1
|
Deka P, Nath MK, Das S, Das BC, Phukan A, Lahkar D, Bora B, Shokeen K, Kumar A, Deka P. A study of risk factors associated with Newcastle disease and molecular characterization of genotype XIII Newcastle disease virus in backyard and commercial poultry in Assam, India. Res Vet Sci 2022; 150:122-130. [PMID: 35816768 DOI: 10.1016/j.rvsc.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The continuous emergence of Newcastle disease virus (NDV) poses a persistent threat to the poultry industry. Recent increasing outbreaks of NDV in the North East region of India have highlighted the need to closely monitor and analyze the potential risk factors for Newcastle disease (ND) outbreaks. In the present study, an attempt was made to genotype the circulating Newcastle disease virus (NDV) in the backyard and commercial poultry flocks in Assam, India. Sera samples from unvaccinated backyard poultry flocks and tissue samples of ND suspected cases were collected and tested for the presence of NDV antibodies using the Haemagglutination inhibition (HI) test. A total of seven NDV isolates were analyzed from different districts of Assam, India, both genotypically and pathotypically. All isolates were characterized as virulent, carrying 112RRKQRF117 amino acid residues at the cleavage site. As determined by phylogenetic analysis, the isolates clustered with members of genotype XIII of class II NDV. Further analysis of risk factors of ND occurrence was conducted through a questionnaire survey. All the results indicated an occurrence of genotype XIII of NDV in the farms with inadequate biosecurity and farming practices.
Collapse
Affiliation(s)
- Pubaleem Deka
- Department of Veterinary Epidemiology and Preventive Medicine, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Mrinal Kumar Nath
- Department of Veterinary Epidemiology and Preventive Medicine, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Sangeeta Das
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Bipin Chandra Das
- Department of Veterinary Epidemiology and Preventive Medicine, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Arabinda Phukan
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Deepa Lahkar
- Department of Veterinary Epidemiology and Preventive Medicine, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Birina Bora
- Faculty of Mathematical Sciences, University of Delhi, New Delhi, India
| | - Kamal Shokeen
- Department of BSBE, IIT, Guwahati 781039, Assam, India
| | - Aman Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pankaj Deka
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, India.
| |
Collapse
|
2
|
Kalonda A, Saasa N, Nkhoma P, Kajihara M, Sawa H, Takada A, Simulundu E. Avian Influenza Viruses Detected in Birds in Sub-Saharan Africa: A Systematic Review. Viruses 2020; 12:v12090993. [PMID: 32906666 PMCID: PMC7552061 DOI: 10.3390/v12090993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
In the recent past, sub-Saharan Africa has not escaped the devastating effects of avian influenza virus (AIV) in poultry and wild birds. This systematic review describes the prevalence, spatiotemporal distribution, and virus subtypes detected in domestic and wild birds for the past two decades (2000–2019). We collected data from three electronic databases, PubMed, SpringerLink electronic journals and African Journals Online, using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol. A total of 1656 articles were reviewed, from which 68 were selected. An overall prevalence of 3.0% AIV in birds was observed. The prevalence varied between regions and ranged from 1.1% to 7.1%. The Kruskal–Wallis and Wilcoxon signed-rank sum test showed no significant difference in the prevalence of AIV across regions, χ2(3) = 5.237, p = 0.1553 and seasons, T = 820, z = −1.244, p = 0.2136. Nineteen hemagglutinin/neuraminidase subtype combinations were detected during the reviewed period, with southern Africa recording more diverse AIV subtypes than other regions. The most detected subtype was H5N1, followed by H9N2, H5N2, H5N8 and H6N2. Whilst these predominant subtypes were mostly detected in domestic poultry, H1N6, H3N6, H4N6, H4N8, H9N1 and H11N9 were exclusively detected in wild birds. Meanwhile, H5N1, H5N2 and H5N8 were detected in both wild and domestic birds suggesting circulation of these subtypes among wild and domestic birds. Our findings provide critical information on the eco-epidemiology of AIVs that can be used to improve surveillance strategies for the prevention and control of avian influenza in sub-Saharan Africa.
Collapse
Affiliation(s)
- Annie Kalonda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (A.K.); (P.N.)
