1
|
Robert E, Goonewardene K, El Kanoa I, Hochman O, Nfon C, Ambagala A. Oral Fluids for the Early Detection of Classical Swine Fever in Commercial Level Pig Pens. Viruses 2024; 16:318. [PMID: 38543685 PMCID: PMC10974009 DOI: 10.3390/v16030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 05/23/2024] Open
Abstract
The early detection of classical swine fever (CSF) remains a key challenge, especially when outbreaks are caused by moderate and low-virulent CSF virus (CSFV) strains. Oral fluid is a reliable and cost-effective sample type that is regularly surveilled for endemic diseases in commercial pig herds in North America. Here, we explored the possibility of utilizing oral fluids for the early detection of CSFV incursions in commercial-size pig pens using two independent experiments. In the first experiment, a seeder pig infected with the moderately-virulent CSFV Pinillos strain was used, and in the second experiment, a seeder pig infected with the highly-virulent CSFV Koslov strain was used. Pen-based oral fluid samples were collected daily and individual samples (whole blood, swabs) every other day. All samples were tested by a CSFV-specific real-time RT-PCR assay. CSFV genomic material was detected in oral fluids on the seventh and fourth day post-introduction of the seeder pig into the pen, in the first and second experiments, respectively. In both experiments, oral fluids tested positive before the contact pigs developed viremia, and with no apparent sick pigs in the pen. These results indicate that pen-based oral fluids are a reliable and convenient sample type for the early detection of CSF, and therefore, can be used to supplement the ongoing CSF surveillance activities in North America.
Collapse
Affiliation(s)
- Erin Robert
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; (E.R.); (K.G.); (I.E.K.); (O.H.); (C.N.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Kalhari Goonewardene
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; (E.R.); (K.G.); (I.E.K.); (O.H.); (C.N.)
| | - Ian El Kanoa
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; (E.R.); (K.G.); (I.E.K.); (O.H.); (C.N.)
| | - Orie Hochman
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; (E.R.); (K.G.); (I.E.K.); (O.H.); (C.N.)
| | - Charles Nfon
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; (E.R.); (K.G.); (I.E.K.); (O.H.); (C.N.)
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; (E.R.); (K.G.); (I.E.K.); (O.H.); (C.N.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Alvarez Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Suffredini E, Fernandez Escamez P, Gonzales‐Barron U, Roberts H, Ru G, Simmons M, Cruz RB, Lourenço Martins J, Messens W, Ortiz‐Pelaez A, Simon AC, De Cesare A. Assessment on the efficacy of methods 2 to 5 and method 7 set out in Commission Regulation (EU) No 142/2011 to inactivate relevant pathogens when producing processed animal protein of porcine origin intended to feed poultry and aquaculture animals. EFSA J 2023; 21:e08093. [PMID: 37416785 PMCID: PMC10320699 DOI: 10.2903/j.efsa.2023.8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
An assessment was conducted on the level of inactivation of relevant pathogens that could be present in processed animal protein of porcine origin intended to feed poultry and aquaculture animals when methods 2 to 5 and method 7, as detailed in Regulation (EU) No 142/2011, are applied. Five approved scenarios were selected for method 7. Salmonella Senftenberg, Enterococcus faecalis, spores of Clostridium perfringens and parvoviruses were shortlisted as target indicators. Inactivation parameters for these indicators were extracted from extensive literature search and a recent EFSA scientific opinion. An adapted Bigelow model was fitted to retrieved data to estimate the probability that methods 2 to 5, in coincidental and consecutive modes, and the five scenarios of method 7 are able to achieve a 5 log10 and a 3 log10 reduction of bacterial indicators and parvoviruses, respectively. Spores of C. perfringens were the indicator with the lowest probability of achieving the target reduction by methods 2 to 5, in coincidental and consecutive mode, and by the five considered scenarios of method 7. An expert knowledge elicitation was conducted to estimate the certainty of achieving a 5 log10 reduction of spores of C. perfringens considering the results of the model and additional evidence. A 5 log10 reduction of C. perfringens spores was judged: 99-100% certain for methods 2 and 3 in coincidental mode; 98-100% certain for method 7 scenario 3; 80-99% certain for method 5 in coincidental mode; 66-100% certain for method 4 in coincidental mode and for method 7 scenarios 4 and 5; 25-75% certain for method 7 scenario 2; and 0-5% certain for method 7 scenario 1. Higher certainty is expected for methods 2 to 5 in consecutive mode compared to coincidental mode.
