1
|
Relimpio D, Kosowska A, Barroso-Arévalo S, De Antonio-Gómez D, Gortázar C, Barasona JA. Oral fluid collection in wild boar: A field protocol. Vet J 2025; 312:106362. [PMID: 40273977 DOI: 10.1016/j.tvjl.2025.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Traditional wildlife sampling methods have limitations in providing a well-distributed, timely and accurate disease surveillance in wildlife. We developed a field protocol for collecting wild boar (Sus scrofa) oral fluid samples for non-invasive active disease surveillance using environmental ropes. We deployed ropes in field settings and tested the rope-sampled oral fluids for antibodies against Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex (MTC). Oral fluid samples were collected from three wild boars populations in Spain with endemic tuberculosis across two seasons with contrasting natural food availability. Additionally, we studied the effect of placing the ropes close to aggregation points and of impregnating the ropes with corn powder. The results suggested that installing environmental ropes in summer, close to feeders or aggregation points, and baited with corn powder significantly increases the proportion of bitten ropes. No significant differences were observed in the effectiveness of ropes for oral fluid sampling across the three study sites. The average rate of antibody detection by ELISA was 38 % (range 34-45 %) of the bitten ropes. This method appears to be both precise and sensitive in detecting antibodies against MTC in oral fluid samples collected from environmental ropes, making it a potentially valuable tool for early detection and monitoring of MTC circulation. This noninvasive sampling method can easily be adapted for other relevant diseases of wild suids including African swine fever. Therefore, environmental ropes represent an effective, inexpensive, flexible, environmentally friendly, and noninvasive alternative for active wildlife disease surveillance.
Collapse
Affiliation(s)
- David Relimpio
- SaBio. Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM), Ronda de Toledo 12, Ciudad Real 13005, Spain.
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Centre and AnimalHealth Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Centre and AnimalHealth Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Daniel De Antonio-Gómez
- VISAVET Health Surveillance Centre and AnimalHealth Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Christian Gortázar
- SaBio. Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Jose A Barasona
- VISAVET Health Surveillance Centre and AnimalHealth Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Bravo M, Gonçalves P, García-Jiménez W, Montero MJ, Cerrato R, Fernández-Llario P, Risco D. Effect of Lactic Acid Bacteria-Derived Postbiotic Supplementation on Tuberculosis in Wild Boar Populations. Pathogens 2024; 13:1078. [PMID: 39770338 PMCID: PMC11728476 DOI: 10.3390/pathogens13121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
The Eurasian wild boar (Sus scrofa) is a key wildlife host for tuberculosis (TB) in central and southwestern Spain, posing a challenge to TB eradication in livestock. New strategies, including the use of beneficial microbes, are being explored to mitigate wildlife diseases. This study evaluated the effect of oral supplementation with postbiotic antimycobacterial metabolites produced using Ingulados' lactic acid bacteria (LAB) collection on TB development in wild boar. A total of 20 game estates in mid-western Spain were divided into two groups: one fed with standard feed containing the postbiotic product and a control group fed without postbiotics. Data were collected from wild boar during hunting events pre- and post-supplementation. The presence of TB-like lesions (TBLLs), lesion severity and seropositivity against Mycobacterium bovis were assessed. Postbiotic supplementation led to a 36.87% reduction in TBLLs and a 35.94% decrease in seropositivity. Notably, young wild boar showed a 64.72% reduction in TBLLs and an 81.80% drop in seropositivity, suggesting reduced transmission. These findings support the potential of postbiotics as a safe, feasible and sustainable tool to control TB in wild boar, offering a promising addition to broader TB eradication efforts.
Collapse
Affiliation(s)
- Maria Bravo
- Ingulados S.L., Calle Miguel Servet 13, 10003 Cáceres, Spain; (M.B.); (P.G.); (W.G.-J.); (M.J.M.); (R.C.); (P.F.-L.)
| | - Pilar Gonçalves
- Ingulados S.L., Calle Miguel Servet 13, 10003 Cáceres, Spain; (M.B.); (P.G.); (W.G.-J.); (M.J.M.); (R.C.); (P.F.-L.)
| | - Waldo García-Jiménez
- Ingulados S.L., Calle Miguel Servet 13, 10003 Cáceres, Spain; (M.B.); (P.G.); (W.G.-J.); (M.J.M.); (R.C.); (P.F.-L.)
- Unidad de Histología y Anatomía Patológica, Departamento de Medicina Animal, Veterinary Faculty, University of Cáceres, Avenida de la Universidad s/n, 10003 Cáceres, Spain
| | - María José Montero
- Ingulados S.L., Calle Miguel Servet 13, 10003 Cáceres, Spain; (M.B.); (P.G.); (W.G.-J.); (M.J.M.); (R.C.); (P.F.-L.)
| | - Rosario Cerrato
- Ingulados S.L., Calle Miguel Servet 13, 10003 Cáceres, Spain; (M.B.); (P.G.); (W.G.-J.); (M.J.M.); (R.C.); (P.F.-L.)
| | - Pedro Fernández-Llario
- Ingulados S.L., Calle Miguel Servet 13, 10003 Cáceres, Spain; (M.B.); (P.G.); (W.G.-J.); (M.J.M.); (R.C.); (P.F.-L.)
| | - David Risco
- Unidad de Histología y Anatomía Patológica, Departamento de Medicina Animal, Veterinary Faculty, University of Cáceres, Avenida de la Universidad s/n, 10003 Cáceres, Spain
| |
Collapse
|
3
|
Ruedas-Torres I, Thi to Nga B, Salguero FJ. Pathogenicity and virulence of African swine fever virus. Virulence 2024; 15:2375550. [PMID: 38973077 PMCID: PMC11232652 DOI: 10.1080/21505594.2024.2375550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.