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Africa Centre of Excellence for Infectious Disease of Humans and Animals, School of Veterinary Medicine, Lusaka 10101, Zambia
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (A.K.); (P.N.)
| | - Masahiro Kajihara
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University Kita-ku, Sapporo 001-0020, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (N.S.); (H.S.); (A.T.)
- Macha Research Trust, Choma 20100, Zambia
- Correspondence: ; Tel.: +260-977469479
| |
Collapse
|
3
|
Chevalier V, Marsot M, Molia S, Rasamoelina H, Rakotondravao R, Pedrono M, Lowenski S, Durand B, Lecollinet S, Beck C. Serological Evidence of West Nile and Usutu Viruses Circulation in Domestic and Wild Birds in Wetlands of Mali and Madagascar in 2008. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061998. [PMID: 32197367 PMCID: PMC7142923 DOI: 10.3390/ijerph17061998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/30/2022]
Abstract
The geographical distribution and impact on animal and human health of both West Nile and Usutu viruses, two flaviviruses of the Japanese encephalitis complex, have been increasing during the past two decades. Both viruses circulate in Europe and Africa within a natural cycle between wild birds and mosquitoes, mainly from the Culex genus. We retrospectively analyzed sera from domestic and wild birds sampled in 2008 in two wetlands, namely the Inner Niger Delta, Mali, and the Lake Alaotra area, Madagascar. Sera were first tested using a commercial ID Screen West Nile Competition Multi-species ELISA kit. Then, positive sera and sera with insufficient volume for testing with ELISA were tested with a Microneutralization Test. In Mali, the observed seroprevalence in domestic birds was 28.5% [24.5; 32.8] 95%CI, 3.1 % [1.8; 5.2] 95%CI, 6.2% [3.4; 10.2] 95%CI and 9.8 % [7.3; 12.8] 95%CI, for West Nile virus (WNV), Usutu virus (USUV), undetermined flavivirus, and WNV/USUV respectively. Regarding domestic birds of Madagascar, the observed seroprevalence was 4.4 % [2.1; 7.9]95%CI for WNV, 0.9% [0.1; 3.1] 95%CI for USUV, 1.3% [0.5; 2.8] 95%CI for undetermined flavivirus, and null for WNV/USUV. Among the 150 wild birds sampled in Madagascar, two fulvous whistling-ducks (Dendrocygna bicolor) were positive for WNV and two for an undetermined flavivirus. One white-faced whistling-duck (Dendrocygna viduata) and one Hottentot teal (Spatula hottentota) were tested positive for USUV. African and European wetlands are linked by wild bird migrations. This first detection of USUV—as well as the confirmed circulation of WNV in domestic birds of two wetlands of Mali and Madagascar—emphasizes the need to improve the surveillance, knowledge of epidemiological patterns, and phylogenetic characteristics of flavivirus in Africa, particularly in areas prone to sustained, intense flavivirus transmission such as wetlands.
Collapse
Affiliation(s)
- Véronique Chevalier
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh PO Box 983, Cambodia
| | - Maud Marsot
- University Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, 94700 Maisons-Alfort, France
| | - Sophie Molia
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- Centre Régional de Santé Animale, Parc Sotuba, Bamako, Mali
| | | | | | - Miguel Pedrono
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- FOFIFA-DRZV, 101 Antananarivo, Madagascar
| | - Steve Lowenski
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| | - Benoit Durand
- University Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| |
Collapse
|
4
|
Alsahami A, Ideris A, Omar A, Ramanoon SZ, Sadiq MB. Seroprevalence of Newcastle disease virus in backyard chickens and herd-level risk factors of Newcastle disease in poultry farms in Oman. Int J Vet Sci Med 2018; 6:186-191. [PMID: 30564594 PMCID: PMC6286396 DOI: 10.1016/j.ijvsm.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/30/2018] [Accepted: 06/30/2018] [Indexed: 11/19/2022] Open
Abstract
Newcastle disease (ND) is an endemic disease in Oman's poultry industry and impacts negatively on food security. However, little is known regarding the potential risks of the disease in backyard poultry. The objectives of this study were to determine the seroprevalence of Newcastle disease virus (NDV) in backyard chickens and the herd-level risk factors in Oman. In total, 1383 serum samples were collected from chickens in 139 flocks from nine governorates. Information on associated risk factors was assessed using a semi-structured questionnaire. The samples were tested using commercial indirect ELISA kits.A logistic regression model was applied to assess the associated risk factors. The bird and flock-level NDV seroprevalence was 33.8% (95% Confidence Interval (CI): 12.8-38.6%) and 57.1% (95% CI: 35.7-71.4%), respectively. The highest seroprevalence of antibody to NDV at bird and flock levels was recorded in North Ash Sharqiyah (38.6%) and Al Buraimi (71.4%), respectively. Also, the lowest seroprevalence at bird and flock levels was recorded in Musandam (12.8%) and South Al Batinah (35.7%), respectively. A significant difference in NDV seroprevalence at flock and bird levels was only recorded in Ad Dakhliyah. Factors associated with higher seroprevalence to NDV included absence of a veterinarian in the farm (OR = 5.3; 95% CI: 2.1, 11.7), usage of dead ND vaccine (OR = 2.3; 95% CI: 1.2-4.2), employment of non-permanent staff (OR = 3.9; 95% CI: 1.5, 10.6) and free entry of visitors (OR = 6.2; 95% CI: 2.0, 20.3). In conclusion, the results of this study revealed a high exposure of backyard chickens to NDV and the identified risk factors could be vital in the prevention and control of the disease in Oman.
