1
|
Nagel-Alne GE, Røtterud OJ, Refsum T, Holthe J, Garner M, Skjerve E, Hauge SJ. Hygiene performance rating at farm level - an auditing scheme for evaluation of biosecurity measures' effect on prevalence of Campylobacter from selected broiler producers. Acta Vet Scand 2024; 66:38. [PMID: 39138525 PMCID: PMC11323344 DOI: 10.1186/s13028-024-00762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Preventing pathogens from entering the broiler premises is the main biosecurity measure at farm level. In conventional broiler production, chickens are kept indoors during the entire production period. Pathogens can enter the broiler-producing unit from sources such as water, equipment, personnel, insects, and rodents. The possible routes must be controlled, and corrective measures applied when necessary. The objective of this study was to (1) develop a hygiene protocol and test the scheme on 30 farms, and (2) compare the results to their Campylobacter-colonised status. A Hygiene Performance Rating protocol at farm level (HPR-F) was developed to systematically review the production to identify risk areas to biosecurity. The HPR-F consists of 13 categories with related questions. For each question, a score was given from 1 to 3, where 1 meant "acceptable", 2 was "potential for improvements", and 3 was "not acceptable". Scores for each question were multiplied with weight factors for hygienic impact and economic consequences describing whether the necessary improvement depends on a significant investment or is a cheap quick-fix and calculated into a percentage where 100% is perfect hygiene. The 30 farms in the study were selected from one county in Norway. The Campylobacter-results for each of the 30 farms in 2019-2021 were given according to rules in the Norwegian Action Plan against Campylobacter faecal sampling on-farm 3-6 days prior to slaughter. RESULTS The overall results from the HPR-F showed that the general hygiene level was high in all farms. The mean total hygiene score was 82% and varied from 70 to 92%. The category Handling dead chicken had the highest hygiene score (93%), and Ventilation had the lowest score (55%). The HPR-F results were compared to the Campylobacter-status for the 30 farms: Campylobacter-negative flocks had slightly higher total scores than Campylobacter-positive flocks (P = 0.19). Among others, the category Outdoor area (vegetation close to the premises' walls) was identified as the most stable factor in relation to be colonised with Campylobacter. CONCLUSIONS The HPR-F tested in this research trial provides a tool for veterinarians, advisors, and poultry farmers to improve biosecurity at farm level and enhance the preventive animal health initiatives.
Collapse
Affiliation(s)
- Gunvor Elise Nagel-Alne
- Animalia Norwegian Meat and Poultry Research Center, P.O. Box 396 Økern, Oslo, 05413, Norway.
| | - Ole-Johan Røtterud
- Animalia Norwegian Meat and Poultry Research Center, P.O. Box 396 Økern, Oslo, 05413, Norway
| | - Thorbjørn Refsum
- Animalia Norwegian Meat and Poultry Research Center, P.O. Box 396 Økern, Oslo, 05413, Norway
| | - Janne Holthe
- Animalia Norwegian Meat and Poultry Research Center, P.O. Box 396 Økern, Oslo, 05413, Norway
| | - Miriam Garner
- Norsk Kylling, Havneveien 43, Orkanger, 7300, Norway
| | - Eystein Skjerve
- Faculty of Veterinary Medicine, NMBU Norwegian University of Life Sciences, Ås, 1430, Norway
| | - Sigrun J Hauge
- Animalia Norwegian Meat and Poultry Research Center, P.O. Box 396 Økern, Oslo, 05413, Norway
| |
Collapse
|
2
|
Lassen B, Takeuchi-Storm N, Henri C, Hald T, Sandberg M, Ellis-Iversen J. Analysis of reservoir sources of Campylobacter isolates to free-range broilers in Denmark. Poult Sci 2023; 102:103025. [PMID: 37672837 PMCID: PMC10485630 DOI: 10.1016/j.psj.2023.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Campylobacter is a common cause of food poisoning in many countries, with broilers being the main source. Organic and free-range broilers are more frequently Campylobacter-positive than conventionally raised broilers and may constitute a higher risk for human infections. Organic and free-range broilers may get exposed to Campylobacter from environmental reservoirs and livestock farms, but the relative importance of these sources is unknown. The aim of the study was to describe similarities and differences between the genetic diversity of the Campylobacter isolates collected from free-range/organic broilers with those isolated from conventional broilers and other animal hosts (cattle, pigs, and dogs) in Denmark to make inferences about the reservoir sources of Campylobacter to free-range broilers. The applied aggregated surveillance data consisted of sequenced Campylobacter isolates sampled in 2015 to 2017 and 2018 to 2021. The data included 1,102 isolates from free-range (n = 209), conventional broilers (n = 577), cattle (n = 261), pigs (n = 30), and dogs (n = 25). The isolates were cultivated from either fecal material (n = 434), food matrices (n = 569), or of nondisclosed origin (n = 99). Campylobacter jejuni (94.5%) dominated and subtyping analysis found 170 different sequence types (STs) grouped into 75 clonal complexes (CCs). The results suggest that CC-21 and CC-45 are the most frequent CCs found in broilers. The relationship between the CCs in the investigated sources showed that the different CCs were shared by most of the animals, but not pigs. The ST-profiles of free-range broilers were most similar to that of conventional broilers, dogs and cattle, in that order. The similarity was stronger between conventional broilers and cattle than between conventional and free-range broilers. The results suggest that cattle may be a plausible reservoir of C. jejuni for conventional and free-range broilers, and that conventional broilers are a possible source for free-range broilers or reflect a dominance of isolates adapted to the same host environment. Aggregated data provided valuable insight into the epidemiology of Campylobacter sources for free-range broilers, but time-limited sampling of isolates from different sources within a targeted area would hold a higher predictive value.
Collapse
Affiliation(s)
- Brian Lassen
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Nao Takeuchi-Storm
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Clémentine Henri
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Hald
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marianne Sandberg
- Research Group for Foodborne Pathogens and Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
3
|
Smith RP, Lawes J, Davies RH, Hutchison ML, Vidal A, Gilson D, Rodgers J. UK-wide risk factor study of broiler carcases highly contaminated with Campylobacter. Zoonoses Public Health 2023; 70:523-541. [PMID: 37337320 DOI: 10.1111/zph.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Campylobacter is a major cause of food poisoning and is typically the most common cause of gastroenteritis in the UK. Data collected at broiler farm and abattoir level, for slaughter batches that were sampled for UK-wide monitoring, were used to generate two epidemiological risk factor models. A total of 483 batches slaughtered between January 2016 and March 2017 were used in the analysis, coming from 19 abattoirs representing more than 85% of UK broiler production. For each selected slaughter batch, one carcase was sampled after primary chilling and 10 randomly sampled birds had caecal samples collected at the evisceration point. Samples were used for Campylobacter identification and quantification. Two multivariable mixed-effects models were designed, one with the binary outcome for the detection of a highly contaminated (>1000 colony forming units (CFU)/g) Campylobacter-positive carcase, whereas the other used the Campylobacter colony count (CFU/g) carcase outcome. The results suggest that caecal colonization within the batch was a key factor for the occurrence of Campylobacter on carcases, and many factors that were identified in the model were also likely to be related to colonization or related to the risk of introduction of Campylobacter from partial depopulation (referred to as thinning) of ~30% of the flock approximately 1 week before full flock depopulation events. The amount of neck skin in the sample was another key factor identified and was included in both models as a risk factor. The models have also identified other factors which may be related to the general health and husbandry on-farm (use of prebiotics or vaccines, and identification of the product used for drinking line cleaning), whereas the other factors may identify control points related to transmission within a farm. The identification of these variables could help focus control efforts on-farm, especially for relatively easy improvements, such as improving the provision of house-specific bird-weighing buckets/cages in houses.