Collapse
Affiliation(s)
- Ines Ruedas-Torres
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
| | - Bui Thi to Nga
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Francisco J. Salguero
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Escobar-González M, López-Martín JM, Mentaberre G, Valldeperes M, Estruch J, Tampach S, Castillo-Contreras R, Conejero C, Roldán J, Lavín S, Serrano E, López-Olvera JR. Evaluating hunting and capture methods for urban wild boar population management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173463. [PMID: 38802001 DOI: 10.1016/j.scitotenv.2024.173463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Wild ungulates are expanding in range and number worldwide leading to an urgent need to manage their populations to minimize conflicts and promote coexistence with humans. In the metropolitan area of Barcelona (MAB), wild boar is the main wildlife species causing a nuisance, from traffic accidents to health risks. Selective harvesting of specific sex and age classes and reducing anthropogenic food resources would be the most efficient approach to dealing with overpopulation. Nonetheless, there is a gap in knowledge regarding the age and sex selectivity of the capture methods currently applied in the MAB for wild boar population control. Thus, this study aimed to evaluate the performance and age and sex bias of different hunting and capture methods and the seasonal patterns in their performance (number of captured individuals per event). From February 2014 to August 2022, 1454 wild boars were captured in the MAB using drop net, teleanaesthesia, cage traps, night stalks, and drive hunting. We applied generalized linear models (GLM) to compare the performance of these methods for the total number of wild boars, the wild boars belonging to each age category (i.e., adult, yearling, and juvenile), and for each season. The studied capture methods showed age-class bias and sex bias in adults (>2 years). Drive hunting and drop net removed mainly adult females and yearlings (1-2 years), with drive hunting having the highest performance for adult males. Instead, cage traps and drop net were the best methods to capture juveniles (<1 year). Overall, global performance was higher in summer, decreasingly followed by autumn and spring, winter being the worst performing season. Wildlife managers and researchers should consider the different performance and sex and age bias of each hunting and capture method, as well as the associated public cost, to improve efficiency and achieve the best results in wild boar population management.
Collapse
Affiliation(s)
- María Escobar-González
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, (UAB), Bellaterra, Barcelona, Spain.
| | - Josep-Maria López-Martín
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Spain
| | - Gregorio Mentaberre
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Departament de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agraria (ETSEA), Universitat de Lleida (UdL), Lleida, Spain
| | - Marta Valldeperes
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, (UAB), Bellaterra, Barcelona, Spain
| | - Josep Estruch
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, (UAB), Bellaterra, Barcelona, Spain
| | - Stefania Tampach
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, (UAB), Bellaterra, Barcelona, Spain
| | - Raquel Castillo-Contreras
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Fundación Artemisan, Avda. Rey Santo 8, 13001 Ciudad Real, Spain
| | - Carles Conejero
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, (UAB), Bellaterra, Barcelona, Spain
| | - Joan Roldán
- Forestal Catalana SA, Generalitat de Catalunya, Barcelona, Spain
| | - Santiago Lavín
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, (UAB), Bellaterra, Barcelona, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, (UAB), Bellaterra, Barcelona, Spain
| | - Jorge Ramón López-Olvera
- Wildlife Ecology & Health group (WE&H), Bellaterra, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Zheng W, Diao NC, Wang Q, Wang CY, Su N, Yin JY, Tian T, Shi K, Du R. Worldwide Swine Tuberculosis-Positive Rate and Associated Risk Factors, 1966-2020: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis 2024; 24:181-195. [PMID: 38306180 DOI: 10.1089/vbz.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
Background: Tuberculosis (TB) is a chronic, zoonotic infectious disease caused by Mycobacterium tuberculosis that infects not only humans but also animals such as pigs, cows, buffaloes, sheep, and goats. Among them, pigs are one of the main food animals in the world. If pigs are infected with M. tuberculosis, meat products will be negatively affected, causing economic losses to the livestock industry. There is currently no systematic epidemiological assessment of swine TB in the world, so it is important to know the prevalence of swine, and these data are currently lacking, so we performed a statistical analysis. Results: We searched 6791 articles and finally included data from 35,303 pigs from 15 countries or territories, showing a combined prevalence of TB in pigs of 12.1% (95% confidence interval [CI]: 9.2 to 15.9). Among them, the prevalence rate of swine TB in Europe was 15.2% (95% CI: 11.1 to 20.7, 2491/25,050), which was higher compared with other continents, and the difference was significant; the positive rate of PCR method was higher in the detection method subgroup, which was 15.7% (95% CI: 8.0 to 31.0, 376/2261); Mycobacterium bovis was detected in pigs in the M. tuberculosis typing group (9.5%, 95% CI: 6.7 to 13.5, 1364/21,430). The positive rate is higher compared with Mycobacterium capris. Conclusion: This systematic review and meta-analysis is the first to determine the global prevalence of TB in swine herds. Although the seroprevalence of swine TB in this article is very low, the harm of TB cannot be ignored. It is important to take effective control and preventive measures to stop the spread of TB to reduce the impact of diseased pigs on animal husbandry and human health.
Collapse
Affiliation(s)
- Wei Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Nai-Chao Diao
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, P.R. China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Chun-Yu Wang
- Jilin Heyuan Bioengineering Co., Ltd., Songyuan, P.R. China
| | - Nuo Su
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Ji-Ying Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Tian Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, P.R. China
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, P.R. China
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, P.R. China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, P.R. China
| |
Collapse
|
6
|
Pandey A, Feuka AB, Cosgrove M, Moriarty M, Duffiney A, VerCauteren KC, Campa H, Pepin KM. Wildlife vaccination strategies for eliminating bovine tuberculosis in white-tailed deer populations. PLoS Comput Biol 2024; 20:e1011287. [PMID: 38175850 DOI: 10.1371/journal.pcbi.1011287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/17/2024] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Many pathogens of humans and livestock also infect wildlife that can act as a reservoir and challenge disease control or elimination. Efficient and effective prioritization of research and management actions requires an understanding of the potential for new tools to improve elimination probability with feasible deployment strategies that can be implemented at scale. Wildlife vaccination is gaining interest as a tool for managing several wildlife diseases. To evaluate the effect of vaccinating white-tailed deer (Odocoileus virginianus), in combination with harvest, in reducing and eliminating bovine tuberculosis from deer populations in Michigan, we developed a mechanistic age-structured disease transmission model for bovine tuberculosis with integrated disease management. We evaluated the impact of pulse vaccination across a range of vaccine properties. Pulse vaccination was effective for reducing disease prevalence rapidly with even low (30%) to moderate (60%) vaccine coverage of the susceptible and exposed deer population and was further improved when combined with increased harvest. The impact of increased harvest depended on the relative strength of transmission modes, i.e., direct vs indirect transmission. Vaccine coverage and efficacy were the most important vaccine properties for reducing and eliminating disease from the local population. By fitting the model to the core endemic area of bovine tuberculosis in Michigan, USA, we identified feasible integrated management strategies involving vaccination and increased harvest that reduced disease prevalence in free-ranging deer. Few scenarios led to disease elimination due to the chronic nature of bovine tuberculosis. A long-term commitment to regular vaccination campaigns, and further research on increasing vaccines efficacy and uptake rate in free-ranging deer are important for disease management.