Collapse
Affiliation(s)
- Ali Alsahami
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
- Corresponding author.
| | - Aini Ideris
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
- Institute of Bioscience, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Abdulrahman Omar
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
- Institute of Bioscience, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Siti Zubaidah Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Mohammed Babatunde Sadiq
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| |
Collapse
|
5
|
Samanta I, Joardar SN, Das PK. Biosecurity Strategies for Backyard Poultry: A Controlled Way for Safe Food Production. FOOD CONTROL AND BIOSECURITY 2018. [PMCID: PMC7149579 DOI: 10.1016/b978-0-12-811445-2.00014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Molia S, Grosbois V, Kamissoko B, Sidibe MS, Sissoko KD, Traore I, Diakite A, Pfeiffer DU. Longitudinal Study of Avian Influenza and Newcastle Disease in Village Poultry, Mali, 2009-2011. Avian Dis 2017; 61:165-177. [PMID: 28665735 DOI: 10.1637/11502-092616-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Newcastle disease (ND) is endemic in West Africa, which has also experienced outbreaks of highly pathogenic avian influenza (AI) H5N1 since 2006. We aimed to estimate the prevalence and incidence of AI and ND in village poultry in Mali and to identify associated risk factors. A longitudinal serologic study was conducted between November 2009 and February 2011 using ELISA commercial kits to detect antibodies. Sera (5963) were collected from 4890 different poultry. AI was rare, with a seroprevalence of 2.9% (95% confidence interval [CI] 2.3-3.5) and a seroincidence rate of 0.7 birds per 100 bird-months at risk (95% CI 0.4-1.0). AI antibodies were short lived, with a seroreversion rate of 25.4 birds per 100 bird-months at risk (95% CI 19.0-31.7). Risk factors for AI were limited: temporal variation occurred, but proximity to a water body was a risk factor only when large populations of wild waterbirds were present. ND was very common, with seroprevalence of 68.9% (95% CI 61.9-76.0) and a seroincidence rate of 15.9 birds per 100 bird-months at risk (95% CI 11.9-19.8). ND seroreversion rate was 6.2 birds per 100 bird-months at risk (95% CI 3.6-8.9). Regarding risk factors for ND, temporal variations occurred, and ND was more likely to be present in the Sudanian agro-ecological zone than in the Sahelian zone, in chickens than in other species, in flocks with higher numbers of Guinea fowl, and in flocks that had access to a waterbody. Control efforts would benefit from further increasing the ND vaccination coverage of village poultry, although this was already quite high (54.9%) for an African country. Seroconversion seemed satisfactory in vaccinated poultry, since 90.0% (95% CI 87.6-92.4) of these had ND antibodies. Further research should investigate the apparent lack of an epidemiologic role of domestic ducks for AI in Mali (unlike in Southeast Asia) and the potential role of Guinea fowl as a reservoir for ND.