Collapse
Affiliation(s)
- R P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency - Weybridge, Surrey, UK
| | - J Lawes
- Department of Epidemiological Sciences, Animal and Plant Health Agency - Weybridge, Surrey, UK
| | - R H Davies
- Bacteriology Department, Animal and Plant Health Agency - Weybridge, Surrey, UK
| | | | - A Vidal
- Bacteriology Department, Animal and Plant Health Agency - Weybridge, Surrey, UK
- Surveillance and Regulatory Support Department, European Medicines Agency, Amsterdam, The Netherlands
| | - D Gilson
- Department of Epidemiological Sciences, Animal and Plant Health Agency - Weybridge, Surrey, UK
- Faculty of Biological Sciences, University of Leeds, West Yorkshire, UK
| | - J Rodgers
- Bacteriology Department, Animal and Plant Health Agency - Weybridge, Surrey, UK
| |
Collapse
|
4
|
Bacterial and viral rodent-borne infections on poultry farms. An attempt at a systematic review. J Vet Res 2023; 67:1-10. [PMID: 37008769 PMCID: PMC10062035 DOI: 10.2478/jvetres-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Abstract
Introduction
Rodents are quite common at livestock production sites. Their adaptability, high reproductive capacity and omnivorousness make them apt to become a source of disease transmission to humans and animals. Rodents can serve as mechanical vectors or active shedders of many bacteria and viruses, and their transmission can occur through direct contact, or indirectly through contaminated food and water or by the arthropods which parasitise infected rodents. This review paper summarises how rodents spread infectious diseases in poultry production.
Material and Methods
The aim of this review was to use PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) principles to meta-analyse the available data on this topic. Three databases – PubMed, Web of Science and Scopus – and grey literature were searched for papers published from inception to July 2022 using the established keywords.
Results
An initial search identified 2,999 articles that met the criteria established by the keywords. This number remained after removing 597 articles that were repeated in some databases. The articles were searched for any mention of specific bacterial and viral pathogens.
Conclusion
The importance of rodents in the spread of bacterial diseases in poultry has been established, and the vast majority of such diseases involved Salmonella, Campylobacter, Escherichia coli, Staphylococcus (MRSA), Pasteurella, Erysipelothrix or Yersinia infections. Rodents also play a role in the transmission of viruses such as avian influenza virus, avian paramyxovirus 1, avian gammacoronavirus or infectious bursal disease virus, but knowledge of these pathogens is very limited and requires further research to expand it.
Collapse
|
5
|
Swanson D, Koren C, Hopp P, Jonsson ME, Rø GI, White RA, Grøneng GM. A One Health real-time surveillance system for nowcasting Campylobacter gastrointestinal illness outbreaks, Norway, week 30 2010 to week 11 2022. Euro Surveill 2022; 27:2101121. [PMID: 36305333 PMCID: PMC9615412 DOI: 10.2807/1560-7917.es.2022.27.43.2101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BackgroundCampylobacter is a leading cause of food and waterborne illness. Monitoring and modelling Campylobacter at chicken broiler farms, combined with weather pattern surveillance, can aid nowcasting of human gastrointestinal (GI) illness outbreaks. Near real-time sharing of data and model results with health authorities can help increase potential outbreak responsiveness.AimsTo leverage data on weather and Campylobacter on broiler farms to build a risk model for possible human Campylobacter outbreaks and to communicate risk assessments with health authorities.MethodsWe developed a spatio-temporal random effects model for weekly GI illness consultations in Norwegian municipalities with Campylobacter monitoring and weather data from week 30 2010 to 11 2022 to give 1-week nowcasts of GI illness outbreaks. The approach combined a municipality random effects baseline model for seasonally-adjusted GI illness with a second model for peak deviations from that baseline. Model results are communicated to national and local stakeholders through an interactive website: Sykdomspulsen One Health.ResultsLagged temperature and precipitation covariates, as well as 2-week-lagged positive Campylobacter sampling in broilers, were associated with higher levels of GI consultations. Significant inter-municipality variability in outbreak nowcasts were observed.ConclusionsCampylobacter surveillance in broilers can be useful in GI illness outbreak nowcasting. Surveillance of Campylobacter along potential pathways from the environment to illness such as via water system monitoring may improve nowcasting. A One Health system that communicates near real-time surveillance data and nowcast changes in risk to health professionals facilitates the prevention of Campylobacter outbreaks and reduces impact on human health.
Collapse
Affiliation(s)
- David Swanson
- Norwegian Institute of Public Health, Oslo, Norway,Department of Biostatistics, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
6
|
Reichelt B, Szott V, Epping L, Semmler T, Merle R, Roesler U, Friese A. Transmission pathways of campylobacter spp. at broiler farms and their environment in Brandenburg, Germany. Front Microbiol 2022; 13:982693. [PMID: 36312983 PMCID: PMC9598865 DOI: 10.3389/fmicb.2022.982693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 09/08/2023] Open
Abstract
Broiler meat is widely known as an important source of foodborne Campylobacter jejuni and Campylobacter coli infections in humans. In this study, we thoroughly investigated transmission pathways that may contribute to possible Campylobacter contamination inside and outside broiler houses. For this purpose we carried out a comprehensive longitudinal sampling approach, using a semi-quantitative cultivation method to identify and quantify transmissions and reservoirs of Campylobacter spp.. Three german broiler farms in Brandenburg and their surrounding areas were intensively sampled, from April 2018 until September 2020. Consecutive fattening cycles and intervening downtimes after cleaning and disinfection were systematically sampled in summer and winter. To display the potential phylogeny of barn and environmental isolates, whole genome sequencing (WGS) and bioinformatic analyses were performed. Results obtained in this study showed very high Campylobacter prevalence in 51/76 pooled feces (67.1%) and 49/76 boot swabs (64.5%). Average counts between 6.4 to 8.36 log10MPN/g were detected in pooled feces. In addition, levels of 4.7 and 4.1 log10MPN/g were detected in boot swabs and litter, respectively. Samples from the barn interior showed mean Campyloacter values in swabs from drinkers 2.6 log10MPN/g, walls 2.0 log10MPN/g, troughs 1.7 log10MPN/g, boards 1.6 log10MPN/g, ventilations 0.9 log10MPN/g and 0.7 log10MPN/g for air samples. However, Campylobacter was detected only in 7/456 (1.5%) of the environmental samples (water bodies, puddles or water-filled wheel tracks; average of 0.6 log10MPN/g). Furthermore, WGS showed recurring Campylobacter genotypes over several consecutive fattening periods, indicating that Campylobacter genotypes persist in the environment during downtime periods. However, after cleaning and disinfection of the barns, we were unable to identify potential sources in the broiler houses. Interestingly, alternating Campylobacter genotypes were observed after each fattening period, also indicating sources of contamination from the wider environment outside the farm. Therefore, the results of this study suggest that a potential risk of Campylobacter transmission may originate from present environmental sources (litter and water reservoirs). However, the sources of Campylobacter transmission may vary depending on the operation and farm environmental conditions.