Collapse
Affiliation(s)
- Aakash Pandey
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Abigail B Feuka
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Melinda Cosgrove
- Wildlife Disease Laboratory, Wildlife Division, Michigan Department of Natural Resources, Lansing, Michigan, United States of America
| | - Megan Moriarty
- Wildlife Disease Laboratory, Wildlife Division, Michigan Department of Natural Resources, Lansing, Michigan, United States of America
| | - Anthony Duffiney
- Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Okemos, Michigan, United States of America
| | - Kurt C VerCauteren
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Henry Campa
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Kim M Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| |
Collapse
|
7
|
Galapero J, Ramos A, Benítez-Medina JM, Martínez R, García A, Hermoso de Mendoza J, Holgado-Martín R, Risco D, Gómez L. Combination with Annual Deworming Treatments Does Not Enhance the Effects of PCV2 Vaccination on the Development of TB in Wild Boar Populations. Animals (Basel) 2023; 13:3833. [PMID: 38136870 PMCID: PMC10740781 DOI: 10.3390/ani13243833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccination against PCV2 has been proven to be an effective measure to reduce the severity of TB in wild boar. The combination of this measure with strategies focused on treating other key concomitant pathogens, such as nematodes, could be a useful strategy. This study assesses whether a combination of deworming treatments and PCV2 vaccination may reduce the prevalence and severity of TB in wild boar. The study was conducted on five game estates in mid-western Spain where four groups of wild boar were produced: control, vaccinated, dewormed and vaccinated-dewormed. Wild boars from all groups were hunted between 2017 and 2020, and all of them received a TB diagnosis based on pathological and microbiological tests. Generalised linear models were used to explore the effect of deworming and PCV2 vaccination on TB prevalence and severity. PCV2-vaccinated animals showed lower probabilities of suffering severe TB lesions. However, no differences regarding TB severity were found between dewormed and non-dewormed wild boar. PCV2 vaccination reduces TB severity in wild boar. However, annual deworming does not produce a long-term parasitological reduction that can influence the development of TB in wild boar, nor does it improve the effect of PCV2 vaccination on TB.
Collapse
Affiliation(s)
- Javier Galapero
- Anatomy and Pathological Anatomy Area, School of Veterinary Medicine, University of Extremadura, 10003 Cáceres, Spain; (J.G.); (R.H.-M.); (L.G.)
| | - Alfonso Ramos
- Area Statistics and Operations Research Area, School of Veterinary Medicine, University of Extremadura, 10003 Cáceres, Spain;
| | - José Manuel Benítez-Medina
- Infectious Pathology, School of Veterinary Medicine, University of Extremadura, 10003 Cáceres, Spain; (J.M.B.-M.); (J.H.d.M.)
| | - Remigio Martínez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba (ROR code 05yc77b46), 14014 Córdoba, Spain;
| | - Alfredo García
- Animal Production Area, CICYTEX-La Orden, 06187 Badajoz, Spain;
| | - Javier Hermoso de Mendoza
- Infectious Pathology, School of Veterinary Medicine, University of Extremadura, 10003 Cáceres, Spain; (J.M.B.-M.); (J.H.d.M.)
| | - Rocío Holgado-Martín
- Anatomy and Pathological Anatomy Area, School of Veterinary Medicine, University of Extremadura, 10003 Cáceres, Spain; (J.G.); (R.H.-M.); (L.G.)
| | - David Risco
- Anatomy and Pathological Anatomy Area, School of Veterinary Medicine, University of Extremadura, 10003 Cáceres, Spain; (J.G.); (R.H.-M.); (L.G.)
| | - Luis Gómez
- Anatomy and Pathological Anatomy Area, School of Veterinary Medicine, University of Extremadura, 10003 Cáceres, Spain; (J.G.); (R.H.-M.); (L.G.)
| |
Collapse
|
8
|
Santos N, Colino EF, Arnal MC, de Luco DF, Sevilla I, Garrido JM, Fonseca E, Valente AM, Balseiro A, Queirós J, Almeida V, Vicente J, Gortázar C, Alves PC. Complementary roles of wild boar and red deer to animal tuberculosis maintenance in multi-host communities. Epidemics 2022; 41:100633. [PMID: 36174428 DOI: 10.1016/j.epidem.2022.100633] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
The contribution of wildlife species to pathogen maintenance in multi-host communities has seldom been quantified. To assess the relative contribution of the main wildlife hosts of animal tuberculosis (TB) to its maintenance, we estimated the basic reproduction number (R0) of Mycobacterium tuberculosis complex in wild boar and red deer at 29 sites in the Iberian Peninsula. Host abundance and true TB prevalence were estimated for each species at each site by sampling from distributions incorporating the uncertainty in the proportion of the population harvested each year, sensitivity, and specificity of the diagnostic methods, while excretion of mycobacteria was estimated using site-occupancy models. The distributions of these parameters were then used to estimate, at each site, the R0,wild boar (range 0.1 - 55.9, average 8.7, standard deviation 11.8), and the R0,red deer (0.1 - 18.9, 2.2, 3.9). Animal TB is maintained in epidemiological scenarios ranging from any single species acting as a maintenance host (the wild boar in 18 sites and the red deer in 5), to facultative multi-host disease (6 sites). The prevalence of TB in the red deer is likely an important driver of the epidemiology in multi-host communities. The wild boar was the main maintenance host of TB in most of the study sites and could have an epidemiological role linking the wildlife multi-host community and livestock.