Collapse
Affiliation(s)
- Sophie Molia
- A CIRAD, Centre Régional de Santé Animale, BP1813, Sotuba, route de Koulikoro, Bamako, Mali.,B CIRAD, UPR AGIRs, Campus international de Baillarguet, F-34398 Montpellier, France
| | - Vladimir Grosbois
- B CIRAD, UPR AGIRs, Campus international de Baillarguet, F-34398 Montpellier, France
| | - Badian Kamissoko
- C Laboratoire Central Vétérinaire, BP 2295, Km 8, route de Koulikoro, Bamako, Mali
| | | | | | - Idrissa Traore
- C Laboratoire Central Vétérinaire, BP 2295, Km 8, route de Koulikoro, Bamako, Mali
| | - Adama Diakite
- C Laboratoire Central Vétérinaire, BP 2295, Km 8, route de Koulikoro, Bamako, Mali
| | - Dirk Udo Pfeiffer
- E VEEPH Group, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, United Kingdom
| |
Collapse
|
7
|
Modeling the burden of poultry disease on the rural poor in Madagascar. One Health 2015; 1:60-65. [PMID: 28616466 PMCID: PMC5441326 DOI: 10.1016/j.onehlt.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/22/2022] Open
Abstract
Livestock represent a fundamental economic and nutritional resource for many households in the developing world; however, a high burden of infectious disease limits their production potential. Here we present an ecological framework for estimating the burden of poultry disease based on coupled models of infectious disease and economics. The framework is novel, as it values humans and livestock as co-contributors to household wellbeing, incorporating feedbacks between poultry production and human capital in disease burden estimates. We parameterize this coupled ecological-economic model with household-level data to provide an estimate of the overall burden of poultry disease for the Ifanadiana District in Madagascar, where over 72% of households rely on poultry for economic and food security. Our models indicate that households may lose 10-25% of their monthly income under current disease conditions. Results suggest that advancements in poultry health may serve to support income generation through improvements in both human and animal health.
Collapse
|
8
|
Marks FS, Rodenbusch CR, Okino CH, Hein HE, Costa EF, Machado G, Canal CW, Brentano L, Corbellini LG. Targeted survey of Newcastle disease virus in backyard poultry flocks located in wintering site for migratory birds from Southern Brazil. Prev Vet Med 2014; 116:197-202. [DOI: 10.1016/j.prevetmed.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 02/01/2023]
|
9
|
Empirical analysis suggests continuous and homogeneous circulation of Newcastle disease virus in a wide range of wild bird species in Africa. Epidemiol Infect 2014; 143:1292-303. [PMID: 25090191 DOI: 10.1017/s095026881400185x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Newcastle disease (ND) is one of the most important poultry diseases worldwide and can lead to annual losses of up to 80% of backyard chickens in Africa. All bird species are considered susceptible to ND virus (NDV) infection but little is known about the role that wild birds play in the epidemiology of the virus. We present a long-term monitoring of 9000 wild birds in four African countries. Overall, 3·06% of the birds were PCR-positive for NDV infection, with prevalence ranging from 0% to 10% depending on the season, the site and the species considered. Our study shows that ND is circulating continuously and homogeneously in a large range of wild bird species. Several genotypes of NDV circulate concurrently in different species and are phylogenetically closely related to strains circulating in local domestic poultry, suggesting that wild birds may play several roles in the epidemiology of different NDV strains in Africa. We recommend that any strategic plan aiming at controlling ND in Africa should take into account the potential role of the local wild bird community in the transmission of the disease.
Collapse
|
10
|
Paul MC, Gilbert M, Desvaux S, Rasamoelina Andriamanivo H, Peyre M, Khong NV, Thanapongtharm W, Chevalier V. Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar. PLoS One 2014; 9:e101958. [PMID: 25029441 PMCID: PMC4100877 DOI: 10.1371/journal.pone.0101958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004-2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced.