Collapse
Affiliation(s)
- Benjamin Reichelt
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Vanessa Szott
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Lennard Epping
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Roswitha Merle
- Department of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Uwe Roesler
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Anika Friese
- Department of Veterinary Medicine, Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Prevalence, determinants, and antimicrobial susceptibility patterns of Campylobacter infection among under-five children with diarrhea at Governmental Hospitals in Hawassa city, Sidama, Ethiopia. A cross-sectional study. PLoS One 2022; 17:e0266976. [PMID: 35544554 PMCID: PMC9094509 DOI: 10.1371/journal.pone.0266976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Campylobacteriosis, is a zoonotic bacterial disease observed with a rising worldwide. It is becoming the most commonly recognized cause of bacterial gastroenteritis in under-five mortality in recent years. This study was done to determine the prevalence and determinants of Campylobacter infection among under-fives with acute watery diarrhea.
Methods
This institutional-based cross-sectional study was conducted at governmental and private health institutions in Hawassa city. All outpatient under-five children who met the inclusion criteria from April 2021 to August 2021 were enrolled in this study. Demographic and clinical data were obtained using a standardized data collection tool. Stool samples were collected from each participant with a sterile container and inoculated on a campylobacter agar media. The isolates were identified by using biochemical tests and a disc diffusion technique was performed to determine the antimicrobial sensitivity patterns of the isolates. Data were entered and analyzed using SPSS version 21. Descriptive and Logistic regression analysis was applied to determine the determinants of Campylobacter infection. P-value < 0.05 was considered statistically significant.
Results
A total of 235 under-five children were enrolled in this study with a 100% response rate. Of these 130 (55.3%) and 105(44.7%) were males and females respectively with the age range of 2 months to 60 months with the mean age of 25 months. The majority of the 150 (63.2%) were rural residents. Of 235 under-fives with acute watery diarrhea, 16 (6.8%) patients were found to have Campylobacter infection with (95% CI, 3.8–10.2%). Consumption of pasteurized milk (AOR: 0.12; 95% CI 0.02–0.75, P<0.05), presence of domestic animals like cats, hens, and cows (AOR: 0.09: 95% CI 0.01–0.67, P<0.05), absence of handwashing practice before food preparation (AOR: 3.63, 95% CI 1.15–11.46, P<0.05) showed significant association with campylobacter infection.
The antimicrobial susceptibility patterns of the isolated bacteria were 100% sensitivity to Azithromycin, Chloramphenicol, and Gentamicin, however; it was 100% resistant to Cephalothin. The associations of socio-demographic, environmental, and behavioral factors were compared and consumption of unpasteurized milk, the presence of domestic animal like the cat was significantly associated.
Conclusion
Campylobacter infection showed a comparatively low prevalence in under-fives with acute watery diarrhea. In this study contact with cats, consumption of unpasteurized milk were associated with Campylobacter infection. The treatment approach of Campylobacter infection must consider the sensitivity profile of antibiotics as indicated in the study. We, therefore, recommend further studies to determine the species responsible for Campylobacter infection with other co-morbidities and the susceptibility pattern for each species to indicate appropriate antibiotic therapy.
Collapse
|
8
|
Llarena AK, Skjerve E, Bjørkøy S, Forseth M, Winge J, Hauge SJ, Johannessen GS, Spilsberg B, Nagel-Alne GE. Rapid detection of Campylobacter spp. in chickens before slaughter. Food Microbiol 2022; 103:103949. [DOI: 10.1016/j.fm.2021.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/26/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
|
9
|
Chua PLC, Ng CFS, Tobias A, Seposo XT, Hashizume M. Associations between ambient temperature and enteric infections by pathogen: a systematic review and meta-analysis. Lancet Planet Health 2022; 6:e202-e218. [PMID: 35278387 DOI: 10.1016/s2542-5196(22)00003-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Numerous studies have quantified the associations between ambient temperature and enteric infections, particularly all-cause enteric infections. However, the temperature sensitivity of enteric infections might be pathogen dependent. Here, we sought to identify pathogen-specific associations between ambient temperature and enteric infections. METHODS We did a systematic review and meta-analysis by searching PubMed, Web of Science, and Scopus for peer-reviewed research articles published from Jan 1, 2000, to Dec 31, 2019, and also hand searched reference lists of included articles and excluded reviews. We included studies that quantified the effects of ambient temperature increases on common pathogen-specific enteric infections in humans. We excluded studies that expressed ambient temperature as a categorical or diurnal range, or in a standardised format. Two authors screened the search results, one author extracted data from eligible studies, and four authors verified the data. We obtained the overall risks by pooling the relative risks of enteric infection by pathogen for each 1°C temperature rise using random-effects modelling and robust variance estimation for the correlated effect estimates. Between-study heterogeneity was measured using I2, τ2, and Q-statistic. Publication bias was determined using funnel plot asymmetry and the trim-and-fill method. Differences among pathogen-specific pooled estimates were determined using subgroup analysis of taxa-specific meta-analysis. The study protocol was not registered but followed the PRISMA guidelines. FINDINGS We identified 2981 articles via database searches and 57 articles from scanning reference lists of excluded reviews and included articles, of which 40 were eligible for pathogen-specific meta-analyses. The overall increased risks of incidence per 1°C temperature rise, expressed as relative risks, were 1·05 (95% CI 1·04-1·07; I2 97%) for salmonellosis, 1·07 (1·04-1·10; I2 99%) for shigellosis, 1·02 (1·01-1·04; I2 98%) for campylobacteriosis, 1·05 (1·04-1·07; I2 36%) for cholera, 1·04 (1·01-1·07; I2 98%) for Escherichia coli enteritis, and 1·15 (1·07-1·24; I2 0%) for typhoid. Reduced risks per 1°C temperature increase were 0·96 (95% CI 0·90-1·02; I2 97%) for rotaviral enteritis and 0·89 (0·81-0·99; I2 96%) for noroviral enteritis. There was evidence of between-pathogen differences in risk for bacterial infections but not for viral infections. INTERPRETATION Temperature sensitivity of enteric infections can vary according to the enteropathogen causing the infection, particularly for bacteria. Thus, we encourage a pathogen-specific health adaptation approach, such as vaccination, given the possibility of increasingly warm temperatures in the future. FUNDING Japan Society for the Promotion of Science (Kakenhi) Grant-in-Aid for Scientific Research.
Collapse
Affiliation(s)
- Paul L C Chua
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Aurelio Tobias
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan; Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain
| | - Xerxes T Seposo
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Antimicrobial Resistance, FlaA Sequencing, and Phylogenetic Analysis of Campylobacter Isolates from Broiler Chicken Flocks in Greece. Vet Sci 2021; 8:vetsci8050068. [PMID: 33919370 PMCID: PMC8143292 DOI: 10.3390/vetsci8050068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Human campylobacteriosis caused by thermophilic Campylobacter species is the most commonly reported foodborne zoonosis. Consumption of contaminated poultry meat is regarded as the main source of human infection. This study was undertaken to determine the antimicrobial susceptibility and the molecular epidemiology of 205 Campylobacter isolates derived from Greek flocks slaughtered in three different slaughterhouses over a 14-month period. A total of 98.5% of the isolates were resistant to at least one antimicrobial agent. In terms of multidrug resistance, 11.7% of isolates were resistant to three or more groups of antimicrobials. Extremely high resistance to fluoroquinolones (89%), very high resistance to tetracycline (69%), and low resistance to macrolides (7%) were detected. FlaA sequencing was performed for the subtyping of 64 C. jejuni and 58 C. coli isolates. No prevalence of a specific flaA type was observed, indicating the genetic diversity of the isolates, while some flaA types were found to share similar antimicrobial resistance patterns. Phylogenetic trees were constructed using the neighbor-joining method. Seven clusters of the C. jejuni phylogenetic tree and three clusters of the C. coli tree were considered significant with bootstrap values >75%. Some isolates clustered together were originated from the same or adjacent farms, indicating transmission via personnel or shared equipment. These results are important and help further the understanding of the molecular epidemiology and antimicrobial resistance of Campylobacter spp. derived from poultry in Greece.