Collapse
Affiliation(s)
- Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Elisa Ferreras Colino
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - María Cruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Iker Sevilla
- Animal Health Department. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Joseba M Garrido
- Animal Health Department. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Eliana Fonseca
- Instituto de Conservação da Natureza e das Florestas, I.P., Braga, Portugal
| | - Ana M Valente
- CESAM, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Ana Balseiro
- Animal Health Department, Instituto de Ganadería de Montaña (IGM, CSIC-ULE), León, Spain; Animal Health Department, Facultad de Veterinaria, Universidad de León, León, Spain, Instituto de Ganadería de Montaña (IGM, CSIC-ULE), León, Spain
| | - João Queirós
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Virgílio Almeida
- Faculty of Veterinary Medicine, University of Lisbon, Campus da Ajuda, Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Campus da Ajuda, Lisboa, Portugal
| | - Joaquín Vicente
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Paulo Célio Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Mértola, Portugal
| |
Collapse
|
9
|
Pozo P, Lorente-Leal V, Robbe-Austerman S, Hicks J, Stuber T, Bezos J, de Juan L, Saez JL, Romero B, Alvarez J. Use of Whole-Genome Sequencing to Unravel the Genetic Diversity of a Prevalent Mycobacterium bovis Spoligotype in a Multi-Host Scenario in Spain. Front Microbiol 2022; 13:915843. [PMID: 35898917 PMCID: PMC9309649 DOI: 10.3389/fmicb.2022.915843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the efforts invested in the eradication of bovine tuberculosis in Spain, herd prevalence has remained constant in the country during the last 15 years (~1.5–1.9%) due to a combination of epidemiological factors impairing disease control, including between-species transmission. Here, our aim was to investigate the molecular diversity of Mycobacterium bovis isolates belonging to the highly prevalent SB0339 spoligotype in the cattle-wildlife interface in different regions of Spain using whole-genome sequencing (WGS). Genomic data of 136 M. bovis isolates recovered from different animal species (cattle, wild boar, fallow deer, and red deer) and locations between 2005 and 2018 were analyzed to investigate between- and within-species transmission, as well as within-herds. All sequenced isolates differed by 49–88 single nucleotide polymorphisms from their most recent common ancestor. Genetic heterogeneity was geographic rather than host species-specific, as isolates recovered from both cattle and wildlife from a given region were more closely related compared to isolates from the same species but geographically distant. In fact, a strong association between the geographic and the genetic distances separating pairs of M. bovis isolates was found, with a significantly stronger effect when cattle isolates were compared with wildlife or cattle-wildlife isolates in Spain. The same results were obtained in Madrid, the region with the largest number of sequenced isolates, but no differences depending on the host were observed. Within-herd genetic diversity was limited despite the considerable time elapsed between isolations. The detection of closely related strains in different hosts demonstrates the complex between-host transmission dynamics present in endemic areas in Spain. In conclusion, WGS results a valuable tool to track bTB infection at a high resolution and may contribute to achieve its eradication in Spain.
Collapse
Affiliation(s)
- Pilar Pozo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Pilar Pozo,
| | - Victor Lorente-Leal
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Jessica Hicks
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Tod Stuber
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, Department of Agriculture, Ames, IA, United States
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucia de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de Sanidad de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
10
|
A Comparative Analysis of Adult Sex Ratios in Polygynous and Monogamous Mammal Populations. AMERICAN MIDLAND NATURALIST 2021. [DOI: 10.1674/0003-0031-186.2.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Schmidt C, Herskin M, Michel V, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Winckler C, Blome S, Boklund A, Bøtner A, Dhollander S, Rapagnà C, Van der Stede Y, Miranda Chueca MA. Research priorities to fill knowledge gaps in wild boar management measures that could improve the control of African swine fever in wild boar populations. EFSA J 2021; 19:e06716. [PMID: 34354769 PMCID: PMC8319816 DOI: 10.2903/j.efsa.2021.6716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The European Commission asked EFSA to provide study designs for the investigation of four research domains (RDs) according to major gaps in knowledge identified by EFSA in a report published in 2019: (RD 1) African swine fever (ASF) epidemiology in wild boar; (RD 2) ASF transmission by vectors; (RD 3) African swine fever virus (ASFV) survival in the environment, and (RD 4) the patterns of seasonality of ASF in wild boar and domestic pigs in the EU. In this Scientific Opinion, the second RD on ASF epidemiology in wild boar is addressed. Twenty-nine research objectives were proposed by the working group and broader ASF expert networks and 23 of these research objectives met a prespecified inclusion criterion. Fourteen of these 23 research objectives met the predefined threshold for selection and so were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study; and (6) if it was a priority for risk managers. Finally, after further elimination of three of the proposed research objectives due to overlapping scope of studies published during the development of this opinion, 11 research priorities were elaborated into short research proposals, considering the potential impact on ASF management and the period of one year for the research activities.
Collapse
|
12
|
Miguel E, Grosbois V, Caron A, Pople D, Roche B, Donnelly CA. A systemic approach to assess the potential and risks of wildlife culling for infectious disease control. Commun Biol 2020; 3:353. [PMID: 32636525 PMCID: PMC7340795 DOI: 10.1038/s42003-020-1032-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
The maintenance of infectious diseases requires a sufficient number of susceptible hosts. Host culling is a potential control strategy for animal diseases. However, the reduction in biodiversity and increasing public concerns regarding the involved ethical issues have progressively challenged the use of wildlife culling. Here, we assess the potential of wildlife culling as an epidemiologically sound management tool, by examining the host ecology, pathogen characteristics, eco-sociological contexts, and field work constraints. We also discuss alternative solutions and make recommendations for the appropriate implementation of culling for disease control.
Collapse
Affiliation(s)
- Eve Miguel
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), IRD (Research Institute for Sustainable Development), CNRS (National Center for Scientific Research), Univ. Montpellier, Montpellier, France.
- CREES Centre for Research on the Ecology and Evolution of Disease, Montpellier, France.
| | - Vladimir Grosbois
- ASTRE (Animal, Health, Territories, Risks, Ecosystems), CIRAD (Agricultural Research for Development), Univ. Montpellier, INRA (French National Institute for Agricultural Research), Montpellier, France
| | - Alexandre Caron
- ASTRE (Animal, Health, Territories, Risks, Ecosystems), CIRAD (Agricultural Research for Development), Univ. Montpellier, INRA (French National Institute for Agricultural Research), Montpellier, France
| | - Diane Pople
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Benjamin Roche
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), IRD (Research Institute for Sustainable Development), CNRS (National Center for Scientific Research), Univ. Montpellier, Montpellier, France
- UMMISCO (Unité Mixte Internationnale de Modélisation Mathématique et Informatiques des Systèmes Complèxes, IRD/Sorbonne Université, Bondy, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de, México, México
| | - Christl A Donnelly
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Anette B, Anette B, Theodora CV, Klaus D, Daniel D, Vittorio G, Georgina H, Daniela K, Annick L, Aleksandra M, Simon M, Edvins O, Sasa O, Helen R, Mihaela S, Karl S, Hans‐Hermann T, Grigaliuniene V, Arvo V, Richard W, Grzegorz W, José AC, Sofie D, Andrey G, Corina I, Alexandra P, González VLC, Christian GS. Epidemiological analyses of African swine fever in the European Union (November 2018 to October 2019). EFSA J 2020. [DOI: 10.2903/j.efsa.2020.5996] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Kontsiotis VJ, Vadikolios G, Liordos V. Acceptability and consensus for the management of game and non-game crop raiders. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextWild boars (Sus scrofa) and European badgers (Meles meles) have been increasingly implicated in crop damage in Greece. The species’ increasing presence on agricultural land has also raised concern about disease transmission to livestock and humans. Greece does not have any plans for the management of these situations, because they have only recently emerged. Understanding public preferences for management strategies is necessary for the successful implementation of management plans.
