1
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors 2022; 15:88. [PMID: 35292106 PMCID: PMC8922938 DOI: 10.1186/s13071-022-05204-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
3
|
González MA, Cevidanes A, Goiri F, Barandika JF, García-Pérez AL. Diversity and distribution of larval habitats of mosquitoes (Diptera: Culicidae) in northern Spain: from urban to natural areas. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:173-185. [PMID: 35230022 DOI: 10.52707/1081-1710-46.2.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/17/2021] [Indexed: 06/14/2023]
Abstract
Studies of the biodiversity of mosquito larval habitats are important for vector-borne disease control programs and help to improve vector distribution maps. This study was designed to investigate the geographical distribution of mosquito species and their larval habitats in urban, rural, and natural areas in northern Spain. Pre-imaginal stages were collected over two sampling periods (spring and summer) in 2019. In the laboratory, immature specimens were reared to the adult stage for species identification by morphological taxonomy and/or molecular methods. In total, 2,182 specimens belonging to 13 different native mosquito species of five genera were collected from 135 sampling points of which 59.2% harbored larvae. Culex pipiens s.l. was the most abundant species (45.1%), followed by Culex torrentium (12.3%), Anopheles maculipennis s.l. (10.2%), Culex hortensis (9.5%), and nine other species with lower frequencies that accounted for less than 25%. By molecular identification, An. maculipennis s.s. was identified as the only species within the An. maculipennis species complex and Cx. pipiens pipiens as the predominant subspecies of the Cx. pipiens species complex. Margins in large sunlit water bodies were the most suitable sites for An. maculipennis s.l., whereas Cx. pipiens s.l. was present in both natural and artificial habitats. The larval site index, species richness, and relative abundance of the mosquitoes were determined based on the characteristics of the sites where they were collected. The public health importance and ecology of some identified mosquitoes is also discussed.
Collapse
Affiliation(s)
- Mikel A González
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Aitor Cevidanes
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fátima Goiri
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Jesús F Barandika
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Ana L García-Pérez
- Department of Animal Health. NEIKER-Basque Institute for Agricultural Research and Development. Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain,
| |
Collapse
|
4
|
García-Carrasco JM, Muñoz AR, Olivero J, Segura M, Real R. Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Negl Trop Dis 2021; 15:e0009022. [PMID: 33411739 PMCID: PMC7790247 DOI: 10.1371/journal.pntd.0009022] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus is a widely spread arthropod-born virus, which has mosquitoes as vectors and birds as reservoirs. Humans, as dead-end hosts of the virus, may suffer West Nile Fever (WNF), which sometimes leads to death. In Europe, the first large-scale epidemic of WNF occurred in 1996 in Romania. Since then, human cases have increased in the continent, where the highest number of cases occurred in 2018. Using the location of WNF cases in 2017 and favorability models, we developed two risk models, one environmental and the other spatio-environmental, and tested their capacity to predict in 2018: 1) the location of WNF; 2) the intensity of the outbreaks (i.e. the number of confirmed human cases); and 3) the imminence of the cases (i.e. the Julian week in which the first case occurred). We found that climatic variables (the maximum temperature of the warmest month and the annual temperature range), human-related variables (rain-fed agriculture, the density of poultry and horses), and topo-hydrographic variables (the presence of rivers and altitude) were the best environmental predictors of WNF outbreaks in Europe. The spatio-environmental model was the most useful in predicting the location of WNF outbreaks, which suggests that a spatial structure, probably related to bird migration routes, has a role in the geographical pattern of WNF in Europe. Both the intensity of cases and their imminence were best predicted using the environmental model, suggesting that these features of the disease are linked to the environmental characteristics of the areas. We highlight the relevance of river basins in the propagation dynamics of the disease, as outbreaks started in the lower parts of the river basins, from where WNF spread towards the upper parts. Therefore, river basins should be considered as operational geographic units for the public health management of the disease.