Collapse
|
11
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
12
|
Sher AA, Ashraf MA, Mustafa BE, Raza MM. Epidemiological trends of foodborne Campylobacter outbreaks in the United States of America, 1998-2016. Food Microbiol 2021; 97:103751. [PMID: 33653524 DOI: 10.1016/j.fm.2021.103751] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/20/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Campylobacter is a major cause of foodborne diarrheal infections in the United States of America (USA). This study aimed to elucidate the patterns of Campylobacter foodborne outbreaks temporally and spatially concerning food vehicles. We collected the data of foodborne outbreaks from 1998 to 2016 reported to the Centers for Disease Control and Prevention. The incidence rate of outbreaks for each food source was calculated and analyzed for each variable including season, food location, and census region. Overall, 465 single-state outbreaks and 8003 cases were reported during 1998-2016. Outbreaks were frequently attributed to dairy products (32%), chicken (17%) and vegetables (6%). Binomial regression analysis showed that compared to chicken items, the highest rate ratio of outbreaks was associated with dairy products (1.86) followed by vegetables (1.35) and meat products (0.76). More outbreaks were reported in the summer (35%) followed by the spring (26%) and fall (22%) season. We found that the highest number of outbreaks occurred in the West 159 (34%) and Midwest 137 (29%) census regions. The study highlights the role of dairy, chicken, and vegetables as food vehicles in Campylobacter outbreaks. Findings from this study can help in devising strategies to mitigate the increasing occurrence of Campylobacter foodborne outbreaks.
Collapse
Affiliation(s)
- Azam Ali Sher
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA; Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Muhammad Adnan Ashraf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Bahar E Mustafa
- University of Agriculture, Faisalabad. Sub- Campus, Toba Tek Singh, 36050, Pakistan.
| | - Muhammad Mohsin Raza
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
13
|
Diriba K, Awulachew E, Anja A. Prevalence and associated factor of Campylobacter species among less than 5-year-old children in Ethiopia: a systematic review and meta-analysis. Eur J Med Res 2021; 26:2. [PMID: 33390175 PMCID: PMC7780653 DOI: 10.1186/s40001-020-00474-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite the significant reductions in under-five mortality, campylobacteriosis has emerged as one of the most common causative agents of bacterial foodborne gastroenteritis in humans. We performed this systematic review and meta-analysis to estimate the pooled prevalence of Campylobacter species and associated risk factors among children less than 5 years of age in Ethiopia. METHODS A systematic search was conducted on PubMed, Web of Science, EMBASE, Google Scholar and the Cochrane Library. All identified observational studies reporting the prevalence and determinants of diarrhea among children under 5 years of age in Ethiopia were included. Two authors independently extracted data and analyzed them using STATA Version 13 statistical software. A random-effects model was computed to estimate the pooled prevalence and the associations between determinant factors and campylobacteriosis. RESULTS Out of 166 papers reviewed, 8 studies fulfilled the inclusion criteria and were included in the meta-analysis. The pooled prevalence of Campylobacter species among children under 5 years of age in Ethiopia was 10% (95% CI: 7, 13). Contact with domestic animals (OR: 3.2, 95% CI: 2.0, 5.1), illiterate mothers (OR: 2.1, 95% CI: 1.1, 3.8), consumption of animal products (OR: 1.7, 95% CI: 0.7, 4.5), and status of mothers' personal hygiene (OR: 1.1, 95% CI: 0.7, 1.8) were significantly associated with the prevalence of Campylobacter species. CONCLUSION In our study, Campylobacter species among children under 5 years of age in Ethiopia were significantly high. Contact with domestic animals, illiterate mothers and consumption of animal products were significantly associated with prevalence of Campylobacter species.
Collapse
Affiliation(s)
- Kuma Diriba
- Department of Medical Laboratory Sciences, Health Science and Medical College, Dilla University, Dilla, Ethiopia.
| | - Ephrem Awulachew
- Department of Medical Laboratory Sciences, Health Science and Medical College, Dilla University, Dilla, Ethiopia
| | - Asrat Anja
- Department of Medical Laboratory Sciences, Health Science and Medical College, Dilla University, Dilla, Ethiopia
| |
Collapse
|
14
|
Silva NDD, Laurindo EE, Martins CM, Silveira RMP, Silveira CTD, Santin E. Association between non-typhoidal Salmonella isolated from commercial poultry sheds and associated factors in Paraná, Brazil: Cross-sectional retrospective study. ARQUIVOS DO INSTITUTO BIOLÓGICO 2021. [DOI: 10.1590/1808-1657000402020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Ben Romdhane R, Merle R. The Data Behind Risk Analysis of Campylobacter Jejuni and Campylobacter Coli Infections. Curr Top Microbiol Immunol 2021; 431:25-58. [PMID: 33620647 DOI: 10.1007/978-3-030-65481-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are major causes of food-borne enteritis in humans. Poultry meat is known to be responsible for a large proportion of cases of human campylobacteriosis. However, other food-borne, environmental and animal sources are frequently associated with the disease in humans as well. Human campylobacteriosis causes gastroenteritis that in most cases is self-limiting. Nevertheless, the burden of the disease is relatively large compared with other food-borne diseases, which is mostly due to rare but long-lasting symptoms related to immunological sequelae. In order to pave the way to improved surveillance and control of human campylobacteriosis, we review here the data that is typically used for risk analysis to quantify the risk and disease burden, identify specific surveillance strategies and assist in choosing the most effective control strategies. Such data are mostly collected from the literature, and their nature is discussed here, for each of the three processes that are essential for a complete risk analysis procedure: risk assessment, risk management and risk communication. Of these, the first, risk assessment, is most dependent on data, and this process is subdivided into the steps of hazard identification, hazard characterization, exposure assessment and risk characterization. For each of these steps of risk assessment, information from published material that is typically collected will be summarized here. In addition, surveillance data are highly valuable for risk assessments. Different surveillance systems are employed in different countries, which can make international comparison of data challenging. Risk analysis typically results in targeted control strategies, and these again differ between countries. The applied control strategies are as yet not sufficient to eradicate human campylobacteriosis. The surveillance tools of Campylobacter in humans and exposure sources in place in different countries are briefly reviewed to better understand the Campylobacter dynamics and guide control strategies. Finally, the available control measures on different risk factors and exposure sources are presented.
Collapse
Affiliation(s)
- Racem Ben Romdhane
- Faculty of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Faculty of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Szott V, Friese A. Emission Sources of Campylobacter from Agricultural Farms, Impact on Environmental Contamination and Intervention Strategies. Curr Top Microbiol Immunol 2021; 431:103-125. [PMID: 33620650 DOI: 10.1007/978-3-030-65481-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although extensive research has been carried out to describe the transmission pathways of Campylobacter entering livestock farms, the role of livestock farms as source of Campylobacter contamination of the environment is still poorly investigated. It is assumed that Campylobacter-positive livestock farms contribute to an environmental contamination, depending on the animal species on the farm, their Campylobacter status, the housing system, manure management as well as their general farm hygienic and biosecurity management. Different emission sources, like manure, air, water, insects and rodents as well as personnel, including equipment and vehicles, contribute to Campylobacter emission into the environment. Even though Campylobacter are rather fastidious bacteria, they are able to survive in the environment for even a longer period of time, when environmental conditions enable survival in specific niches. We conclude that a significant reduction of Campylobacter emission in the environment can be successfully achieved if various intervention strategies, depending on the farm type, are applied simultaneously, including proper general and personal hygiene, establishing of hygienic barriers, insect controls, manure management and hygienization of stables, barns and exhaust air.