AimsTo survey residents of Eastern Macedonia and Thrace, north-eastern Greece, to understand variation between stakeholder groups in preferences for the management of wild boars and European badgers in different scenarios.
MethodsData were collected from on-site face-to-face surveys (n=585), between September and November 2017. Respondents, assigned to one of general public, farmers, hunters and farmer-hunter groups, were asked to rate their acceptability of wild boar and European badger management strategies under four conflict scenarios: wild boars and European badgers raid crops and transfer disease.
Key resultsStakeholders preferred less invasive strategies for the management of crop raiders, although they accepted lethal control in the more severe disease-transmission scenarios. Potential for conflict was higher for non-lethal control in the crop-raiding scenarios and for lethal control in the disease-transmission scenarios. Farmers and farmer-hunters were the groups more strongly supporting management strategies in all scenarios. Hunters were more reluctant to accept the reduction in numbers of a game species (i.e. the wild boar) than of a non-game species (i.e. the European badger).
ConclusionsVariation in the acceptability of and consensus for wild boar and European badger management strategies was considerable, both among and within groups.
ImplicationsFindings are a critical guide for the design of a conflict-management process aimed at reaching consensus for proper management strategies. This would allow for the successful management of human conflicts over wildlife.
Collapse
|
15
|
Risco D, Martínez R, Bravo M, Fernández Llario P, Cerrato R, Garcia-Jiménez WL, Gonçalves P, García A, Barquero-Pérez Ó, Quesada A, Hermoso de Mendoza J. Nasal shedding of Mycobacterium tuberculosis in wild boar is related to generalised tuberculosis and concomitant infections. Vet Rec 2019; 185:629. [PMID: 31515441 DOI: 10.1136/vr.105511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Wild boar is an important reservoir of Mycobacterium tuberculosis variant bovis, the main causative agent of bovine tuberculosis (bTB). A proportion of tuberculosis (TB)-affected wild boars shed M tuberculosis by nasal route, favouring the maintenance of bTB in a multihost scenario. The aim of this work was to assess if M tuberculosis nasal excretion is influenced by factors commonly associated with high TB prevalence in wild boar. METHODS TB diagnosis and M tuberculosis isolation were carried out in 112 hunted wild boars from mid-western Spain. The association between the presence of M tuberculosis DNA in nasal secretions and explanatory factors was explored using partial least squares regression (PLSR) approaches. RESULTS DNA from M tuberculosis was detected in 40.8 per cent nasal secretions of the TB-affected animals. Explanatory factors provided a first significant PLSR X's component, explaining 25.70 per cent of the variability observed in M tuberculosis nasal shedding. The presence of M tuberculosis in nasal secretions is more probable in animals suffering from generalised TB and mainly coinfected with Metastrongylus species and porcine circovirus type 2, explaining nearly 90 per cent of the total variance of this model. CONCLUSION Measures aiming to control these factors could be useful to reduce M tuberculosis shedding in wild boar.
Collapse
Affiliation(s)
- David Risco
- Innovación en Gestión y Conservación de Ungulados S.L, Cáceres, Spain.,Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Remigio Martínez
- Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.,Instituto Universitario de Biotecnología Ganadera y Cinegética (INBIO G+C Research Institute), Universidad de Extremadura, Cáceres, Spain
| | - María Bravo
- Innovación en Gestión y Conservación de Ungulados S.L, Cáceres, Spain .,Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Pedro Fernández Llario
- Innovación en Gestión y Conservación de Ungulados S.L, Cáceres, Spain.,Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Rosario Cerrato
- Innovación en Gestión y Conservación de Ungulados S.L, Cáceres, Spain.,Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Waldo Luis Garcia-Jiménez
- Innovación en Gestión y Conservación de Ungulados S.L, Cáceres, Spain.,Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Pilar Gonçalves
- Innovación en Gestión y Conservación de Ungulados S.L, Cáceres, Spain.,Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Alfredo García
- Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | - Óscar Barquero-Pérez
- Department of Signal Theory and Communications, Rey Juan Carlos University, Madrid, Spain
| | - Alberto Quesada
- Instituto Universitario de Biotecnología Ganadera y Cinegética (INBIO G+C Research Institute), Universidad de Extremadura, Cáceres, Spain.,Departamento de Bioquímica, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Javier Hermoso de Mendoza
- Red de Grupos de Investigación en Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain.,Instituto Universitario de Biotecnología Ganadera y Cinegética (INBIO G+C Research Institute), Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
16
|
Tanner E, White A, Acevedo P, Balseiro A, Marcos J, Gortázar C. Wolves contribute to disease control in a multi-host system. Sci Rep 2019; 9:7940. [PMID: 31138835 PMCID: PMC6538665 DOI: 10.1038/s41598-019-44148-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 11/08/2022] Open
Abstract
We combine model results with field data for a system of wolves (Canis lupus) that prey on wild boar (Sus scrofa), a wildlife reservoir of tuberculosis, to examine how predation may contribute to disease control in multi-host systems. Results show that predation can lead to a marked reduction in the prevalence of infection without leading to a reduction in host population density since mortality due to predation can be compensated by a reduction in disease induced mortality. A key finding therefore is that a population that harbours a virulent infection can be regulated at a similar density by disease at high prevalence or by predation at low prevalence. Predators may therefore provide a key ecosystem service which should be recognised when considering human-carnivore conflicts and the conservation and re-establishment of carnivore populations.