Collapse
Affiliation(s)
- Mathilde C. Paul
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UR AGIRs, Montpellier, France
- Université de Toulouse, INP-ENVT, UMR ENVT INRA 1225 IHAP, Toulouse, France
- * E-mail:
| | - Marius Gilbert
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium
- Fonds National de la Recherche Scientifique, Brussels, Belgium
| | - Stéphanie Desvaux
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UR AGIRs, Montpellier, France
- Direction Régionale de l’Alimentation, de l’Agriculture et de la Forêt de Languedoc- Roussillon, Montpellier, France
| | | | - Marisa Peyre
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UR AGIRs, Montpellier, France
| | | | | | - Véronique Chevalier
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UR AGIRs, Montpellier, France
| |
Collapse
|
11
|
Household-level risk factors for Newcastle disease seropositivity and incidence of Newcastle disease virus exposure in backyard chicken flocks in Eastern Shewa zone, Ethiopia. Prev Vet Med 2013; 109:312-20. [DOI: 10.1016/j.prevetmed.2012.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/15/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
|
12
|
Dunowska M, Zheng T, Perrott MR, Christensen N. A survey of avian paramyxovirus type 1 infections among backyard poultry in New Zealand. N Z Vet J 2013; 61:316-22. [PMID: 23611028 DOI: 10.1080/00480169.2013.785915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIMS To determine the presence and the pathotype of avian paramyxovirus type 1 (APMV-1), as well as the prevalence of APMV-1 antibodies, among backyard flocks of poultry in selected New Zealand locations. METHODS Archival pooled (n = 162) tracheal and cloacal swabs collected from backyard poultry were tested for the presence of APMV-1 RNA by real-time and conventional reverse transcription (RT)-PCR assays. Archival blood samples (n = 240) from a subpopulation of the same birds were tested for the presence of the APMV-1 antibody using a commercial ELISA assay. The archival samples were collected from geographical areas close to bodies of water, in the Bay of Plenty or Wairarapa regions of the North Island of New Zealand, with the high likelihood of interactions between wild waterfowl and domestic poultry. RESULTS Avian paramyxovirus type 1 RNA was not detected in any of the swabs tested. Antibodies to APMV-1 were detected on 18/19 farms, in 71/240 (29.5%) blood samples tested. The percentage of seropositive birds varied between seropositive farms and ranged from 8.3 to 100%. The percentage of seropositive birds on each farm was not statistically correlated with the flock size, the number of birds sampled, the number of farmed waterfowl, or with the distance to the closest lake/river. However, all chickens from the farm with the highest number of farmed ducks were seropositive for APMV-1. CONCLUSIONS Lack of detection of APMV-1 in any of the samples indicates that APMV-1 was not circulating among the poultry at the time of sampling. However, detection of APMV-1 antibodies in a proportion of birds on each farm indicates that infection with APMV-1, or antigenically related APMV, is common among backyard poultry. CLINICAL RELEVANCE On-going proactive surveillance and characterisation of circulating APMV-1 is important for monitoring changes in circulating genotypes of APMV-1 and for understanding the regional ecology of these viruses for the purpose of planning appropriate disease control and prevention strategies. Our data suggest that backyard flocks should be considered as potential reservoirs of APMV. Chickens from backyard farms with multiple bird species may provide good targets for surveillance purposes.
Collapse
Affiliation(s)
- M Dunowska
- a Institute of Veterinary Animal and Biomedical Sciences, Massey University , Private Bag 11 222, Palmerston North 4474 , New Zealand
| | | | | | | |
Collapse
|
13
|
Serological and molecular investigation of Newcastle disease in household chicken flocks and associated markets in Eastern Shewa zone, Ethiopia. Trop Anim Health Prod 2012; 45:705-14. [PMID: 23054806 DOI: 10.1007/s11250-012-0278-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Cross-sectional survey for Newcastle disease (ND) were conducted in nonvaccinated household flocks of village chickens to assess serological and virological ND status in households and associated live bird markets. In total, 1,899 sera and 460 pools of cloacal and tracheal swabs were sampled and tested using a commercial enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcriptase polymerase chain reaction (rRT-PCR), respectively. Additionally, paired cloacal and tracheal swabs from 1,269 individual chickens were collected from markets and tested using RT-PCR. The prevalence of households with at least one seropositive chicken was higher during the dry season (27.4 %) than during the wet season (17.4 %) (P = 0.003). Viral genome was detected in 14.2 % of households during the wet season using a fusion (F) gene assay and in 24.2 % of households during the dry season using a polymerase (L) gene assay that targets both class I and class II viruses. At the markets sampled, overall bird level prevalence was 4.9 % for period 1 (F gene assay), and 38.2 % and 27.6 % for periods 2 and 3, respectively (L gene assay). Partial sequencing of the F gene (239 bp) cleavage site indicated that the majority of the circulating strains exhibited motifs specific to virulent strains. Seroepidemiology coupled with molecular analysis can be a useful tool to assess the status of NDV infection. The village chicken population in Ethiopia is endemically infected with virulent NDV that pose a significant threat to emerging small- and medium-scale commercial poultry production.
Collapse
|