Collapse
Affiliation(s)
- Vanessa Szott
- Institute for Animal Hygiene and Environmental Health, Free University Berlin, Centre for Infection Medicine, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Free University Berlin, Centre for Infection Medicine, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| |
Collapse
|
17
|
Llarena AK, Kivistö R. Human Campylobacteriosis Cases Traceable to Chicken Meat-Evidence for Disseminated Outbreaks in Finland. Pathogens 2020; 9:E868. [PMID: 33105906 PMCID: PMC7690634 DOI: 10.3390/pathogens9110868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/11/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is the most common cause of human bacterial gastroenteritis in the world. Food-borne campylobacteriosis is thought to be commonly caused by the handling and consumption of undercooked chicken meat, but the epidemiology of this disease is complex and remains poorly characterized, especially in the Nordic countries. Here, we used state-of-the-art methods in genetic epidemiology combined with patient background and temporal association data to trace domestically acquired human C. jejuni infections (n = 50) to chicken meat, in a midsize Nordic town in Finland during a seasonal peak. Although 59.2% of the human isolates shared a sequence type (ST) with a chicken batch slaughtered prior to the onset of disease, further analysis at the whole-genome level (core genome and whole-genome multilocus sequence typing, cgMLST and wgMLST, respectively) traced a mere nine cases (18.4%) to fresh chicken meat. Human isolates also shared genotypes with isolates collected from chicken batches slaughtered after the onset of the human disease, highlighting the role of alternative transmission pathways from chickens to humans besides the food chain, or a shared third source. The high resolution offered by wgMLST, combined with simple metadata, offers a more accurate way to trace sporadic cases to possible sources and reveal disseminated outbreak clustering in time, confirming the importance of complementing epidemiological investigations with molecular epidemiological data.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Food Safety Unit, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway;
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00790 Helsinki, Finland
| |
Collapse
|
18
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Alter T, Crotta M, Ellis‐Iversen J, Hempen M, Messens W, Chemaly M. Update and review of control options for Campylobacter in broilers at primary production. EFSA J 2020; 18:e06090. [PMID: 32874298 PMCID: PMC7448041 DOI: 10.2903/j.efsa.2020.6090] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The 2011 EFSA opinion on Campylobacter was updated using more recent scientific data. The relative risk reduction in EU human campylobacteriosis attributable to broiler meat was estimated for on-farm control options using Population Attributable Fractions (PAF) for interventions that reduce Campylobacter flock prevalence, updating the modelling approach for interventions that reduce caecal concentrations and reviewing scientific literature. According to the PAF analyses calculated for six control options, the mean relative risk reductions that could be achieved by adoption of each of these six control options individually are estimated to be substantial but the width of the confidence intervals of all control options indicates a high degree of uncertainty in the specific risk reduction potentials. The updated model resulted in lower estimates of impact than the model used in the previous opinion. A 3-log10 reduction in broiler caecal concentrations was estimated to reduce the relative EU risk of human campylobacteriosis attributable to broiler meat by 58% compared to an estimate larger than 90% in the previous opinion. Expert Knowledge Elicitation was used to rank control options, for weighting and integrating different evidence streams and assess uncertainties. Medians of the relative risk reductions of selected control options had largely overlapping probability intervals, so the rank order was uncertain: vaccination 27% (90% probability interval (PI) 4-74%); feed and water additives 24% (90% PI 4-60%); discontinued thinning 18% (90% PI 5-65%); employing few and well-trained staff 16% (90% PI 5-45%); avoiding drinkers that allow standing water 15% (90% PI 4-53%); addition of disinfectants to drinking water 14% (90% PI 3-36%); hygienic anterooms 12% (90% PI 3-50%); designated tools per broiler house 7% (90% PI 1-18%). It is not possible to quantify the effects of combined control activities because the evidence-derived estimates are inter-dependent and there is a high level of uncertainty associated with each.
Collapse
|
19
|
Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp.isolated during two seasonal periods in Spanish poultry farms. Prev Vet Med 2020; 176:104935. [PMID: 32109783 DOI: 10.1016/j.prevetmed.2020.104935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
Campylobacter spp. are the leading causes of bacterial human gastroenteritis worldwide; being poultry farms the main source of infections. In order to obtain information on prevalence and diversity of Campylobacter-infected flocks in the North of Spain, fourteen farms were studied between autumn and spring in 2014 and 2015, respectively. Moreover, virulence genes involved in pathogenicity and antimicrobial resistance were investigated. A survey about preventive hygiene practices at farms was performed to determine the risky practices that could contribute to the presence of Campylobacter in this step of the poultry food chain. Testing the presence of Campylobacter spp. showed 43 % of the farms were positive during autumn, whereas only 31 % were positive in spring. A very high prevalence within-flock was observed (43.1 % to 88.6 %) and C. jejuni was the most prevalent species in both periods. Genotyping by pulsed field gel electrophoresis (PFGE) showed a high heterogeneity among farms (309 isolates clustered into 21 pulsotypes). Virulence genes were present in all C. jejuni isolates while cdtA and cdtC were absent in C. coli. On the contrary, the latter showed higher antimicrobial resistance than C. jejuni. This study suggests that environment might be one of the main sources for Campylobacter transmission, as water supply seemed to be a clear cause of the contamination in a specific farm. However, in other farms other environmental factors contributed to the contamination, confirming the multifactorial origin of Campylobacter colonization in broilers. Therefore, biosecurity measures in farms are crucial to reduce Campylobacter contamination, which may have important implications for human and animal health.
Collapse
|
20
|
Njoga EO, Nwankwo IO, Ugwunwarua JC. Epidemiology of thermotolerant Campylobacter infection in poultry in Nsukka agricultural zone, Nigeria. INTERNATIONAL JOURNAL OF ONE HEALTH 2019. [DOI: 10.14202/ijoh.2019.92-98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Backgrond and Aim: Thermotolerant Campylobacter organisms (TCOs) are primary causes of bacterial foodborne gastroenteritis worldwide. Although all warm-blooded animals are susceptible to colonization by TCOs, food-producing animals, especially poultry, are major reservoirs of the infection for transmission to humans. This epidemiological study for thermotolerant Campylobacter infection (TCI) in poultry was, therefore, conducted to determine the prevalence and to identify the risk factors of TCI in 60 randomly selected poultry farms in Nsukka agricultural zone.
Materials and Methods: A structured questionnaire was used to elicit information on the farmers' involvement in practices that may aggravate TCI in poultry farms. Isolation of TCOs for the determination of prevalence of the infection was done following standard microbiological protocol.
Results: The majority (93.3%) of the farms practiced intensive management system. Farm and individual prevalence of TCI were 78.3% and 19.4%, respectively. The prevalence of 15.7% and 23.6% was recorded for birds reared in urban and rural areas, respectively. Similarly, prevalence rates of 17.2%, 25%, 14.7%, and 24.5% were documented for broiler, layer, male, and female birds, respectively. Major risk factors of TCI found were non-sanitization of drinking water, rearing birds of different ages together, thinning, raising other animals alongside poultry, and overstocking.
Conclusion: Overall prevalence of 19.4% is high from public health and food safety points of view. Farmers' participation in the risk factors for TCI is massive. Significant improvement in biosecurity practices in poultry farms in the study area is therefore imperative; to limit TCI in poultry and hence the risk of human infection through the food chain or at the poultry-human interface.
