1
|
Hayes BJ, Duff CJ, Hine BC, Mahony TJ. Genomic estimated breeding values for bovine respiratory disease resistance in Angus feedlot cattle. J Anim Sci 2024; 102:skae113. [PMID: 38659364 PMCID: PMC11107116 DOI: 10.1093/jas/skae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Bovine respiratory disease (BRD) causes major losses in feedlot cattle worldwide. A genetic component for BRD resistance in feedlot cattle and calves has been reported in a number of studies, with heritabilities ranging from 0.04 to 0.2. These results suggest selection could be used to reduce the incidence of BRD. Genomic selection could be an attractive approach for breeding for BRD resistance, given the phenotype is not likely to be recorded on breeding animals. In this study, we derived GEBVs for BRD resistance and assessed their accuracy in a reasonably large data set recorded for feedlot treatment of BRD (1213 Angus steers, in two feedlots). In fivefold cross validation, genomic predictions were moderately accurate (0.23 ± 0.01) when a BayesR approach was used. Expansion of this approach to include more animals and a diversity of breeds is recommended to successfully develop a GEBV for BRD resistance in feedlots for the beef industry.
Collapse
Affiliation(s)
- Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Bradley C Hine
- CSIRO, F.D. McMaster Laboratory, Armidale, NSW 2350, Australia
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Characterisation of the Upper Respiratory Tract Virome of Feedlot Cattle and Its Association with Bovine Respiratory Disease. Viruses 2023; 15:v15020455. [PMID: 36851669 PMCID: PMC9961997 DOI: 10.3390/v15020455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Bovine respiratory disease (BRD) is a major health problem within the global cattle industry. This disease has a complex aetiology, with viruses playing an integral role. In this study, metagenomics was used to sequence viral nucleic acids in the nasal swabs of BRD-affected cattle. The viruses detected included those that are well known for their association with BRD in Australia (bovine viral diarrhoea virus 1), as well as viruses known to be present but not fully characterised (bovine coronavirus) and viruses that have not been reported in BRD-affected cattle in Australia (bovine rhinitis, bovine influenza D, and bovine nidovirus). The nasal swabs from a case-control study were subsequently tested for 10 viruses, and the presence of at least one virus was found to be significantly associated with BRD. Some of the more recently detected viruses had inconsistent associations with BRD. Full genome sequences for bovine coronavirus, a virus increasingly associated with BRD, and bovine nidovirus were completed. Both viruses belong to the Coronaviridae family, which are frequently associated with disease in mammals. This study has provided greater insights into the viral pathogens associated with BRD and highlighted the need for further studies to more precisely elucidate the roles viruses play in BRD.
Collapse
|
3
|
Johnson B, White B, Lancaster P, Larson R. An Evaluation of Temporal Distributions of High, Low, and Zero Cohort Morbidity of Cumulative First Treatment Bovine Respiratory Disease and Their Associations with Demographic, Health, and Performance Outcomes in US Feedlot Cattle. Vet Sci 2023; 10:vetsci10020089. [PMID: 36851393 PMCID: PMC9964310 DOI: 10.3390/vetsci10020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Timing and magnitude of bovine respiratory disease (BRD) can impact intervention and overall economics of cattle on feed. Furthermore, there is a need to better describe when cattle are being treated for BRD. The first objective was to perform a cluster analysis on the temporal distributions of cumulative first treatment BRD from HIGH (≥15% of cattle received treated for BRD) and LOW cohorts (>0 and <15% of cattle received treated for BRD) to assess cohort-level timing (days on feed) of BRD first treatments. The second objective was to determine associations among cluster groups (temporal patterns) and demographic risk factors, health outcomes, and performance. Cluster analysis determined that optimal number of clustering groups for the HIGH morbidity cohort was six clusters and LOW morbidity cohort was seven clusters. Cohorts with zero BRD treatment records were added for statistical comparisons. Total death loss, BRD morbidity, average daily gain (ADG), railing rate, days to 50% BRD, cattle received, shrink, arrival weight, and sex were associated with temporal groups (p < 0.05). These data could be used as a tool for earlier identification and potential interventions for cohorts based on the BRD temporal pattern.
