons only. Spread through movement of birds is the most likely pathway of spread, followed by contaminated fomites, wild birds and airborne spread. The median probability of LPAI spread through movement of birds in flocks keeping waterfowl and turkeys was estimated to be 0.280 (0.123-0.541) and 0.230 (0.104-0.421), respectively. A lower probability was estimated for chicken (0.087; 0.027-0.202) and pigeon (0.0003; 3.0×10(-5)-0.0008) flocks. The sensitivity analysis indicates that the prevalence of LPAI in wild waterfowl and the probability of contact of domestic birds with wild waterfowl are the most influential parameters on the probability of exposure; while the probability of spread is mostly influenced by the probability of movement of birds and the probability of the exhibitor detecting and reporting LPAI. To minimize the potential risk of AI introduction and spread, poultry exhibitors should prevent contact of domestic birds with wild birds, and implement appropriate biosecurity practices. In addition, adequate extension services are required to improve exhibitors' abilities to recognize diseases and reporting behaviour.
Collapse
|
36
|
Whitehead ML, Roberts V. Backyard poultry: legislation, zoonoses and disease prevention. J Small Anim Pract 2014; 55:487-96. [PMID: 25109514 DOI: 10.1111/jsap.12254] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/19/2014] [Accepted: 06/12/2014] [Indexed: 11/29/2022]
Abstract
In law, backyard poultry are "food-producing animals" and "farmed animals" and are subject to regulations regarding welfare, prescribing, banned procedures, disposal of carcases, feeding bans, notifiable diseases and disease surveillance in addition to those applying to most other pets. Many owners and some veterinary surgeons are unclear about the requirements of these regulations. Backyard poultry are also associated with some different zoonotic disease risks to mammalian pets. Because a high proportion of poultry morbidity and mortality relates to infectious diseases, the health of backyard poultry is amenable to improvement through basic husbandry, biosecurity, hygiene and preventive medicine measures that can be incorporated into a simple "flock-health plan". This article reviews these topics.
Collapse
Affiliation(s)
- M L Whitehead
- Chipping Norton Veterinary Hospital, Chipping Norton, Oxon OX7 5BN
| | | |
Collapse
|
37
|
Extended transmission of two H5/H7 low pathogenic avian influenza viruses in chickens. Epidemiol Infect 2014; 143:781-90. [PMID: 24924291 DOI: 10.1017/s0950268814001307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Transmission experiments are useful for investigating the mechanisms of low pathogenic notifiable avian influenza virus (LPNAI) transmission. In this study, the hypothesis that inoculation-infected chickens are more infectious than contact-infected chickens was tested. To this end, extended transmission experiments with one H5N2 and one H7N1 LPAIV which had previously been characterized in a series of standard transmission experiments were conducted in specific pathogen-free (SPF) chickens. For the H5N2 LPAIV, the infectivity of contact-infected chickens was similar to the infectivity of inoculated chickens. Despite results from a previous study suggesting the H7N1 LPAIV strain to be similarly infectious to SPF chickens as the H5N2 LPAIV strain, the acquisition of contact-infected chickens proved more difficult for H7N1 LPAIV. It was assumed that this might have been a consequence of the length and timing of the exposure period. In conclusion, for LPNAIVs that first seemed equally infectious, short-term transmissibility may vary considerably.
