1
|
Amenu K, McIntyre KM, Moje N, Knight-Jones T, Rushton J, Grace D. Approaches for disease prioritization and decision-making in animal health, 2000-2021: a structured scoping review. Front Vet Sci 2023; 10:1231711. [PMID: 37876628 PMCID: PMC10593474 DOI: 10.3389/fvets.2023.1231711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/06/2023] [Indexed: 10/26/2023] Open
Abstract
This scoping review identifies and describes the methods used to prioritize diseases for resource allocation across disease control, surveillance, and research and the methods used generally in decision-making on animal health policy. Three electronic databases (Medline/PubMed, Embase, and CAB Abstracts) were searched for articles from 2000 to 2021. Searches identified 6, 395 articles after de-duplication, with an additional 64 articles added manually. A total of 6, 460 articles were imported to online document review management software (sysrev.com) for screening. Based on inclusion and exclusion criteria, 532 articles passed the first screening, and after a second round of screening, 336 articles were recommended for full review. A total of 40 articles were removed after data extraction. Another 11 articles were added, having been obtained from cross-citations of already identified articles, providing a total of 307 articles to be considered in the scoping review. The results show that the main methods used for disease prioritization were based on economic analysis, multi-criteria evaluation, risk assessment, simple ranking, spatial risk mapping, and simulation modeling. Disease prioritization was performed to aid in decision-making related to various categories: (1) disease control, prevention, or eradication strategies, (2) general organizational strategy, (3) identification of high-risk areas or populations, (4) assessment of risk of disease introduction or occurrence, (5) disease surveillance, and (6) research priority setting. Of the articles included in data extraction, 50.5% had a national focus, 12.3% were local, 11.9% were regional, 6.5% were sub-national, and 3.9% were global. In 15.2% of the articles, the geographic focus was not specified. The scoping review revealed the lack of comprehensive, integrated, and mutually compatible approaches to disease prioritization and decision support tools for animal health. We recommend that future studies should focus on creating comprehensive and harmonized frameworks describing methods for disease prioritization and decision-making tools in animal health.
Collapse
Affiliation(s)
- Kebede Amenu
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Microbiology, Immunology and Veterinary, Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - K. Marie McIntyre
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nebyou Moje
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Theodore Knight-Jones
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Jonathan Rushton
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Delia Grace
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Food and Markets Department, Natural Resources Institute, University of Greenwich, London, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
2
|
Crozet G, Rivière J, Rapenne E, Cliquet F, Robardet E, Dufour B. Quantitative risk assessment of rabies being introduced into mainland France through worldwide noncommercial dog and cat movements. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:896-916. [PMID: 35728942 DOI: 10.1111/risa.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
France has been rabies-free among nonflying mammals since 2001. Despite this status, the rabies virus has been introduced several times through noncommercial pet movements, posing a threat of infection by this 100%-lethal zoonosis among local animal and human populations. To quantify the risk of rabies being introduced through worldwide noncommercial dog and cat movements, we performed a quantitative risk assessment using stochastic scenario tree modeling. The mean annual probability of at least one rabies introduction incident was 0.35 (median: 0.24, 90% prediction interval (PI) [0.04; 0.98]) and the mean annual number of rabies-infected pets introduced through pet movements was 0.96 (median: 0.27, 90% PI [0.04; 3.88]). These results highlight a nonnegligible, even high risk due to the associated consequences of such events. In alternative scenario testing, preventive anti-rabies vaccination proved to be an effective measure since removing the vaccination requirement led to a > 15-fold increase in risk. The serological testing requirement had less of an effect (approximately two-fold increase when removed) and the posttest waiting period to ensure that antibodies were not linked to an infection had a negligible effect. Any change in pet owner compliance, especially regarding vaccination, could have a major impact on the risk. This study also shows that reinforced border control staff training could be more effective in reducing risk than more frequent checks. These results provide quantitative data for assessing the probability of the rabies virus entering France, and could help policymakers decrease this risk in rabies-free areas.