Collapse
Affiliation(s)
- Blaine Johnson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66505, USA
| | - Brad White
- Department of Clinical Sciences, College of Veterinary Medicine, Beef Cattle Institute, Kansas State University, Manhattan, KS 66505, USA
- Correspondence: ; Tel.: +1-785-564-7459
| | - Phillip Lancaster
- Department of Clinical Sciences, College of Veterinary Medicine, Beef Cattle Institute, Kansas State University, Manhattan, KS 66505, USA
| | - Robert Larson
- Department of Clinical Sciences, College of Veterinary Medicine, Beef Cattle Institute, Kansas State University, Manhattan, KS 66505, USA
| |
Collapse
|
4
|
Impact of Water Sources and Shared Fence Lines on Bovine Respiratory Disease Incidence in the First 45 Days on Feed. Vet Sci 2022; 9:vetsci9110646. [PMID: 36423094 PMCID: PMC9697601 DOI: 10.3390/vetsci9110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Bovine respiratory disease (BRD) is a frequent disease in feedlot cattle, but little is known on the role of pen housing conditions. The objective of this research is to use a retrospective analysis with data from 10 U.S. feedlots to determine potential associations between BRD risk during the first 45 days after arrival with pen-level management factors including the number of water sources, shared water sources, and shared fence lines. Generalized linear mixed models were used to evaluate associations between management factors, cattle demographics, and BRD incidence. The effect of shared water sources on BRD risk was modified by arrival weight and cohort size (p < 0.05). Cattle with two water sources had lower BRD morbidity (5.55% ± 0.98) compared to cattle with one water source (8.80% ± 1.50) when arrival weight was 227 kg to 272 kg, while there were few differences in heavier weight cattle. Cattle with two water sources had lower BRD morbidity (3.11% ± 0.56) compared to one water (5.50% ± 0.10) when cohort size was 100−175 head, but there were no BRD morbidity differences when bigger or smaller cohorts were evaluated. Shared fence lines and water sources were associated with BRD risk; however, no biologically meaningful results were identified. The number of water sources was associated with BRD risk, and effects were modified by cohort size and arrival weight.
Collapse
|
5
|
Wisnieski LC, Amrine DE, Cernicchiaro N, Sanderson MW, Renter DG. Weather conditions associated with death attributed to bovine respiratory disease complex in high-risk auction market-sourced male beef calves. Am J Vet Res 2021; 82:644-652. [PMID: 34296944 DOI: 10.2460/ajvr.82.8.644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate associations between weather conditions and management factors with the incidence of death attributable to bovine respiratory disease complex (BRDC) in high-risk auction-sourced beef calves. ANIMALS Cohorts (n = 3,339) of male beef calves (545,866) purchased by 1 large cattle feeding operation from 216 locations and transported to 1 of 89 feeding locations (backgrounding location or feedlot) with similar management protocols. PROCEDURES Associations between weather conditions and management factors on the day of purchase (day P) and during the first week at the feeding location and cumulative BRDC mortality incidence within the first 60 days on feed were estimated in a mixed-effects negative binomial regression model. RESULTS Significant factors in the final model were weaning status; degree of commingling; body weight; transport distance; season; precipitation, mean wind speed, and maximum environmental temperature on day P; environmental temperature range in the first week after arrival at the feeding location; and interactions between distance and wind speed and between body weight and maximum environmental temperature. Precipitation and wind speed on day P were associated with lower cumulative BRDC mortality incidence, but wind speed was associated only among calves transported long distances (≥ 1,082.4 km). Higher mean maximum temperature on day P increased the incidence of cumulative mortality among calves with low body weights (< 275.5 kg). CONCLUSIONS AND CLINICAL RELEVANCE Several weather conditions on day P and during the first week after arrival were associated with incidence of BRDC mortality. The results may have implications for health- and economic-risk management, especially for high-risk calves and calves that are transported long distances.