Collapse
|
3
|
Henao-Diaz A, Zhang M, Giménez-Lirola L, Ramirez E, Gauger P, Baum DH, Clavijo MJ, Rotolo M, Main RG, Zimmerman J. Adapting a porcine reproductive and respiratory syndrome virus (PRRSV) oral fluid antibody ELISA to routine surveillance. Prev Vet Med 2021; 188:105250. [PMID: 33429134 DOI: 10.1016/j.prevetmed.2020.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Distinct from tests used in diagnostics, tests used in surveillance must provide for detection while avoiding false alarms, i.e., acceptable diagnostic sensitivity but high diagnostic specificity. In the case of the reproductive and respiratory syndrome virus (PRRSV), RNA detection meets these requirements during the period of viremia, but antibody detection better meets these requirements in the post-viremic stage of the infection. Using the manufacturer's recommended cut-off (S/P ≥ 0.4), the diagnostic specificity of a PRRSV oral fluid antibody ELISA (IDEXX Laboratories, Inc., Westbrook, ME, USA) evaluated in this study was previously reported as ≥ 97 %. The aim of this study was to improve its use in surveillance by identifying a cut-off that would increase diagnostic specificity yet minimally impact its diagnostic sensitivity. Three sample sets were used to achieve this goal: oral fluids (n = 596) from pigs vaccinated with a modified live PRRSV vaccine under experimental conditions, field oral fluids (n = 1574) from 94 production sites of known negative status, and field oral fluids (n = 1380) from 211 sites of unknown PRRSV status. Based on the analysis of samples of known status (experimental samples and field samples from negative sites), a cut-off of S/P ≥ 1.0 resulted in a diagnostic specificity of 99.2 (95 % CI: 98.8, 99.7) and a diagnostic sensitivity of 96.5 (95 % CI: 85.2, 99.2). Among 211 sites of unknown status, 81 sites were classified as antibody positive using the manufacturer's cut-off; 20 of which were reclassified as negative using a cut-off of S/P ≥ 1.0. Further analysis showed that these 20 sites had a small proportion of samples (18.0 %) with S/P values just exceeding the manufacturer's cut-off (x̄ = 0.5). Whereas the remainder of positive sites (n = 61) had a high proportion of samples (76.3 %) with high S/P values (x̄ = 6.6). Thus, the manufacturer's cut-off (S/P ≥ 0.4) is appropriate for diagnostic applications, but a cut-off of S/P ≥ 1.0 provided the higher specificity required for surveillance. A previously unreported finding in this study was a statistically significant association between unexpected reactors and specific production sites and animal ages or stages. While beyond the scope of this study, these data suggested that certain animal husbandry or production practices may be associated with non-specific reactions.
Collapse
Affiliation(s)
- Alexandra Henao-Diaz
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Min Zhang
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Luis Giménez-Lirola
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Esteban Ramirez
- Grupo Porcícola Mexicano Kekén. Mérida, Yucatán, 97100, Mexico
| | - Phil Gauger
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - David H Baum
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Maria J Clavijo
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA; PIC North America, 100 Bluegrass Commons Blvd. Ste. 2200, Hendersonville, TN, 37075, USA
| | - Marisa Rotolo
- PIC North America, 100 Bluegrass Commons Blvd. Ste. 2200, Hendersonville, TN, 37075, USA
| | - Rodger G Main
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Jeffrey Zimmerman
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
4
|
Henao-Diaz A, Giménez-Lirola L, Baum DH, Zimmerman J. Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porcine Health Manag 2020; 6:28. [PMID: 33082999 PMCID: PMC7569198 DOI: 10.1186/s40813-020-00168-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Recent decades have seen both rapid growth and extensive consolidation in swine production. As a collateral effect, these changes have exacerbated the circulation of viruses and challenged our ability to prevent, control, and/or eliminate impactful swine diseases. Recent pandemic events in human and animal health, e.g., SARS-CoV-2 and African swine fever virus, highlight the fact that clinical observations are too slow and inaccurate to form the basis for effective health management decisions: systematic processes that provide timely, reliable data are required. Oral fluid-based surveillance reflects the adaptation of conventional testing methods to an alternative diagnostic specimen. The routine use of oral fluids in commercial farms for PRRSV and PCV2 surveillance was first proposed in 2008 as an efficient and practical improvement on individual pig sampling. Subsequent research expanded on this initial report to include the detection of ≥23 swine viral pathogens and the implementation of oral fluid-based surveillance in large swine populations (> 12,000 pigs). Herein we compile the current information regarding oral fluid collection methods, testing, and surveillance applications in swine production.