Collapse
Affiliation(s)
- Guillaume Crozet
- Anses, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale USC EPIMAI, Maisons-Alfort, France
| | - Julie Rivière
- Anses, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale USC EPIMAI, Maisons-Alfort, France
| | - Elisa Rapenne
- Anses, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale USC EPIMAI, Maisons-Alfort, France
- Ecole Nationale des Services Vétérinaires, VetAgro Sup, Marcy-l'Étoile, France
| | - Florence Cliquet
- Nancy OIE/WHO/EU Laboratory for Rabies and Wildlife, Anses, Malzéville, France
| | - Emmanuelle Robardet
- Nancy OIE/WHO/EU Laboratory for Rabies and Wildlife, Anses, Malzéville, France
| | - Barbara Dufour
- Anses, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale USC EPIMAI, Maisons-Alfort, France
| |
Collapse
|
3
|
Rupprecht CE, Mani RS, Mshelbwala PP, Recuenco SE, Ward MP. Rabies in the Tropics. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:28-39. [PMID: 35371908 PMCID: PMC8960221 DOI: 10.1007/s40475-022-00257-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/25/2022]
Abstract
Purpose of Review Rabies is an ancient yet still neglected tropical disease (NTD). This review focuses upon highlights of recent research and peer-reviewed communications on the underestimated tropical burden of disease and its management due to the complicated dynamics of virulent viral species, diverse mammalian reservoirs, and tens of millions of exposed humans and animals - and how laboratory-based surveillance at each level informs upon pathogen spread and risks of transmission, for targeted prevention and control. Recent Findings While both human and rabies animal cases in enzootic areas over the past 5 years were reported to PAHO/WHO and OIE by member countries, still there is a huge gap between these "official" data and the need for enhanced surveillance efforts to meet global program goals. Summary A review of the complex aspects of rabies perpetuation in human, domestic animal, and wildlife communities, coupled with a high fatality rate despite the existence of efficacious biologics (but no therapeutics), warrants the need for a One Health approach toward detection via improved laboratory-based surveillance, with focal management at the viral source. More effective methods to prevent the spread of rabies from enzootic to free zones are needed.
Collapse
Affiliation(s)
- Charles E. Rupprecht
- LYSSA LLC, Atlanta, GA USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL USA
| | - Reeta S. Mani
- Department of Neurovirology, WHO Collaborating Centre for Reference and Research in Rabies, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka India
| | - Philip P. Mshelbwala
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
- Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Sergio E. Recuenco
- Facultad de Medicina San Fernando, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Michael P. Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW Australia
| |
Collapse
|
4
|
Ward MP, Brookes VJ. Rabies in Our Neighbourhood: Preparedness for an Emerging Infectious Disease. Pathogens 2021; 10:375. [PMID: 33804778 PMCID: PMC8003993 DOI: 10.3390/pathogens10030375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/02/2023] Open
Abstract
Emerging infectious disease (EID) events have the potential to cause devastating impacts on human, animal and environmental health. A range of tools exist which can be applied to address EID event detection, preparedness and response. Here we use a case study of rabies in Southeast Asia and Oceania to illustrate, via nearly a decade of research activities, how such tools can be systematically integrated into a framework for EID preparedness. During the past three decades, canine rabies has spread to previously free areas of Southeast Asia, threatening the rabies-free status of countries such as Timor Leste, Papua New Guinea and Australia. The program of research to address rabies preparedness in the Oceanic region has included scanning and surveillance to define the emerging nature of canine rabies within the Southeast Asia region; field studies to collect information on potential reservoir species, their distribution and behaviour; participatory and sociological studies to identify priorities for disease response; and targeted risk assessment and disease modelling studies. Lessons learnt include the need to develop methods to collect data in remote regions, and the need to continuously evaluate and update requirements for preparedness in response to evolving drivers of emerging infectious disease.
Collapse
Affiliation(s)
- Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Victoria J. Brookes
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
5
|
Evaluation of the Worldwide Occurrence of Rabies in Dogs and Cats Using a Simple and Homogenous Framework for Quantitative Risk Assessments of Rabies Reintroduction in Disease-Free Areas through Pet Movements. Vet Sci 2020; 7:vetsci7040207. [PMID: 33353001 PMCID: PMC7766548 DOI: 10.3390/vetsci7040207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Dog and cat rabies cases imported from rabies enzootic countries represent a major threat for areas that have acquired rabies-free status and quantitative risk analyses (QRAs) are developed in order to assess this risk of rabies reintroduction through dog and cat movements. Herein we describe a framework to evaluate dog and cat rabies incidence levels in exporting countries along with the associated uncertainty for such QRAs. For enzootic dog rabies areas (EDRAs), we extended and adapted a previously published method to specify the relationship between dog rabies vaccination coverage and canine rabies incidence; the relationship between dog and cat rabies incidences; and then to predict annual dog and cat rabies incidences. In non-enzootic dog rabies areas (nEDRAs), we provided annual incidence based on declared dog and cat rabies cases. For EDRAs, we predicted an annual incidence potentially greater than 1.5% in dogs and about ten times lower in cats with a high burden in Africa and Asia but much lower in Latin America. In nEDRAs, the occurrence of rabies was lower and of similar magnitude in dogs and cats. However, wildlife could still potentially infect dogs and cats through spillover events. This framework can directly be incorporated in QRAs of rabies reintroduction.