Collapse
Affiliation(s)
- Lauren C Wisnieski
- Center for Animal and Human Health in Appalachia, Lincoln Memorial University, Harrogate, TN 37752
- Center for Outcomes Research and Epidemiology, Kansas State University, Manhattan, KS 66506
| | - David E Amrine
- Center for Outcomes Research and Epidemiology, Kansas State University, Manhattan, KS 66506
- Beef Cattle Institute, Kansas State University, Manhattan, KS 66506
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, Kansas State University, Manhattan, KS 66506
| | - Michael W Sanderson
- Center for Outcomes Research and Epidemiology, Kansas State University, Manhattan, KS 66506
| | - David G Renter
- Center for Outcomes Research and Epidemiology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
6
|
Re-Introduction of Bovine Viral Diarrhea Virus in a Disease-Free Region: Impact on the Affected Cattle Herd and Diagnostic Implications. Pathogens 2021; 10:pathogens10030360. [PMID: 33803542 PMCID: PMC8002923 DOI: 10.3390/pathogens10030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bovine viral diarrhea (BVD) is one of the most important infectious cattle diseases worldwide. The major source of virus transmission is immunotolerant, persistently infected (PI) calves, which makes them the key target of control programs. In the German federal state of Saxony-Anhalt, a very low prevalence was achieved, with more than 99.8% of the cattle herds being free from PI animals since the year 2013. In 2017, BVD virus was detected in a previously disease-free holding (herd size of ~380 cows, their offspring, and fattening bulls). The purchase of two so-called Trojan cows, i.e., dams pregnant with a PI calf, was identified as the source of infection. The births of the PI animals resulted in transient infections of in-contact dams, accompanied by vertical virus transmission to their fetuses within the critical timeframe for the induction of PI calves. Forty-eight days after the birth of the first PI calf, all animals in close contact with the Trojan cows during their parturition period were blood-sampled and serologically examined by a neutralization test and several commercial ELISAs. The resulting seroprevalence strongly depended on the applied test system. The outbreak could be stopped by the immediate elimination of every newborn PI calf and vaccination, and since 2018, no BVD cases have occurred.
Collapse
|
7
|
Cuevas-Gómez I, McGee M, McCabe M, Cormican P, O'Riordan E, McDaneld T, Earley B. Growth performance and hematological changes of weaned beef calves diagnosed with respiratory disease using respiratory scoring and thoracic ultrasonography. J Anim Sci 2021; 98:5936636. [PMID: 33095858 DOI: 10.1093/jas/skaa345] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
This study investigated 1) the effect of clinical bovine respiratory disease (BRD) and associated lung consolidations on growth performance and hematological profiles of recently weaned beef calves and 2) the relationship between clinical respiratory signs and lung consolidation detected by thoracic ultrasonography (TUS). One hundred and fifty-three weaned beef calves (209 days old [SD: 35.8] and 306 kg [SD: 26.3], at arrival) purchased and transported from auction markets were accommodated indoors in concrete slatted floor pens. Calves were weighed weekly from arrival until day 28 and on day 65 post-arrival. Assessment of BRD and blood sample collection for hematological profiles were performed on scheduled days (at arrival, on days 7, 14, and 28) and on other days upon BRD diagnosis. Animals were assessed for BRD using a total clinical respiratory score (CRS) of five clinical signs (rectal temperature, ear position, cough, nasal secretion, and eye secretion with each ranging from normal [0] to abnormal [3]) and TUS scores (normal [0] to lung consolidation ≥ 1 cm2 [2]). Based on CRS, 35% of calves were CRS+ (CRS ≥ 5) and 65% were CRS- (CRS < 5). Although no lung consolidations (TUS-) were detected at arrival, 34% of calves developed lung consolidation (≥1 cm2) (TUS+) during the first 28 d post-arrival. Only fever (>39.6 °C) and nasal discharge were weakly associated (r = 0.19, P <0.05) with lung consolidation. On the day of BRD detection, neutrophil number and neutrophil:lymphocyte ratio were 58% and 73% greater, respectively, in BRD calves with lung consolidation compared with healthy calves. From day 0 to 65, calf average daily gain (ADG) did not differ (P >0.05) between CRS+ and CRS- calves but was 0.09 kg/d lower (P < 0.05) for TUS+ compared with TUS- calves. Calves classified as BRD (CRS + TUS ≥ 5) with lung consolidation had lower (P < 0.05) ADG from arrival until day 28 than healthy calves and BRD calves without lung consolidation (0.11 ± 0.10 vs. 0.53 ± 0.07 vs. 0.57 ± 0.10 kg/d, respectively); however, no differences in ADG were observed from day 0 to 65. Conventional methods to diagnose BRD failed to detect calves with lung lesions. TUS is a useful tool to detect lung lesions and its implementation in combination with CRS should provide a more accurate and early diagnosis of BRD, which is fundamental to successful treatment, animal welfare, and growth performance.
Collapse
Affiliation(s)
- Inmaculada Cuevas-Gómez
- Teagasc, Animal & Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| | - Mark McGee
- Teagasc, Animal & Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| | - Matthew McCabe
- Teagasc, Animal & Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| | - Paul Cormican
- Teagasc, Animal & Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| | - Edward O'Riordan
- Teagasc, Animal & Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| | - Tara McDaneld
- US Meat Animal Research Center, USDA, ARS, Clay Center, NE
| | - Bernadette Earley
- Teagasc, Animal & Grassland Research and Innovation Centre (AGRIC), Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|