Collapse
|
38
|
Ferrer E, Alfonso P, Ippoliti C, Abeledo M, Calistri P, Blanco P, Conte A, Sánchez B, Fonseca O, Percedo M, Pérez A, Fernández O, Giovannini A. Development of an active risk-based surveillance strategy for avian influenza in Cuba. Prev Vet Med 2014; 116:161-7. [PMID: 24938174 DOI: 10.1016/j.prevetmed.2014.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 05/09/2014] [Accepted: 05/25/2014] [Indexed: 11/16/2022]
Abstract
The authors designed a risk-based approach to the selection of poultry flocks to be sampled in order to further improve the sensitivity of avian influenza (AI) active surveillance programme in Cuba. The study focused on the western region of Cuba, which harbours nearly 70% of national poultry holdings and comprise several wetlands where migratory waterfowl settle (migratory waterfowl settlements - MWS). The model took into account the potential risk of commercial poultry farms in western Cuba contracting from migratory waterfowl of the orders Anseriformes and Charadriiformes through dispersion for pasturing of migratory birds around the MWS. We computed spatial risk index by geographical analysis with Python scripts in ESRI(®) ArcGIS 10 on data projected in the reference system NAD 1927-UTM17. Farms located closer to MWS had the highest values for the risk indicator pj and in total 31 farms were chosen for targeted surveillance during the risk period. The authors proposed to start active surveillance in the study area 3 weeks after the onset of Anseriformes migration, with additional sampling repeated twice in the same selected poultry farms at 15 days interval (Comin et al., 2012; EFSA, 2008) to cover the whole migration season. In this way, the antibody detectability would be favoured in case of either a posterior AI introduction or enhancement of a previous seroprevalence under the sensitivity level. The model identified the areas with higher risk for AIV introduction from MW, aiming at selecting poultry premises for the application of risk-based surveillance. Given the infrequency of HPAI introduction into domestic poultry populations and the relative paucity of occurrences of LPAI epidemics, the evaluation of the effectiveness of this approach would require its application for several migration seasons to allow the collection of sufficient reliable data.
Collapse
Affiliation(s)
- E Ferrer
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de Las Lajas 32700, Mayabeque, Cuba
| | - P Alfonso
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de Las Lajas 32700, Mayabeque, Cuba
| | - C Ippoliti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - M Abeledo
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de Las Lajas 32700, Mayabeque, Cuba
| | - P Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - P Blanco
- Instituto de Ecología y Sistemática (IES), Carretera Varona, Km 6, La Habana, Cuba
| | - A Conte
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - B Sánchez
- Instituto de Ecología y Sistemática (IES), Carretera Varona, Km 6, La Habana, Cuba
| | - O Fonseca
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de Las Lajas 32700, Mayabeque, Cuba
| | - M Percedo
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de Las Lajas 32700, Mayabeque, Cuba
| | - A Pérez
- Instituto de Medicina Veterinaria, Calle 12 No. 355, e/15 y 17 Vedado, 10400 La Habana, Cuba
| | - O Fernández
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de Las Lajas 32700, Mayabeque, Cuba
| | - A Giovannini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy.
| |
Collapse
|
39
|
Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia. Prev Vet Med 2014; 113:599-607. [DOI: 10.1016/j.prevetmed.2013.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 11/23/2022]
|
40
|
Hosseini PR, Fuller T, Harrigan R, Zhao D, Arriola CS, Gonzalez A, Miller MJ, Xiao X, Smith TB, Jones JH, Daszak P. Metapopulation dynamics enable persistence of influenza A, including A/H5N1, in poultry. PLoS One 2013; 8:e80091. [PMID: 24312455 PMCID: PMC3846554 DOI: 10.1371/journal.pone.0080091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Highly pathogenic influenza A/H5N1 has persistently but sporadically caused human illness and death since 1997. Yet it is still unclear how this pathogen is able to persist globally. While wild birds seem to be a genetic reservoir for influenza A, they do not seem to be the main source of human illness. Here, we highlight the role that domestic poultry may play in maintaining A/H5N1 globally, using theoretical models of spatial population structure in poultry populations. We find that a metapopulation of moderately sized poultry flocks can sustain the pathogen in a finite poultry population for over two years. Our results suggest that it is possible that moderately intensive backyard farms could sustain the pathogen indefinitely in real systems. This fits a pattern that has been observed from many empirical systems. Rather than just employing standard culling procedures to control the disease, our model suggests ways that poultry production systems may be modified.