Collapse
Affiliation(s)
- José-María García-Carrasco
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Antonio-Román Muñoz
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Jesús Olivero
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Marina Segura
- International Vaccination Center of Malaga, Maritime Port of Malaga, Ministry of Health, Consumption and Social Welfare, Government of Spain, Málaga, Spain
| | - Raimundo Real
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| |
Collapse
|
5
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Gubbins S, Antoniou S, Broglia A, Abrahantes JC, Dhollander S, Van der Stede Y. Rift Valley Fever - assessment of effectiveness of surveillance and control measures in the EU. EFSA J 2020; 18:e06292. [PMID: 33193869 PMCID: PMC7642843 DOI: 10.2903/j.efsa.2020.6292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Effectiveness of surveillance and control measures against Rift Valley Fever (RVF) in Mayotte (overseas France) and in continental EU were assessed using mathematical models. Surveillance for early detection of RVF virus circulation implies very low design prevalence values and thus sampling a high number of animals, so feasibility issues may rise. Passive surveillance based on notified abortions in ruminants is key for early warning and at present the only feasible surveillance option. The assessment of vaccination and culling against RVF in Mayotte suggests that vaccination is more effective when quickly implemented throughout the population, e.g. at a rate of 200 or 2,000 animals vaccinated per day. Test and cull is not an option for RVF control in Mayotte given the high number of animals that would need to be tested. If the risk of RVFV introduction into the continental EU increases, ruminant establishments close to possible points of disease incursion should be included in the surveillance. An enhanced surveillance on reproductive disorders should be applied during summer in risk areas. Serosurveillance targets of 0.3% animals should be at least considered. RVF control measures possibly applied in the continental EU have been assessed in the Netherlands, as an example. Culling animals on farms within a 20 km radius of detected farms appears as the most effective measure to control RVF spread, although too many animals should be culled. Alternative measures are vaccination in a 50 km radius around detection, ring vaccination between 20 and 50 km and culling of detected farms. The assessment of zoning showed that, following RVFV introduction and considering an R0 = 2, a mean vector dispersal of 10 km and 10 farms initially detected, RVFV would spread beyond a radius of up to 100 km or 50 km from the infected area with 10% or 55% probability, respectively.
Collapse
|
6
|
Tummeleht L, Jürison M, Kurina O, Kirik H, Jeremejeva J, Viltrop A. Diversity of Diptera Species in Estonian Pig Farms. Vet Sci 2020; 7:E13. [PMID: 31979423 PMCID: PMC7157211 DOI: 10.3390/vetsci7010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
In light of the African swine fever outbreaks in Estonian pig farms during the past few years, the question of the vector potential of Diptera in the pig farm environment has risen. However, the arthropod fauna of the pig farm environment is currently not well established. Hence, the aim of this study was to clarify the species diversity in pig farms. In total, 22 Diptera species or species groups were found in Estonian pig farms. There were altogether 186,701 individual arthropods collected, from which 96.6% (180,444) belonged to the order of true flies (Insecta: Diptera). The remaining 3.4% were from other insect orders, arachnids, or just damaged and unidentifiable specimens. The activity density and diversity of dipterans differed significantly between 12 sampled farms but not throughout the sampling period. The present study is amongst the few to provide a large-scale overview of pig-farm-associated Diptera in the temperate climate zone.
Collapse
Affiliation(s)
- Lea Tummeleht
- Institute of Veterinary Medicine & Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (J.J.); (A.V.)
| | - Margret Jürison
- Institute of Agriculture & Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5D, EE-51006 Tartu, Estonia; (M.J.); (O.K.); (H.K.)
| | - Olavi Kurina
- Institute of Agriculture & Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5D, EE-51006 Tartu, Estonia; (M.J.); (O.K.); (H.K.)
| | - Heli Kirik
- Institute of Agriculture & Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5D, EE-51006 Tartu, Estonia; (M.J.); (O.K.); (H.K.)
| | - Julia Jeremejeva
- Institute of Veterinary Medicine & Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (J.J.); (A.V.)
| | - Arvo Viltrop
- Institute of Veterinary Medicine & Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (J.J.); (A.V.)
| |
Collapse
|
7
|
Brugman VA, Medlock JM, Logan JG, Wilson AJ, Lindsay SW, Fooks AR, Mertens PPC, Johnson N, Carpenter ST. Bird-biting mosquitoes on farms in southern England. Vet Rec 2018; 183:474. [PMID: 30099408 PMCID: PMC6227795 DOI: 10.1136/vr.104830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Victor Albert Brugman
- Entomology group, The Pirbright Institute, Woking, UK.,Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Jolyon M Medlock
- Department of Medical Entomology & Zoonoses Ecology, Emergency Response Department, Public Health England, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Salisbury, UK
| | - James G Logan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Steve W Lindsay
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Department of Biosciences, Durham University, Durham, UK
| | - Anthony R Fooks
- Animal and Plant Health Agency, Weybridge, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Peter P C Mertens
- Entomology group, The Pirbright Institute, Woking, UK.,School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, UK
| | - Nicholas Johnson
- Animal and Plant Health Agency, Weybridge, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
8
|
The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020389. [PMID: 29473903 PMCID: PMC5858458 DOI: 10.3390/ijerph15020389] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/17/2022]
Abstract
Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission.