Collapse
Affiliation(s)
- E Tanner
- Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - A White
- Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - P Acevedo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| | - A Balseiro
- SERIDA, Gobierno del Principado de Asturias, Gijón, Spain
- Animal Health Department, University of León, León, Spain
| | - J Marcos
- Gobierno del Principado de Asturias, Oviedo, Spain
| | - C Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| |
Collapse
|
17
|
More S, Miranda MA, Bicout D, Bøtner A, Butterworth A, Calistri P, Edwards S, Garin-Bastuji B, Good M, Michel V, Raj M, Nielsen SS, Sihvonen L, Spoolder H, Stegeman JA, Velarde A, Willeberg P, Winckler C, Depner K, Guberti V, Masiulis M, Olsevskis E, Satran P, Spiridon M, Thulke HH, Vilrop A, Wozniakowski G, Bau A, Broglia A, Cortiñas Abrahantes J, Dhollander S, Gogin A, Muñoz Gajardo I, Verdonck F, Amato L, Gortázar Schmidt C. African swine fever in wild boar. EFSA J 2018; 16:e05344. [PMID: 32625980 PMCID: PMC7009363 DOI: 10.2903/j.efsa.2018.5344] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The European Commission requested EFSA to compare the reliability of wild boar density estimates across the EU and to provide guidance to improve data collection methods. Currently, the only EU-wide available data are hunting data. Their collection methods should be harmonised to be comparable and to improve predictive models for wild boar density. These models could be validated by more precise density data, collected at local level e.g. by camera trapping. Based on practical and theoretical considerations, it is currently not possible to establish wild boar density thresholds that do not allow sustaining African swine fever (ASF). There are many drivers determining if ASF can be sustained or not, including heterogeneous population structures and human-mediated spread and there are still unknowns on the importance of different transmission modes in the epidemiology. Based on extensive literature reviews and observations from affected Member States, the efficacy of different wild boar population reduction and separation methods is evaluated. Different wild boar management strategies at different stages of the epidemic are suggested. Preventive measures to reduce and stabilise wild boar density, before ASF introduction, will be beneficial both in reducing the probability of exposure of the population to ASF and the efforts needed for potential emergency actions (i.e. less carcass removal) if an ASF incursion were to occur. Passive surveillance is the most effective and efficient method of surveillance for early detection of ASF in free areas. Following focal ASF introduction, the wild boar populations should be kept undisturbed for a short period (e.g. hunting ban on all species, leave crops unharvested to provide food and shelter within the affected area) and drastic reduction of the wild boar population may be performed only ahead of the ASF advance front, in the free populations. Following the decline in the epidemic, as demonstrated through passive surveillance, active population management should be reconsidered.
Collapse
|
18
|
Cano-Terriza D, Risalde MA, Jiménez-Ruiz S, Vicente J, Isla J, Paniagua J, Moreno I, Gortázar C, Infantes-Lorenzo JA, García-Bocanegra I. Management of hunting waste as control measure for tuberculosis in wild ungulates in south-central Spain. Transbound Emerg Dis 2018. [PMID: 29536638 DOI: 10.1111/tbed.12857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent decades, habitat change and the intensive management of wild ungulates for hunting have led to an increase in their populations in south-central Spain. This implies a higher generation of hunting waste, which can favour the transmission of infectious diseases, including tuberculosis (TB). The aim of this study was to assess the usefulness of the proper disposal of hunting waste as TB control measure in wild boar (Sus scrofa) and red deer (Cervus elaphus) during the 2008/2009 to 2016/2017 hunting seasons. Blood samples from 664 wild boar and 934 red deer were obtained in 14 game estates in two provinces in Andalusia (Area 1), where the disposal of hunting waste was implemented since the 2012/2013 hunting season. Besides, six game estates in the province of Ciudad Real, in Castilla-La Mancha (Area 2), an adjacent region where this management measure was not implemented during the studied period, were used as controls, sampling 277 wild boar and 427 red deer sera. The Mycobacterium tuberculosis complex (MTC), seroprevalence detected in wild boar from Area 1, was significantly higher before the disposal of big game hunting by-products (82.8%; 2008/2009-2012/2013) compared to the second period (61.8%; 2013/2014-2016/2017) (p < .001), after this control measure became established. By contrast, no significant differences between periods were found in wild boar (41.3% versus 44.8%; p = .33) and red deer (14.9% versus 11.6%; p = .19) from Area 2 as well as in red deer (10.8% versus 10.5%; p = .48) from Area 1. The proper disposal of hunting waste contributed to achieve a 25% reduction in MTC seroprevalence in wild boar. These results are of particular relevance regarding wild boar in the current context of re-emerging and emerging diseases such as TB and African Swine Fever in Europe. Further studies are needed to assess the effect of this measure on the health status of livestock and other wildlife species.
Collapse
Affiliation(s)
- D Cano-Terriza
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain
| | - M A Risalde
- Facultad de Veterinaria, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba (UCO), Córdoba, Spain
| | - S Jiménez-Ruiz
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain
| | - J Vicente
- SaBio - Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC), Ciudad Real, Spain
| | - J Isla
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain
| | - J Paniagua
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain
| | - I Moreno
- Servicio de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Investigación Carlos III, Madrid, Spain
| | - C Gortázar
- SaBio - Instituto de Investigación en Recursos Cinegéticos, IREC (UCLM-CSIC), Ciudad Real, Spain
| | - J A Infantes-Lorenzo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid, Spain
| | - I García-Bocanegra
- Facultad de Veterinaria, Departamento de Sanidad Animal, Universidad de Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
19
|
Rivière J, Le Strat Y, Hendrikx P, Dufour B. Cost-effectiveness evaluation of bovine tuberculosis surveillance in wildlife in France (Sylvatub system) using scenario trees. PLoS One 2017; 12:e0183126. [PMID: 28800642 PMCID: PMC5553909 DOI: 10.1371/journal.pone.0183126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022] Open
Abstract
Bovine tuberculosis (bTB) is a common disease in cattle and wildlife, with health, zoonotic and economic implications. Infected wild animals, and particularly reservoirs, could hinder eradication of bTB from cattle populations, which could have an important impact on international cattle trade. Therefore, surveillance of bTB in wildlife is of particular importance to better understand the epidemiological role of wild species and to adapt the control measures. In France, a bTB surveillance system for free-ranging wildlife, the Sylvatub system, has been implemented since 2011. It relies on three surveillance components (SSCs) (passive surveillance on hunted animals (EC-SSC), passive surveillance on dead or dying animals (SAGIR-SSC) and active surveillance (PSURV-SSC)). The effectiveness of the Sylvatub system was previously assessed, through the estimation of its sensitivity (i.e. the probability of detecting at least one case of bTB infection by each SSC, specie and risk-level area). However, to globally assess the performance of a surveillance system, the measure of its sensitivity is not sufficient, as other factors such as economic or socio-economic factors could influence the effectiveness. We report here an estimation of the costs of the surveillance activities of the Sylvatub system, and of the cost-effectiveness of each surveillance component, by specie and risk-level, based on scenario tree modelling with the same tree structure as used for the sensitivity evaluation. The cost-effectiveness of the Sylvatub surveillance is better in higher-risk departments, due in particular to the higher probability of detecting the infection (sensitivity). Moreover, EC-SSC, which has the highest unit cost, is more efficient than the surveillance enhanced by the SAGIR-SSC, due to its better sensitivity. The calculation of the cost-effectiveness ratio shows that PSURV-SSC remains the most cost-effective surveillance component of the Sylvatub system, despite its high cost in terms of coordination, sample collection and laboratory analysis.