Collapse
|
6
|
Britton A. Reaching the zero by 30 dog-mediated human rabies goal. MICROBIOLOGY AUSTRALIA 2020. [DOI: 10.1071/ma20004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is unacceptable that as we advance into the 21st century rabies is still a threat to humans and animals alike. Given public health interventions that focus solely on disease prevention in humans have no effect on the reduction of infection in the reservoir hosts, the most effective way to combat human rabies infection is to control the disease transmission by mass vaccination of the animal source, e.g. dogs and wildlife1. This short communication focuses on the global strategic target to end human deaths from dog-mediated rabies by 20302 in line with the Sustainable Development Goals by providing recent updates on World Health Organization (WHO) and OIE guidelines3–5 and recommendations as well as highlighting Australian rabies research activities to prevent an incursion of rabies into the country.
Collapse
|
7
|
Brookes VJ, Dürr S, Ward MP. Rabies-induced behavioural changes are key to rabies persistence in dog populations: Investigation using a network-based model. PLoS Negl Trop Dis 2019; 13:e0007739. [PMID: 31545810 PMCID: PMC6776358 DOI: 10.1371/journal.pntd.0007739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/03/2019] [Accepted: 08/29/2019] [Indexed: 11/19/2022] Open
Abstract
Canine rabies was endemic pre-urbanisation, yet little is known about how it persists in small populations of dogs typically seen in rural and remote regions. By simulating rabies outbreaks in such populations (50-90 dogs) using a network-based model, our objective was to determine if rabies-induced behavioural changes influence disease persistence. Behavioural changes-increased bite frequency and increased number or duration of contacts (disease-induced roaming or paralysis, respectively)-were found to be essential for disease propagation. Spread occurred in approximately 50% of model simulations and in these, very low case rates (2.0-2.6 cases/month) over long durations (95% range 20-473 days) were observed. Consequently, disease detection is a challenge, risking human infection and spread to other communities via dog movements. Even with 70% pre-emptive vaccination, spread occurred in >30% of model simulations (in these, median case rate was 1.5/month with 95% range of 15-275 days duration). We conclude that the social disruption caused by rabies-induced behavioural change is the key to explaining how rabies persists in small populations of dogs. Results suggest that vaccination of substantially greater than the recommended 70% of dog populations is required to prevent rabies emergence in currently free rural areas.
Collapse
Affiliation(s)
- Victoria J. Brookes
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, Australia
| | - Salome Dürr
- Veterinary Public Health Institute, University of Bern, Liebefeld, Switzerland
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
| |
Collapse
|
8
|
Amanatin A, Sudarnika E, Lukman DW, Wibawan IWT. Risk assessment on rabies entry through hunting dog movement with semi-quantitative approach to Sumatera Island, Indonesia. J Adv Vet Anim Res 2019; 6:148-157. [PMID: 31453184 PMCID: PMC6702887 DOI: 10.5455/javar.2019.f325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: The objective of this study was to assess the risk of rabies entry through the movement of hunting dog from Garut District to Sumatera Island with a semi-quantitative approach. Materials and Methods: Rabies entry assessment used the standard risk analysis according to the World Organization for Animal Health, with a semi-quantitative approach referring to Australian Biosecurity. Risk estimation calculation used Microsoft Excel and probabilities were estimated using Monte Carlo stochastic simulation modeling with @Risk (Palisade Corporation). Results: Risk estimation were considered as “very low” with a 0.02 (90%; 0.01–0.03) probability. The probability of undetected rabies-infected dog during Veterinary Certificate issuance [node probability (NP4)] was considered as the highest, with “moderate” likelihood and 0.63 (90%; 0.51–0.75) of probability value. The number of dog movement to Sumatera reached 27,000 heads per year which 5,050 heads of them come from Garut District. There were 2 of 100 dogs from Garut District entered to Sumatera possibly infected by rabies. The five highest parameters most determinant of the risk were dog vaccination before transported (0.66), dog obtained from other District (0.41), vaccination program (0.32), serologically test (0.27), and history of vaccination (0.23). Conclusion: Risk estimation from assessing on rabies entry to Sumatera through hunting dogs movement from Garut District was considered “very low.” Risk mitigation is focused on the highest parameters that contribute the most to risk based on the results of the sensitivity analysis. Semi-quantitative likelihood evaluations can consider the volume of dog traffic which is an important issue in risk analysis which is not easy to get with a simpler qualitative approach.