Collapse
Affiliation(s)
- Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Innocent Okwundu Nwankwo
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Joel Chukwudi Ugwunwarua
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
21
|
Mo SS, Urdahl AM, Nesse LL, Slettemeås JS, Ramstad SN, Torp M, Norström M. Occurrence of and risk factors for extended-spectrum cephalosporin-resistant Enterobacteriaceae determined by sampling of all Norwegian broiler flocks during a six month period. PLoS One 2019; 14:e0223074. [PMID: 31557254 PMCID: PMC6762140 DOI: 10.1371/journal.pone.0223074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022] Open
Abstract
All broiler flocks reared and slaughtered in Norway from May-October 2016 (n = 2110) were screened for the presence of extended-spectrum cephalosporin (ESC) -resistant Enterobacteriaceae. Furthermore, we investigated possible risk factors for occurrence of such bacteria in broiler flocks. The odds of a flock being positive for ESC-resistant Enterobacteriaceae increased if the previous flock in the same house was positive, and if the flock was reared during September-October. However, we cannot exclude seasonal fluctuations in occurrence of ESC-resistant Enterobacteriaceae during the months November to April. The overall occurrence of ESC-resistant Enterobacteriaceae was 10.4%, and primarily linked to the presence of blaCMY (82.6%) in positive isolates. We describe the first findings of Escherichia coli with blaCTX-M-1, Klebsiella pneumoniae with both blaCTX-M-15 and blaSHV-12, and K. pneumoniae with blaCMY isolated from Norwegian broiler production. This study gives us a unique overview and estimate of the true occurrence of ESC-resistant Enterobacteriaceae in Norwegian broilers over a six-month period. To the best of our knowledge, this is the most comprehensive study performed on the occurrence of ESC-resistant Enterobacteriaceae in a broiler population.
Collapse
Affiliation(s)
- Solveig Sølverød Mo
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| | - Anne Margrete Urdahl
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Live Lingaas Nesse
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Jannice Schau Slettemeås
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Silje Nøstvedt Ramstad
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Mona Torp
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Madelaine Norström
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
22
|
Sibanda N, McKenna A, Richmond A, Ricke SC, Callaway T, Stratakos AC, Gundogdu O, Corcionivoschi N. A Review of the Effect of Management Practices on Campylobacter Prevalence in Poultry Farms. Front Microbiol 2018; 9:2002. [PMID: 30197638 PMCID: PMC6117471 DOI: 10.3389/fmicb.2018.02002] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022] Open
Abstract
Poultry is frequently associated with campylobacteriosis in humans, with Campylobacter jejuni being the most usual Campylobacter associated with disease in humans. Far-reaching research on Campylobacter was undertaken over the past two decades. This has resulted in interventions being put in place on farms and in processing plants. Despite these interventions, coupled with increased media coverage to educate the consumer on Campylobacter prevalence and campylobacteriosis, human health incidents are still high. Recent research is now shifting toward further understanding of the microorganisms to challenge interventions in place and to look at further and more relevant interventions for the reduction in human incidents. Farm practices play a key role in the control of colonization within poultry houses and among flocks. Prevalence at the farm level can be up to 100% and time of colonization may vary widely between flocks. Considerable research has been performed to understand how farm management and animal health practices can affect colonization on farms. This review will focus on farm practices to date as a baseline for future interventions as the microorganism becomes better understood. Further research is required to understand the chicken microbiome and factors influencing vertical transmission. The persistence of Campylobacter in animal and environmental reservoirs within and around farms requires further investigation to tailor farm practices toward preventing such reservoirs. IMPLICATIONS This review gives an overview of farm practices and their effect on Campylobacter prevalence in poultry. Various elements of farm practices have been captured in this review.
Collapse
Affiliation(s)
- Nompilo Sibanda
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Moy Park, Ltd., Craigavon, United Kingdom
| | - Aaron McKenna
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Moy Park, Ltd., Craigavon, United Kingdom
| | | | - Steven C. Ricke
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Alexandros Ch. Stratakos
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Ozan Gundogdu
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| |
Collapse
|
23
|
Okamura M, Kaneko M, Ojima S, Sano H, Shindo J, Shirafuji H, Yamamoto S, Tanabe T, Yoshikawa Y, Hu DL. Differential Distribution of Salmonella Serovars and Campylobacter spp. Isolates in Free-Living Crows and Broiler Chickens in Aomori, Japan. Microbes Environ 2018; 33:77-82. [PMID: 29491247 PMCID: PMC5877346 DOI: 10.1264/jsme2.me17183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/26/2017] [Indexed: 11/12/2022] Open
Abstract
Salmonella and Campylobacter cause foodborne enteritis mainly via the consumption of raw/undercooked contaminated poultry meat and products. Broiler flocks are primarily colonized with these bacteria; however, the underlying etiology remains unclear. The present study was conducted in order to obtain further information on the prevalence and genotypic distribution of Salmonella and Campylobacter in free-living crows and broiler flocks in a region for 2 years, thereby facilitating estimations of the potential risk of transmission of C. jejuni from crows to broiler flocks. Salmonella serovars Bredeney and Derby were isolated from 8 and 3 out of 123 captured crows, respectively, both of which are not common in broiler chickens. Campylobacter were isolated from all 89 crows tested and C. jejuni was prevalent (85 crows). Pulsed field gel electrophoresis showed broad diversity in the crow isolates of C. jejuni. However, 3 crow isolates and 2 broiler isolates showing similar banding patterns were assigned to different sequence types in multi-locus sequence typing. These results indicate that crows do not share Salmonella serovars with broilers, and harbor various genotypes of C. jejuni that differ from those of broiler flocks. Thus, our results indicate that crows are not a potential vector of these bacteria to broiler flocks in this region.