Collapse
|
9
|
Möhlmann TWR, Wennergren U, Tälle M, Favia G, Damiani C, Bracchetti L, Koenraadt CJM. Community analysis of the abundance and diversity of mosquito species (Diptera: Culicidae) in three European countries at different latitudes. Parasit Vectors 2017; 10:510. [PMID: 29061177 PMCID: PMC5653988 DOI: 10.1186/s13071-017-2481-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies on mosquito species diversity in Europe often focus on a specific habitat, region or country. Moreover, different trap types are used for these sampling studies, making it difficult to compare and validate results across Europe. To facilitate comparisons of trapping sites and community analysis, the present study used two trap types for monitoring mosquito species diversity in three habitat types for three different countries in Europe. METHODS Mosquitoes were trapped using Biogents Sentinel (BGS), and Mosquito Magnet Liberty Plus (MMLP) traps at a total of 27 locations in Sweden, the Netherlands and Italy, comprising farm, peri-urban and wetland habitats. From July 2014 to June 2015 all locations were sampled monthly, except for the winter months. Indices of species richness, evenness and diversity were calculated, and community analyses were carried out with non-metric multidimensional scaling (NMDS) techniques. RESULTS A total of 11,745 female mosquitoes were trapped during 887 collections. More than 90% of the mosquitoes belonged to the genera Culex and Aedes, with Culex pipiens being the most abundant species. The highest mosquito diversity was found in Sweden. Within Sweden, species diversity was highest in wetland habitats, whereas in the Netherlands and Italy this was highest at farms. The NMDS analyses showed clear differences in mosquito communities among countries, but not among habitat types. The MMLP trapped a higher diversity of mosquito species than the BGS traps. Also, MMLP traps trapped higher numbers of mosquitoes, except for the genera Culex and Culiseta in Italy. CONCLUSIONS A core mosquito community could be identified for the three countries, with Culex pipiens as the most abundant species. Differences in mosquito species communities were more defined by the three countries included in the study than by the three habitat types. Differences in mosquito community composition across countries may have implications for disease emergence and further spread throughout Europe. Future research should, therefore, focus on how field data of vector communities can be incorporated into models, to better assess the risk of mosquito-borne disease outbreaks.
Collapse
Affiliation(s)
- Tim W R Möhlmann
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 16, 6700, AA, Wageningen, The Netherlands. .,IFM Theory and Modelling, Linköping University, 581 83, Linköping, Sweden.
| | - Uno Wennergren
- IFM Theory and Modelling, Linköping University, 581 83, Linköping, Sweden
| | - Malin Tälle
- IFM Theory and Modelling, Linköping University, 581 83, Linköping, Sweden
| | - Guido Favia
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, 62032, Camerino, Italy
| | - Claudia Damiani
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, 62032, Camerino, Italy
| | - Luca Bracchetti
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, 62032, Camerino, Italy
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| |
Collapse
|
10
|
Bravo-Barriga D, Gomes B, Almeida APG, Serrano-Aguilera FJ, Pérez-Martín JE, Calero-Bernal R, Reina D, Frontera E, Pinto J. The mosquito fauna of the western region of Spain with emphasis on ecological factors and the characterization of Culex pipiens forms. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:136-147. [PMID: 28504431 DOI: 10.1111/jvec.12248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/17/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED This study updates the diversity, distribution, and seasonal trends of mosquitoes in a western region of Spain, assesses ecological determinants of Culex pipiens s.l., and determines form composition of Cx. pipiens s.s. POPULATIONS A total of 1,495 mosquitoes of 16 species was collected during 2012-2013, of which Cx. pipiens s.l. and Cx. theileri were the most abundant. Five new records for An. maculipennis s.s., Orthopodomyia pulcripalpis, Aedes (Ochlerotatus) punctor, Cx. europaeus, and Cx. modestus were found for this region. Cx. pipiens density varied across weather and habitat patterns, correlating positively with high temperatures and with a preference for urbanized areas and rural areas within a proximity of ovine farms. Moreover, molecular identification by CQ11FL was performed in 467 Cx. pipiens s.s., detecting both pipiens (66%) and molestus (8.4%) forms coexisting in different habitats (urban, peri-urban and rural) aboveground with a high degree of hybridization (25.7%). The abundance of Cx. pipiens in urban areas and farms, with the presence of hybrids, may increase their capacity to act as bridge vectors for the transmission of arboviral infections. These data will be helpful for further implementation of entomological programs focused on risk assessment for arboviruses or other mosquito-borne pathogens.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Bruno Gomes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Unidade de Parasitologia Médica, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Antonio P G Almeida
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Unidade de Parasitologia Médica, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
- Center for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Francisco J Serrano-Aguilera
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Juan E Pérez-Martín
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Rafael Calero-Bernal
- Parasitology Service National Centre for Microbiology, Carlos III Institute of Health, Majadahonda, Madrid, Spain
| | - David Reina
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Eva Frontera
- Parasitology and Parasitic Diseases, Animal Health Department, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - João Pinto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Unidade de Parasitologia Médica, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| |
Collapse
|