Collapse
Affiliation(s)
- Amanatin Amanatin
- Veterinary Public Health, Veterinary Medicine Faculty, Graduate School of Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Etih Sudarnika
- Department of Animal Disease and Veterinary Public Health, Veterinary Medicine Faculty, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Denny Widaya Lukman
- Department of Animal Disease and Veterinary Public Health, Veterinary Medicine Faculty, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - I Wayan Teguh Wibawan
- Department of Animal Disease and Veterinary Public Health, Veterinary Medicine Faculty, Bogor Agricultural University, Bogor, West Java, Indonesia
| |
Collapse
|
9
|
Gabriele-Rivet V, Arsenault J, Wilhelm B, Brookes VJ, Newsome TM, Ward MP. A Scoping Review of Dingo and Wild-Living Dog Ecology and Biology in Australia to Inform Parameterisation for Disease Spread Modelling. Front Vet Sci 2019; 6:47. [PMID: 30891452 PMCID: PMC6411765 DOI: 10.3389/fvets.2019.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Dingoes and wild-living dogs in Australia, which include feral domestic dogs and dingo-dog hybrids, play a role as reservoirs of disease. In the case of an exotic disease incursion-such as rabies-these reservoirs could be a threat to the health of humans, domestic animals and other wildlife in Australia. Disease spread models are needed to explore this impact and develop mitigation strategies for responding to an incursion. Our study aim was to describe relevant information from the literature, using a scoping review, on specific topics related to dingo and wild-living dog ecology and biology (topics of interest) in Australia to inform parameterisation of disease spread modelling and identify major research gaps. Methods: A broad electronic search was conducted in five bibliographic databases and grey literature. Two levels of screening and two levels of data extraction were each performed independently by two reviewers. Data extracted included topics of interest investigated, type of population sampled, the presence of lethal control, type of environment, years of collection and GPS coordinates of study sites. Results: From 1666 records captured, the screening process yielded 229 individual studies published between 1862 and 2016. The most frequently reported topics of interest in studies were index of abundance (n = 93) and diet (n = 68). Among the three key parameters in disease spread modelling (i.e., density, contacts and home range), data on density and contacts were identified as major research gaps in the literature due to the small number of recent studies on these topics and the scarcity of quantitative estimates. The research reviewed was mostly located around central Australia and the east coast, including a few studies on density, contacts and home range. Data from these regions could potentially be used to inform parameterisation for disease spread modelling of dingoes and wild-living dogs. However, the number of studies is limited in equatorial and tropical climate zones of northern Australia, which is a high-risk area for a rabies incursion. Conclusions: Research in northern regions of Australia, especially to generate data regarding density, contacts and home ranges, should be prioritised for future research on dingoes and wild-living dogs.
Collapse
Affiliation(s)
- Vanessa Gabriele-Rivet
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Julie Arsenault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | - Victoria J. Brookes
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Thomas M. Newsome
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
10
|
The social networks of free-roaming domestic dogs in island communities in the Torres Strait, Australia. Prev Vet Med 2018; 181:104534. [PMID: 30243654 DOI: 10.1016/j.prevetmed.2018.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
Abstract
Social structure creates heterogeneity of interactions between individuals, thus influencing infectious disease spread. The objective of this study was to describe and characterise the social structure of free-roaming dog populations in three communities in the Torres Strait, Australia. Dogs in Kubin, Saibai, and Warraber communities were collared with GPS units that recorded locations at 15 s intervals for up to 1 week, and datasets were obtained from 24 (62% of the dog population), 23 (53%) and 21 (51%) dogs in each community, respectively. An association (potential contact) between dogs was defined as proximity within a spatio-temporal window of 5 m for 30 s. Networks were constructed for each dog population: 1. nodes were individual dogs, and 2. edges were weighted according to the duration of spatio-temporal association between pairs of dogs as a proportion of their simultaneous time monitored. Network statistics were calculated for each population and the robustness of networks to the duration of association between pairs of dogs was assessed in terms of efficiency, degree distribution and fragmentation (number of components). Dog social networks had 'small-world' structures, with characteristic clustering and low average shortest-path length between individuals. Overall, all three networks were highly connected in terms of degree distribution and global and local efficiency, but the median tie strength (2-13.5 min) was low. Centrality and the duration of association (tie-strength) between dogs were significantly different between communities. The Kubin network was least robust to fragmentation when ties of short duration were successively removed (14 components with minimum tie strength of 2 h). In contrast, the Warraber dog network was relatively robust with 7 components at minimum tie strength of 2 h as well as high local efficiency within components. We conclude that whilst infectious disease that requires a short duration of contact for transmission is likely to spread rapidly between and within clusters in all three networks in this study, fragmentation of networks - once ties of short duration are removed - is likely to limit spread of disease that requires a longer duration of direct contact. The network information in this study is useful as a foundation for disease spread modelling and to investigate control strategies such as movement restrictions in dog populations.
Collapse
|
11
|
Brookes VJ, Degeling C, Ward MP. Going viral in PNG – Exploring routes and circumstances of entry of a rabies-infected dog into Papua New Guinea. Soc Sci Med 2018; 196:10-18. [DOI: 10.1016/j.socscimed.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/29/2022]
|