Collapse
Affiliation(s)
- Julie Rivière
- Ecole vétérinaire d’Alfort (Alfort National Veterinary School), Research unit EpiMAI USC Anses (Epidemiology of Animal Infectious Disease), Université Paris Est, Maisons-Alfort, France
- * E-mail:
| | - Yann Le Strat
- Santé publique France, French national public health agency, Saint-Maurice, France
| | - Pascal Hendrikx
- Agence nationale de sécurité alimentaire nationale, French Agency for Food, Environmental and Occupational Health and Safety (Anses), Unit of coordination and support to surveillance, Maisons-Alfort, France
| | - Barbara Dufour
- Ecole vétérinaire d’Alfort (Alfort National Veterinary School), Research unit EpiMAI USC Anses (Epidemiology of Animal Infectious Disease), Université Paris Est, Maisons-Alfort, France
| |
Collapse
|
20
|
LaHue NP, Baños JV, Acevedo P, Gortázar C, Martínez-López B. Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain. Prev Vet Med 2016; 128:101-11. [DOI: 10.1016/j.prevetmed.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/28/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
21
|
|
22
|
Gortázar C, Che Amat A, O'Brien DJ. Open questions and recent advances in the control of a multi-host infectious disease: animal tuberculosis. Mamm Rev 2015. [DOI: 10.1111/mam.12042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Gortázar
- Animal Health; SaBio IREC (CSIC - UCLM - JCCM); Ronda de Toledo s/n Ciudad Real 13071 Spain
| | - Azlan Che Amat
- Faculty of Veterinary Medicine; Universiti Putra Malaysia; 43400 Serdang Selangor Malaysia
| | - Daniel J. O'Brien
- Wildlife Disease Laboratory; Michigan Department of Natural Resources; 4125 Beaumont Rd., Room 250 Lansing Michigan 48910-8106 USA
| |
Collapse
|
23
|
Nugent G, Gortazar C, Knowles G. The epidemiology of Mycobacterium bovis in wild deer and feral pigs and their roles in the establishment and spread of bovine tuberculosis in New Zealand wildlife. N Z Vet J 2015; 63 Suppl 1:54-67. [PMID: 25295713 PMCID: PMC4566879 DOI: 10.1080/00480169.2014.963792] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In New Zealand, wild deer and feral pigs are assumed to be spillover hosts for Mycobacterium bovis, and so are not targeted in efforts aimed at locally eradicating bovine tuberculosis (TB) from possums (Trichosurus vulpecula), the main wildlife host. Here we review the epidemiology of TB in deer and pigs, and assess whether New Zealand's TB management programme could be undermined if these species sometimes achieve maintenance host status. In New Zealand, TB prevalences of up to 47% have been recorded in wild deer sympatric with tuberculous possums. Patterns of lesion distribution, age-specific prevalences and behavioural observations suggest that deer become infected mainly through exposure to dead or moribund possums. TB can progress rapidly in some deer (<10%), but generalised disease is uncommon in wild deer; conversely some infected animals can survive for many years. Deer-to-deer transmission of M. bovis is rare, but transmission from tuberculous deer carcasses to scavengers, including possums, is likely. That creates a small spillback risk that could persist for a decade after transmission of new infection to wild deer has been halted. Tuberculosis prevalence in New Zealand feral pigs can reach 100%. Infections in lymph nodes of the head and alimentary tract predominate, indicating that TB is mostly acquired through scavenging tuberculous carrion, particularly possums. Infection is usually well contained, and transmission between pigs is rare. Large reductions in local possum density result in gradual declines (over 10 years) in TB prevalence among sympatric wild deer, and faster declines in feral pigs. Elimination of TB from possums (and livestock) therefore results in eventual disappearance of TB from feral pigs and wild deer. However, the risk of spillback infection from deer to possums substantially extends the time needed to locally eradicate TB from all wildlife (compared to that which would be required to eradicate disease from possums alone), while dispersal or translocation of pigs (e.g. by hunters) creates a risk of long-distance spread of disease. The high rate at which pigs acquire M. bovis infection from dead possums makes them useful as sentinels for detecting TB in wildlife. It is unlikely that wild deer and feral pigs act as maintenance hosts anywhere in New Zealand, because unrestricted year-round hunting keeps densities low, with far less aggregation than on New Zealand farms. We conclude that active management of wild deer or feral pigs is not required for local TB eradication in New Zealand.
Collapse
Affiliation(s)
- G Nugent
- a Landcare Research , Lincoln 7640 , New Zealand
| | | | | |
Collapse
|
24
|
Cowie CE, Gortázar C, White PCL, Hutchings MR, Vicente J. Stakeholder opinions on the practicality of management interventions to control bovine tuberculosis. Vet J 2015; 204:179-85. [PMID: 25910515 DOI: 10.1016/j.tvjl.2015.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/11/2014] [Accepted: 02/28/2015] [Indexed: 11/25/2022]
Abstract
Livestock disease control strategies are usually determined at national and international levels, yet their successful implementation is determined by stakeholders operating at local scales. Such stakeholders may also have detailed knowledge that would contribute to the development of disease control options suited to the socio-cultural and environmental conditions where management is undertaken. The aim of this study was to evaluate stakeholders' opinions of a list of potential bovine tuberculosis (TB) management interventions for South Central Spain. This area has high TB prevalence in wildlife and livestock, so veterinarians, livestock farmers and hunters are all key stakeholders in TB management. A literature review identified possible management activities. The effectiveness of each intervention was ranked by local experts, and practicality was ranked by hunters, cattle farmers and veterinarians, using a best-worst scaling exercise as part of a questionnaire. The most effective intervention, the banning of supplemental feeding of game species, was not considered practical by stakeholders. The most effective and practical interventions were the separation of wildlife and livestock access to waterholes, testing cattle every 3 months on farms with a recent positive TB case and removing gut-piles from the land after hunting events. Although all three of these options were well supported, each stakeholder group supported different approaches more strongly, suggesting that it might be effective to promote different disease management contributions in different stakeholder communities. This integrated approach contributes to the identification of the optimum combination of management tools that can be delivered effectively.