Collapse
Affiliation(s)
- Masashi Okamura
- Laboratory of Zoonoses, Kitasato University School of Veterinary MedicineTowada, AomoriJapan
| | - Miyuki Kaneko
- Laboratory of Zoonoses, Kitasato University School of Veterinary MedicineTowada, AomoriJapan
| | - Shinjiro Ojima
- Laboratory of Zoonoses, Kitasato University School of Veterinary MedicineTowada, AomoriJapan
| | - Hiroki Sano
- Laboratory of Zoonoses, Kitasato University School of Veterinary MedicineTowada, AomoriJapan
| | - Junji Shindo
- Laboratory of Wildlife Science, Kitasato University School of Veterinary MedicineTowada, AomoriJapan
| | - Hiroaki Shirafuji
- Subtropical Disease Control Unit, Division of Transboundary Animal Diseases, Kyusyu Research Station, National Institute of Animal Health, National Agriculture and Food Research OrganizationChuzan, KagoshimaJapan
| | - Satomi Yamamoto
- Laboratory of Microbiology, Kitasato University School of Veterinary MedicineTowada, AomoriJapan
| | - Taishi Tanabe
- Laboratory of Microbiology, Kitasato University School of Veterinary MedicineTowada, AomoriJapan
| | - Yasuhiro Yoshikawa
- Faculty of Risk and Crisis Management, Chiba Institute of ScienceChoshi, ChibaJapan
| | - Dong-Liang Hu
- Laboratory of Zoonoses, Kitasato University School of Veterinary MedicineTowada, AomoriJapan
| |
Collapse
|
24
|
Yamazaki W, Sabike II, Sekiguchi S. High Prevalence of Campylobacter in Broiler Flocks is a Crucial Factor for Frequency of Food Poisoning in Humans. Jpn J Infect Dis 2017; 70:691-692. [PMID: 28890515 DOI: 10.7883/yoken.jjid.2017.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Wataru Yamazaki
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki.,Center for Animal Disease Control, University of Miyazaki
| | | | - Satoshi Sekiguchi
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki.,Center for Animal Disease Control, University of Miyazaki
| |
Collapse
|
25
|
Prachantasena S, Charununtakorn P, Muangnoicharoen S, Hankla L, Techawal N, Chaveerach P, Tuitemwong P, Chokesajjawatee N, Williams N, Humphrey T, Luangtongkum T. Climatic factors and prevalence of Campylobacter in commercial broiler flocks in Thailand. Poult Sci 2017; 96:980-985. [PMID: 28339543 DOI: 10.3382/ps/pew364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022] Open
Abstract
Campylobacter are bacteria associated with human foodborne disease worldwide. Poultry and poultry products are generally considered as a main source of these organisms. Compared to temperate zones, baseline information on Campylobacter in tropical regions is limited. Thus, the objectives of the present study were 1) to determine the prevalence of Campylobacter in Thai broiler flocks and 2) to investigate the association between climatic factors (i.e., rainfall, ambient temperature, and relative humidity) and Campylobacter colonization status of broiler flocks in Thailand. A total of 442 commercial broiler flocks reared in the central and northeastern regions of Thailand during 2012 to 2014 were investigated. Campylobacter positive status was identified in 252 examined flocks (57.01%; 95% CI 52.39 to 61.63%). Prevalence of Campylobacter in the northeastern region (54.46%; 95% CI 44.76 to 63.83%) was slightly lower than that of the central region (57.77%; 95% CI 52.47 to 62.90%). More than 65% of Campylobacter positive flocks in the central and northeastern regions had within-flock prevalence higher than 75%. Generalized estimating equations (GEE) revealed that the increased rainfall and relative humidity were associated with the increase of Campylobacter colonization in broiler flocks (P ≤ 0.05), while no relationship between ambient temperature and Campylobacter colonization status was identified.
Collapse
Affiliation(s)
- S Prachantasena
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - P Charununtakorn
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - S Muangnoicharoen
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - L Hankla
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - N Techawal
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - P Chaveerach
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - P Tuitemwong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - N Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - N Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - T Humphrey
- School of Medicine, Swansea University, Singleton Park, Swansea, United Kingdom
| | - T Luangtongkum
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Research Unit in Microbial Food Safety and Antimicrobial Resistance, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Assessment of the Campylobacter jejuni and C. coli in broiler chicken ceca by conventional culture and loop-mediated isothermal amplification method. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Hutchison M, Taylor M, Tchòrzewska M, Ford G, Madden R, Knowles T. Modelling-based identification of factors influencing campylobacters in chicken broiler houses and on carcasses sampled after processing and chilling. J Appl Microbiol 2017; 122:1389-1401. [DOI: 10.1111/jam.13434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/27/2022]
Affiliation(s)
- M.L. Hutchison
- School of Veterinary Science; University of Bristol; Langford UK
- Hutchison Scientific Ltd; Somerset UK
| | | | - M.A. Tchòrzewska
- School of Veterinary Science; University of Bristol; Langford UK
| | - G. Ford
- National Farmers' Union; Stoneleigh Park Warwick UK
| | | | - T.G. Knowles
- School of Veterinary Science; University of Bristol; Langford UK
| |
Collapse
|
28
|
Sandberg M, Dahl J, Lindegaard L, Pedersen J. Compliance/non-compliance with biosecurity rules specified in the Danish Quality Assurance system (KIK) and Campylobacter- positive broiler flocks 2012 and 2013. Poult Sci 2017; 96:184-191. [DOI: 10.3382/ps/pew277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/26/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
|
29
|
Abstract
Campylobacter is the leading cause of bacterial diarrhoeal disease worldwide, with raw and undercooked poultry meat and products the primary source of infection. Colonization of broiler chicken flocks with Campylobacter has proved difficult to prevent, even with high levels of biosecurity. Dipteran flies are proven carriers of Campylobacter and their ingress into broiler houses may contribute to its transmission to broiler chickens. However, this has not been investigated in the UK. Campylobacter was cultured from 2195 flies collected from four UK broiler farms. Of flies cultured individually, 0·22% [2/902, 95% confidence interval (CI) 0-0·53] were positive by culture for Campylobacter spp. Additionally, 1293 flies were grouped by family and cultured in 127 batches: 4/127 (3·15%, 95% CI 0·11-6·19) from three broiler farms were positive for Campylobacter. Multilocus sequence typing of isolates demonstrated that the flies were carrying broiler-associated sequence types, responsible for human enteric illness. Malaise traps were used to survey the dipteran species diversity on study farms and also revealed up to 612 flies present around broiler-house ventilation inlets over a 2-h period. Therefore, despite the low prevalence of Campylobacter cultured from flies, the risk of transmission by this route may be high, particularly during summer when fly populations are greatest.
Collapse
|
30
|
Borck Høg B, Sommer H, Larsen L, Sørensen A, David B, Hofshagen M, Rosenquist H. Farm specific risk factors for Campylobacter colonisation in Danish and Norwegian broilers. Prev Vet Med 2016; 130:137-45. [DOI: 10.1016/j.prevetmed.2016.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/23/2022]
|
31
|
Schallegger G, Muri-Klinger S, Brugger K, Lindhardt C, John L, Glatzl M, Wagner M, Stessl B. CombinedCampylobacter jejuniandCampylobacter coliRapid Testing and Molecular Epidemiology in Conventional Broiler Flocks. Zoonoses Public Health 2016; 63:588-599. [DOI: 10.1111/zph.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 12/17/2022]
Affiliation(s)
- G. Schallegger
- Department for Farm Animals and Veterinary Public Health; Institute of Milk Hygiene, Milk Technology, and Food Science; University of Veterinary Medicine; Vienna Austria
- Veterinary Laboratory Diagnostics and Veterinary Practice Dr. Glatzl; Vienna Austria
| | - S. Muri-Klinger
- Department for Farm Animals and Veterinary Public Health; Institute of Milk Hygiene, Milk Technology, and Food Science; University of Veterinary Medicine; Vienna Austria
| | - K. Brugger
- Department for Farm Animals and Veterinary Public Health; Institute for Veterinary Public Health; University of Veterinary Medicine; Vienna Austria
| | - C. Lindhardt
- Immunological Microbiology Group; Merck Millipore; LBR; Applications; Merck KGaA; Darmstadt Germany
| | - L. John
- Immunological Microbiology Group; Merck Millipore; LBR; Applications; Merck KGaA; Darmstadt Germany
| | - M. Glatzl
- Veterinary Laboratory Diagnostics and Veterinary Practice Dr. Glatzl; Vienna Austria
| | - M. Wagner
- Department for Farm Animals and Veterinary Public Health; Institute of Milk Hygiene, Milk Technology, and Food Science; University of Veterinary Medicine; Vienna Austria
| | - B. Stessl
- Department for Farm Animals and Veterinary Public Health; Institute of Milk Hygiene, Milk Technology, and Food Science; University of Veterinary Medicine; Vienna Austria
| |
Collapse
|
32
|
Battersby T, Whyte P, Bolton D. The pattern of Campylobacter
contamination on broiler farms; external and internal sources. J Appl Microbiol 2016; 120:1108-18. [DOI: 10.1111/jam.13066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/24/2022]
Affiliation(s)
- T. Battersby
- Teagasc Ashtown Food Research; Ashtown Dublin 15 Ireland
- UCD School of Veterinary Medicine; University College Dublin; Belfield Dublin 4 Ireland
| | - P. Whyte
- UCD School of Veterinary Medicine; University College Dublin; Belfield Dublin 4 Ireland
| | - D.J. Bolton
- Teagasc Ashtown Food Research; Ashtown Dublin 15 Ireland
| |
Collapse
|
33
|
Sahin O, Kassem II, Shen Z, Lin J, Rajashekara G, Zhang Q. Campylobacter in Poultry: Ecology and Potential Interventions. Avian Dis 2015; 59:185-200. [PMID: 26473668 DOI: 10.1637/11072-032315-review] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian hosts constitute a natural reservoir for thermophilic Campylobacter species, primarily Campylobacter jejuni and Campylobacter coli, and poultry flocks are frequently colonized in the intestinal tract with high numbers of the organisms. Prevalence rates in poultry, especially in slaughter-age broiler flocks, could reach as high as 100% on some farms. Despite the extensive colonization, Campylobacter is essentially a commensal in birds, although limited evidence has implicated the organism as a poultry pathogen. Although Campylobacter is insignificant for poultry health, it is a leading cause of food-borne gastroenteritis in humans worldwide, and contaminated poultry meat is recognized as the main source for human exposure. Therefore, considerable research efforts have been devoted to the development of interventions to diminish Campylobacter contamination in poultry, with the intention to reduce the burden of food-borne illnesses. During the past decade, significant advance has been made in understanding Campylobacter in poultry. This review summarizes the current knowledge with an emphasis on ecology, antibiotic resistance, and potential pre- and postharvest interventions.