Collapse
Affiliation(s)
| | - Trevon Fuller
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ryan Harrigan
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Delong Zhao
- Department of Botany and Microbiology, Center for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Carmen Sofia Arriola
- Laboratory of Preventive Veterinary Medicine, School of Veterinary Medicine, San Marcos Major National University, Lima, Peru
| | - Armandoe Gonzalez
- Laboratory of Preventive Veterinary Medicine, School of Veterinary Medicine, San Marcos Major National University, Lima, Peru
| | | | - Xiangming Xiao
- Department of Botany and Microbiology, Center for Spatial Analysis, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Tom B. Smith
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jamie Holland Jones
- Woods Institute for the Environment and Department of Anthropology, Stanford University, Stanford, California, United States of America
| | - Peter Daszak
- EcoHealth Alliance, New York, New York, United States of America
| |
Collapse
|
41
|
Hernández-Jover M, Schemann K, Toribio JAL. A cross-sectional study on biosecurity practices and communication networks of poultry exhibition in Australia. Prev Vet Med 2013; 110:497-509. [DOI: 10.1016/j.prevetmed.2012.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/07/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
42
|
Abstract
Many critical public health issues require non-traditional approaches. Although many novel strategies are used, one approach not widely applied involves improving the treatment of animals. Emerging infectious diseases are pressing public health challenges that could benefit from improving the treatment of animals. Other human health issues, that overlap with animal treatment issues, and that warrant further exploration, are medical research and domestic violence. The diverse nature of these health issues and their connection with animal treatment suggest that there may be other similar intersections. Public health would benefit by including the treatment of animals as a topic of study and policy development.
Collapse
Affiliation(s)
- Aysha Akhtar
- 1] Oxford Centre for Animal Ethics, 91 Iffley Road, Oxford OX4 1EG, England, UK [2] Office of Counterterrorism and Emerging Threats, FDA, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA. E-mail:
| |
Collapse
|
43
|
Mete A, Giannitti F, Barr B, Woods L, Anderson M. Causes of Mortality in Backyard Chickens in Northern California: 2007–2011. Avian Dis 2013; 57:311-5. [DOI: 10.1637/10382-092312-case.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Patyk KA, Helm J, Martin MK, Forde-Folle KN, Olea-Popelka FJ, Hokanson JE, Fingerlin T, Reeves A. An epidemiologic simulation model of the spread and control of highly pathogenic avian influenza (H5N1) among commercial and backyard poultry flocks in South Carolina, United States. Prev Vet Med 2013; 110:510-24. [PMID: 23398856 DOI: 10.1016/j.prevetmed.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
Abstract
Epidemiologic simulation modeling of highly pathogenic avian influenza (HPAI) outbreaks provides a useful conceptual framework with which to estimate the consequences of HPAI outbreaks and to evaluate disease control strategies. The purposes of this study were to establish detailed and informed input parameters for an epidemiologic simulation model of the H5N1 strain of HPAI among commercial and backyard poultry in the state of South Carolina in the United States using a highly realistic representation of this poultry population; to estimate the consequences of an outbreak of HPAI in this population with a model constructed from these parameters; and to briefly evaluate the sensitivity of model outcomes to several parameters. Parameters describing disease state durations; disease transmission via direct contact, indirect contact, and local-area spread; and disease detection, surveillance, and control were established through consultation with subject matter experts, a review of the current literature, and the use of several computational tools. The stochastic model constructed from these parameters produced simulated outbreaks ranging from 2 to 111 days in duration (median 25 days), during which 1 to 514 flocks were infected (median 28 flocks). Model results were particularly sensitive to the rate of indirect contact that occurs among flocks. The baseline model established in this study can be used in the future to evaluate various control strategies, as a tool for emergency preparedness and response planning, and to assess the costs associated with disease control and the economic consequences of a disease outbreak.