Collapse
Affiliation(s)
- Catherine E Cowie
- Environment Department, University of York, Heslington, York YO10 5DD, UK; SaBio-IREC Wildlife Research Institute (CSIC-UCLM-JCCM), Ronda de Toledo s/n., Ciudad Real 13005, Spain.
| | - Christian Gortázar
- SaBio-IREC Wildlife Research Institute (CSIC-UCLM-JCCM), Ronda de Toledo s/n., Ciudad Real 13005, Spain
| | - Piran C L White
- Environment Department, University of York, Heslington, York YO10 5DD, UK
| | | | - Joaquín Vicente
- SaBio-IREC Wildlife Research Institute (CSIC-UCLM-JCCM), Ronda de Toledo s/n., Ciudad Real 13005, Spain
| |
Collapse
|
25
|
|
26
|
Gortazar C, Diez-Delgado I, Barasona JA, Vicente J, De La Fuente J, Boadella M. The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Front Vet Sci 2015; 1:27. [PMID: 26664926 PMCID: PMC4668863 DOI: 10.3389/fvets.2014.00027] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
The control of diseases shared with wildlife requires the development of strategies that will reduce pathogen transmission between wildlife and both domestic animals and human beings. This review describes and criticizes the options currently applied and attempts to forecast wildlife disease control in the coming decades. Establishing a proper surveillance and monitoring scheme (disease and population wise) is the absolute priority before even making the decision as to whether or not to intervene. Disease control can be achieved by different means, including: (1) preventive actions, (2) arthropod vector control, (3) host population control through random or selective culling, habitat management or reproductive control, and (4) vaccination. The alternative options of zoning or no-action should also be considered, particularly in view of a cost/benefit assessment. Ideally, tools from several fields should be combined in an integrated control strategy. The success of disease control in wildlife depends on many factors, including disease ecology, natural history, and the characteristics of the pathogen, the availability of suitable diagnostic tools, the characteristics of the domestic and wildlife host(s) and vectors, the geographical spread of the problem, the scale of the control effort and stakeholders’ attitudes.
Collapse
Affiliation(s)
- Christian Gortazar
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Iratxe Diez-Delgado
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain ; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid , Spain
| | - Jose Angel Barasona
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Joaquin Vicente
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Jose De La Fuente
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain ; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, OK , USA
| | - Mariana Boadella
- SABIOtec Spin-Off, Edificio Polivalente UCLM , Ciudad Real , Spain
| |
Collapse
|
27
|
Risco D, Fernández-Llario P, García-Jiménez WL, Gonçalves P, Cuesta JM, Martínez R, Sanz C, Sequeda M, Gómez L, Carranza J, de Mendoza JH. Influence of porcine circovirus type 2 infections on bovine tuberculosis in wild boar populations. Transbound Emerg Dis 2014; 60 Suppl 1:121-7. [PMID: 24171857 DOI: 10.1111/tbed.12112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Indexed: 11/27/2022]
Abstract
The wild boar is an important reservoir of bovine tuberculosis (bTB) in south-western Spain. Some risk factors such as wild boar density or age have been associated with the presence of high prevalences of bTB in wild boar. However, the influence of other risk factors such as co-infections with other pathogens has not yet been studied. This work aims to assess the influence of porcine circovirus type 2 (PCV-2) infection on bTB prevalence and bTB lesional patterns observed in wild boar. The presence of bTB-like lesions was evaluated in 551 hunted wild boar from 11 different game estates in south-western Spain, with a known history of bTB. Tuberculosis prevalences in each estate were calculated based on the percentage of animals found with bTB-like lesions. The percentage of animals with generalized bTB lesional patterns (bTB lesions in more than one organ) was also assessed. The prevalence of PCV-2 was studied in each estate using a specific PCR assay. The relationship between PCV-2 and bTB prevalences and between PCV-2 infections and the presence of generalized lesional patterns in wild boar were analysed. A statistical relationship between the prevalences of bTB and PCV-2 was found, with bTB prevalences being higher in estates where prevalences of PCV-2 were high. On the other hand, animals infected with PCV-2 were more likely to develop a generalized lesional pattern. Porcine circovirus type 2 prevalences seem to be associated with prevalences of bTB in wild boar. PCV-2 infection may aggravate the development and severity of bTB, favouring the presence of generalized lesional patterns and raising the risk of contagion in these estates. The implementation of sanitary measures that focus on the control of PCV-2 infection may be necessary as a preliminary measure in bTB control programmes for wild boar.
Collapse
Affiliation(s)
- D Risco
- Red de Grupos de Investigación Recursos Faunísticos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Evaluation of possible mitigation measures to prevent introduction and spread of African swine fever virus through wild boar. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3616] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Mentaberre G, Romero B, de Juan L, Navarro-González N, Velarde R, Mateos A, Marco I, Olivé-Boix X, Domínguez L, Lavín S, Serrano E. Long-term assessment of wild boar harvesting and cattle removal for bovine tuberculosis control in free ranging populations. PLoS One 2014; 9:e88824. [PMID: 24558435 PMCID: PMC3928305 DOI: 10.1371/journal.pone.0088824] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/11/2014] [Indexed: 11/24/2022] Open
Abstract
Wild boar is a recognized reservoir of bovine tuberculosis (TB) in the Mediterranean ecosystems, but information is scarce outside of hotspots in southern Spain. We describe the first high-prevalence focus of TB in a non-managed wild boar population in northern Spain and the result of eight years of TB management. Measures implemented for disease control included the control of the local wild boar population through culling and stamping out of a sympatric infected cattle herd. Post-mortem inspection for detection of tuberculosis-like lesions as well as cultures from selected head and cervical lymph nodes was done in 745 wild boar, 355 Iberian ibexes and five cattle between 2004 and 2012. The seasonal prevalence of TB reached 70% amongst adult wild boar and ten different spoligotypes and 13 MIRU-VNTR profiles were detected, although more than half of the isolates were included in the same clonal complex. Only 11% of infected boars had generalized lesions. None of the ibexes were affected, supporting their irrelevance in the epidemiology of TB. An infected cattle herd grazed the zone where 168 of the 197 infected boars were harvested. Cattle removal and wild boar culling together contributed to a decrease in TB prevalence. The need for holistic, sustained over time, intensive and adapted TB control strategies taking into account the multi-host nature of the disease is highlighted. The potential risk for tuberculosis emergence in wildlife scenarios where the risk is assumed to be low should be addressed.
Collapse
Affiliation(s)
- Gregorio Mentaberre
- Servei d′Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail:
| | - Beatriz Romero
- VISAVET Health Surveillance Centre. Universidad Complutense, Madrid, Spain
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Centre. Universidad Complutense, Madrid, Spain
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Nora Navarro-González
- Servei d′Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Roser Velarde
- Servei d′Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ana Mateos
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Ignasi Marco
- Servei d′Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Xavier Olivé-Boix
- Reserva Nacional de Caça dels Ports de Tortosa i Beseit, Roquetes, Tarragona, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre. Universidad Complutense, Madrid, Spain
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Santiago Lavín
- Servei d′Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Emmanuel Serrano
- Servei d′Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Estadística i Investigació Operativa, Departament de Matemàtica. Universitat de Lleida, Lleida, Spain
| |
Collapse
|