Collapse
Affiliation(s)
- Orhan Sahin
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - Issmat I Kassem
- B Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691
| | - Zhangqi Shen
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - Jun Lin
- C Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - Gireesh Rajashekara
- B Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691
| | - Qijing Zhang
- A Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| |
Collapse
|
34
|
Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global Epidemiology of Campylobacter Infection. Clin Microbiol Rev 2015; 28:687-720. [PMID: 26062576 PMCID: PMC4462680 DOI: 10.1128/cmr.00006-15] [Citation(s) in RCA: 900] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni infection is one of the most widespread infectious diseases of the last century. The incidence and prevalence of campylobacteriosis have increased in both developed and developing countries over the last 10 years. The dramatic increase in North America, Europe, and Australia is alarming, and data from parts of Africa, Asia, and the Middle East indicate that campylobacteriosis is endemic in these areas, especially in children. In addition to C. jejuni, there is increasing recognition of the clinical importance of emerging Campylobacter species, including Campylobacter concisus and Campylobacter ureolyticus. Poultry is a major reservoir and source of transmission of campylobacteriosis to humans. Other risk factors include consumption of animal products and water, contact with animals, and international travel. Strategic implementation of multifaceted biocontrol measures to reduce the transmission of this group of pathogens is paramount for public health. Overall, campylobacteriosis is still one of the most important infectious diseases that is likely to challenge global health in the years to come. This review provides a comprehensive overview of the global epidemiology, transmission, and clinical relevance of Campylobacter infection.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Si Ming Man
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
35
|
Sandberg M, Sørensen L, Steenberg B, Chowdhury S, Ersbøll A, Alban L. Risk factors for Campylobacter colonization in Danish broiler flocks, 2010 to 2011. Poult Sci 2015; 94:447-53. [DOI: 10.3382/ps/peu065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
36
|
Llarena AK, Huneau A, Hakkinen M, Hänninen ML. Predominant Campylobacter jejuni sequence types persist in Finnish chicken production. PLoS One 2015; 10:e0116585. [PMID: 25700264 PMCID: PMC4336332 DOI: 10.1371/journal.pone.0116585] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/11/2014] [Indexed: 12/04/2022] Open
Abstract
Consumption and handling of chicken meat are well-known risk factors for acquiring campylobacteriosis. This study aimed to describe the Campylobacter jejuni population in Finnish chickens and to investigate the distribution of C. jejuni genotypes on Finnish chicken farms over a period of several years. We included 89.8% of the total C. jejuni population recovered in Finnish poultry during 2004, 2006, 2007, 2008, and 2012 and used multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) to characterize the 380 isolates. The typing data was combined with isolate information on collection-time and farm of origin. The C. jejuni prevalence in chicken slaughter batches was low (mean 3.0%, CI95% [1.8%, 4.2%]), and approximately a quarter of Finnish chicken farms delivered at least one positive chicken batch yearly. In general, the C. jejuni population was diverse as represented by a total of 63 sequence types (ST), but certain predominant MLST lineages were identified. ST-45 clonal complex (CC) accounted for 53% of the isolates while ST-21 CC and ST-677 CC covered 11% and 9% of the isolates, respectively. Less than half of the Campylobacter positive farms (40.3%) delivered C. jejuni-contaminated batches in multiple years, but the genotypes (ST and PFGE types) generally varied from year to year. Therefore, no evidence for a persistent C. jejuni source for the colonization of Finnish chickens emerged. Finnish chicken farms are infrequently contaminated with C. jejuni compared to other European Union (EU) countries, making Finland a valuable model for further epidemiological studies of the C. jejuni in poultry flocks.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Adeline Huneau
- Anses, Ploufragan-Plouzané laboratory, BP 53, 22440, Ploufragan, France
| | - Marjaana Hakkinen
- Food and Feed Microbiology Research Unit, Research and Laboratory Department, Finnish Food Safety Authority, Evira, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Hellberg RS, Chu E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit Rev Microbiol 2015; 42:548-72. [PMID: 25612827 DOI: 10.3109/1040841x.2014.972335] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal. Over the coming century, warming trends such as increased duration and frequency of heat waves and hot extremes are expected in some areas, as well as increased intensity of some storm systems. Climate-induced trends will impact the persistence and dispersal of foodborne pathogens in myriad ways, especially for environmentally ubiquitous and/or zoonotic microorganisms. Animal hosts of foodborne pathogens are also expected to be impacted by climate change through the introduction of increased physiological stress and, in some cases, altered geographic ranges and seasonality. This review article examines the effects of climatic factors, such as temperature, rainfall, drought and wind, on the environmental dispersal and persistence of bacterial foodborne pathogens, namely, Bacillus cereus, Brucella, Campylobacter, Clostridium, Escherichia coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, Vibrio and Yersinia enterocolitica. These relationships are then used to predict how future climatic changes will impact the activity of these microorganisms in the outdoor environment and associated food safety issues. The development of predictive models that quantify these complex relationships will also be discussed, as well as the potential impacts of climate change on transmission of foodborne disease from animal hosts.
Collapse
Affiliation(s)
- Rosalee S Hellberg
- a Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University , Orange , CA , USA
| | - Eric Chu
- a Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University , Orange , CA , USA
| |
Collapse
|
38
|
Torralbo A, Borge C, Allepuz A, García-Bocanegra I, Sheppard SK, Perea A, Carbonero A. Prevalence and risk factors of Campylobacter infection in broiler flocks from southern Spain. Prev Vet Med 2014; 114:106-13. [DOI: 10.1016/j.prevetmed.2014.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 01/07/2014] [Accepted: 01/19/2014] [Indexed: 02/03/2023]
|
39
|
Chowdhury S, Sandberg M, Themudo G, Ersbøll A. Risk factors for Campylobacter infection in Danish broiler chickens. Poult Sci 2012; 91:2701-9. [DOI: 10.3382/ps.2012-02412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|