Collapse
Affiliation(s)
- Kelly A Patyk
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Centers for Epidemiology and Animal Health, 2150 Centre Avenue, Building B, Fort Collins, CO 80526, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Conan A, Goutard FL, Sorn S, Vong S. Biosecurity measures for backyard poultry in developing countries: a systematic review. BMC Vet Res 2012; 8:240. [PMID: 23216706 PMCID: PMC3538710 DOI: 10.1186/1746-6148-8-240] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poultry represents an important sector in animal production, with backyard flocks representing a huge majority, especially in the developing countries. In these countries, villagers raise poultry to meet household food demands and as additional sources of incomes. Backyard production methods imply low biosecurity measures and high risk of infectious diseases, such as Newcastle disease or zoonosis such as Highly Pathogenic Avian Influenza (HPAI).We reviewed literature on biosecurity practices for prevention of infectious diseases, and published recommendations for backyard poultry and assessed evidence of their impact and feasibility, particularly in developing countries. Documents were sourced from the Food and Agriculture Organization (FAO) website, and from Pubmed and Google databases. RESULTS A total of 62 peer-reviewed and non-referred documents were found, most of which were published recently (after 2004) and focused on HPAI/H5N1-related biosecurity measures (64%). Recommendations addressed measures for flock management, feed and water management, poultry trade and stock change, poultry health management and the risk to humans. Only one general guideline was found for backyard poultry-related biosecurity; the other documents were drawn up for specific developing settings and only engaged their authors (e.g. consultants). These national guidelines written by consultants generated recommendations regarding measures derived from the highest standards of commercial poultry production. Although biosecurity principles of isolation and containment are described in most documents, only a few documents were found on the impact of measures in family poultry settings and none gave any evidence of their feasibility and effectiveness for backyard poultry. CONCLUSIONS Given the persistent threat posed by HPAI/H5N1 to humans in developing countries, our findings highlight the importance of encouraging applied research toward identifying sustained and adapted biosecurity measures for smallholder poultry flocks in low-income countries.
Collapse
Affiliation(s)
- Anne Conan
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia.
| | | | | | | |
Collapse
|
46
|
Longworth N, Mourits MCM, Saatkamp HW. Economic Analysis of HPAI Control in the Netherlands I: Epidemiological Modelling to Support Economic Analysis. Transbound Emerg Dis 2012; 61:199-216. [DOI: 10.1111/tbed.12021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Indexed: 11/27/2022]
Affiliation(s)
- N. Longworth
- Business Economics; Wageningen University; Wageningen The Netherlands
| | - M. C. M. Mourits
- Business Economics; Wageningen University; Wageningen The Netherlands
| | - H. W. Saatkamp
- Business Economics; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
47
|
Dorjee S, Poljak Z, Revie CW, Bridgland J, McNab B, Leger E, Sanchez J. A Review of Simulation Modelling Approaches Used for the Spread of Zoonotic Influenza Viruses in Animal and Human Populations. Zoonoses Public Health 2012; 60:383-411. [DOI: 10.1111/zph.12010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
De Leo GA, Bolzoni L. Getting a free ride on poultry farms: how highly pathogenic avian influenza may persist in spite of its virulence. THEOR ECOL-NETH 2011. [DOI: 10.1007/s12080-011-0136-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Burns TE, Kelton D, Ribble C, Stephen C. Preliminary Investigation of Bird and Human Movements and Disease-Management Practices in Noncommercial Poultry Flocks in Southwestern British Columbia. Avian Dis 2011; 55:350-7. [DOI: 10.1637/9646-010411-reg.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Ypma RJF, Bataille AMA, Stegeman A, Koch G, Wallinga J, van Ballegooijen WM. Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data. Proc Biol Sci 2011; 279:444-50. [PMID: 21733899 DOI: 10.1098/rspb.2011.0913] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Knowledge on the transmission tree of an epidemic can provide valuable insights into disease dynamics. The transmission tree can be reconstructed by analysing either detailed epidemiological data (e.g. contact tracing) or, if sufficient genetic diversity accumulates over the course of the epidemic, genetic data of the pathogen. We present a likelihood-based framework to integrate these two data types, estimating probabilities of infection by taking weighted averages over the set of possible transmission trees. We test the approach by applying it to temporal, geographical and genetic data on the 241 poultry farms infected in an epidemic of avian influenza A (H7N7) in The Netherlands in 2003. We show that the combined approach estimates the transmission tree with higher correctness and resolution than analyses based on genetic or epidemiological data alone. Furthermore, the estimated tree reveals the relative infectiousness of farms of different types and sizes.
Collapse
Affiliation(s)
- R J F Ypma
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|