Collapse
Affiliation(s)
- Alexandra Henao-Diaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - David H. Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
5
|
van der Zande LE, Dunkelberger JR, Rodenburg TB, Bolhuis JE, Mathur PK, Cairns WJ, Keyes MC, Eggert JM, Little EA, Dee SA, Knol EF. Quantifying Individual Response to PRRSV Using Dynamic Indicators of Resilience Based on Activity. Front Vet Sci 2020; 7:325. [PMID: 32671109 PMCID: PMC7326935 DOI: 10.3389/fvets.2020.00325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Pigs are faced with various perturbations throughout their lives, some of which are induced by management practices, others by natural causes. Resilience is described as the ability to recover from or cope with a perturbation. Using these data, activity patterns of an individual, as well as deviations from these patterns, can potentially be used to quantify resilience. Dynamic indicators of resilience (DIORs) may measure resilience on a different dimension by calculating variation, autocorrelation and skewness of activity from the absolute activity data. The aim of this study was to investigate the potential of using DIORs of activity, such as average, root mean square error (RMSE), autocorrelation or skewness as indicators of resilience to infection with the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). For this study, individual activity was obtained from 232 pigs equipped with ear tag accelerometers and inoculated with PRRSV between seven and 9 weeks of age. Clinical scores were assigned to each individual at 13 days post-challenge and used to distinguish between a resilient and non-resilient group. Mortality post-challenge was also recorded. Average, RMSE, autocorrelation and skewness of activity were calculated for the pre- and post-challenge phases, as well as the change in activity level pre- vs. post-challenge (i.e., delta). DIORs pre-challenge were expected to predict resilience to PRRSV in the absence of PRRSV infection, whereas DIORs post-challenge and delta were expected to reflect the effect of the PRRSV challenge. None of the pre-challenge DIORs predicted morbidity or mortality post-challenge. However, a higher RMSE in the 3 days post-challenge and larger change in level and RMSE of activity from pre- to post-challenge tended to increase the probability of clinical signs at day 13 post-infection (poor resilience). A higher skewness post-challenge (tendency) and a larger change in skewness from pre- to post-challenge increased the probability of mortality. A decrease in skewness post-challenge lowered the risk of mortality. The post-challenge DIOR autocorrelation was neither linked to morbidity nor to mortality. In conclusion, results from this study showed that post-challenge DIORs of activity can be used to quantify resilience to PRRSV challenge.
Collapse
Affiliation(s)
| | | | - T Bas Rodenburg
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands.,Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | | | | | | | | | - Erin A Little
- Pipestone Applied Research, Pipestone, MN, United States
| | - Scott A Dee
- Pipestone Applied Research, Pipestone, MN, United States
| | - Egbert F Knol
- Topigs Norsvin Research Center, Beuningen, Netherlands
| |
Collapse
|
6
|
Campero LM, Schott F, Gottstein B, Deplazes P, Sidler X, Basso W. Detection of antibodies to Toxoplasma gondii in oral fluid from pigs. Int J Parasitol 2019; 50:349-355. [PMID: 31866312 DOI: 10.1016/j.ijpara.2019.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii-infected pigs play a major role as a source of infection for humans and detection of high-risk herds is essential to implement control measures at the farm level. The aim of this study was to determine whether oral fluid (OF) could be used as a matrix to detect antibodies against T. gondii in infected pigs by immunoblot (IB). For this, OF from experimentally inoculated sows (n = 8) (serial samples) and naturally exposed group-housed fatteners (n = 42 groups, one sample/group) were analysed for IgG and IgA against T. gondii-SAG1 antigen by IB. Simultaneously, each animal was serologically tested for anti-T. gondii IgG by ELISA. Specific IgG was detected in the sera of all inoculated sows from 2 to 3 weeks post inoculation (pi) and in 3.4 to 92% of the pigs in 13 out of 42 groups. Experimentally inoculated sows showed positive OF-IB results for IgA (100%) and IgG (87.5%) at 1.5 weeks pi and continued yielding positive results for IgA (87.5-75%) and IgG (50%) until 4 weeks pi; however, from 8 weeks pi the frequency of detection of both isotypes was lower, despite constantly positive IgG values in serum-ELISA. Interestingly, consecutive daily samplings for 4 days at 13 and 30 weeks pi showed inconsistent results for some sows, showing that the antibody concentration in OF is prone to timely variations. Pooled OF from groups with 91 and 92% of seropositive pigs yielded positive IB results for IgG and IgA. Fattener groups with ≤13% of seropositive pigs gave negative IB results to both isotypes. Our results showed that antibodies to T. gondii can be detected in OF from infected pigs, and that IgA seems to be a more adequate target than IgG. Although OF does not seem to be a robust matrix to assess the serological status for T. gondii in individual animals, this diagnostic approach represents an interesting non-invasive, low-cost and animal welfare friendly option as a screening method at the farm level to determine high exposure to T. gondii in the herd.
Collapse
Affiliation(s)
- Lucía María Campero
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; Immunoparasitology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118 s/n, 1900 La Plata, Argentina; National Scientific and Technical Research Council (CONICET), Godoy Cruz, 2290, C1033AAJ Buenos Aires, Argentina
| | - Franziska Schott
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Bruno Gottstein
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - Xaver Sidler
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Walter Basso
- Institute of Parasitology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; Department of Farm Animals, Division of Swine Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland; Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| |
Collapse
|