1
|
Gelgie AE, Desai SE, Gelalcha BD, Kerro Dego O. Mycoplasma bovis mastitis in dairy cattle. Front Vet Sci 2024; 11:1322267. [PMID: 38515536 PMCID: PMC10956102 DOI: 10.3389/fvets.2024.1322267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Mycoplasma bovis has recently been identified increasingly in dairy cows causing huge economic losses to the dairy industry. M. bovis is a causative agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis media, and many other clinical symptoms in cattle. However, some infected cows are asymptomatic or may not shed the pathogen for weeks to years. This characteristic of M. bovis, along with the lack of adequate testing and identification methods in many parts of the world until recently, has allowed the M. bovis to be largely undetected despite its increased prevalence in dairy farms. Due to growing levels of antimicrobial resistance among wild-type M. bovis isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically resistant to beta-lactam antibiotics that are widely used in dairy farms, there is no effective treatment for M. bovis mastitis. Similarly, there is no commercially available effective vaccine for M. bovis mastitis. The major constraint to developing effective intervention tools is limited knowledge of the virulence factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack of quick and reliable diagnostic methods with high specificity and sensitivity for M. bovis. This review is a summary of the current state of knowledge of the virulence factors, pathogenesis, clinical manifestations, diagnosis, and control of M. bovis mastitis in dairy cows.
Collapse
Affiliation(s)
- Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Sarah E. Desai
- College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, Velázquez-Ordoñez V, Delgadillo-Ruiz L, Zaragoza-Bastida A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet Anim Sci 2023; 21:100306. [PMID: 37547227 PMCID: PMC10400929 DOI: 10.1016/j.vas.2023.100306] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Bovine mastitis is globally considered one of the most important diseases within dairy herds, mainly due to the associated economic losses. The most prevalent etiology are bacteria, classified into contagious and environmental, with Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Escherichia coli and Klebsiella pneumoniae being the most common pathogens associated with mastitis cases. To date these pathogens are resistant to the most common active ingredients used for mastitis treatment. According to recent studies resistance to new antimicrobials has increased, which is why developing of alternative treatments is imperative. Therefore the present review aims to summarize the reports about bovine mastitis along 10 years, emphasizing bacterial etiology, its epidemiology, and the current situation of antimicrobial resistance, as well as the development of alternative treatments for this pathology. Analyzed data showed that the prevalence of major pathogens associated with bovine mastitis varied according to geographical region. Moreover, these pathogens are classified as multidrug-resistant, since the effectiveness of antimicrobials on them has decreased. To date, several studies have focused on the research of alternative treatments, among them vegetal extracts, essential oils, or peptides. Some other works have reported the application of nanotechnology and polymers against bacteria associated with bovine mastitis. Results demonstrated that these alternatives may be effective on bacteria associated with bovine mastitis.
Collapse
Affiliation(s)
- Ana Lizet Morales-Ubaldo
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| | - Benjamín Valladares-Carranza
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Valente Velázquez-Ordoñez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Lucía Delgadillo-Ruiz
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, CP. 98068, Zacatecas, Zacatecas, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| |
Collapse
|
3
|
Kuibagarov M, Abdullina E, Ryskeldina A, Abdigulov B, Amirgazin A, Shevtsov A, Angelos JA. Association of different microbes and pathogenic factors in cases of infectious bovine keratoconjunctivitis in cattle from Eastern Kazakhstan. Vet World 2023; 16:1833-1839. [PMID: 37859972 PMCID: PMC10583875 DOI: 10.14202/vetworld.2023.1833-1839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Infectious bovine keratoconjunctivitis (IBK) causes a significant economic loss to cattle industries in many countries, including Kazakhstan. Although Moraxella bovis is recognized as an etiologic agent of IBK, other bacterial and viral agents have been suspected to play a role in the pathogenesis of this disease. This study aimed to evaluate samples collected from the eyes of IBK-affected cattle in Eastern Kazakhstan at different stages of IBK for the presence of Mor. bovis, Moraxella bovoculi, Mycoplasma bovis, Mycoplasma bovoculi, and Bovine Herpes Virus Type 1 (BHV-1) and to characterize Mor. bovoculi pilA gene sequence diversity from Mor. bovoculi positive samples. Materials and Methods Individual ocular swabs (n = 168) were collected from cattle that had clinical signs of IBK during the summer of 2022 on farms in the Abay region of Kazakhstan. Eye lesion scores (1, 2, and 3) were assigned depending on the degree of ocular damage. Infectious bovine keratoconjunctivitis-associated organisms were detected using a multiplex real-time polymerase chain reaction assay. The Mor. bovoculi pilA gene was sequenced from Mor. bovoculi positive samples. Results Mycoplasma bovis and BHV-1 were not detected in any of the collected samples. Mycoplasma bovoculi was identified in the majority of samples overall, usually in mixed infection with Moraxella spp. Moraxella bovoculi was detected in 76.2% of animals and predominated in animals with eye lesion scores 2 and 3. Mycoplasma bovoculi was detected only in association with Mor. bovis and/or Mor. bovoculi in animals with eye lesion scores 2 and 3. Moraxella bovis was found in 57.7% of animals and was always identified in association with another organism. Sequencing of the pilA gene in 96 samples from Mor. bovoculi positive samples identified five PilA groups. The majority belonged to PilA group A. However, three new PilA groups were identified and designated PilA groups N, O, and P. Conclusion The results indicate a high prevalence of Myc. bovoculi and Mor. bovoculi in eyes of cattle with IBK on livestock farms in Eastern Kazakhstan. Additional novel Mor. bovoculi PilA groups were identified.
Collapse
Affiliation(s)
| | - Elmira Abdullina
- Department of Veterinary and Agricultural Management, Shakarim University, Semey, 071412, Kazakhstan
| | | | - Bolat Abdigulov
- National Center for Biotechnology, Astana, 010000, Kazakhstan
| | | | | | - John A. Angelos
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| |
Collapse
|
4
|
Gelgie AE, Korsa MG, Kerro Dego O. Mycoplasma bovis Mastitis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100123. [PMID: 35909617 PMCID: PMC9325741 DOI: 10.1016/j.crmicr.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma bovis mastitis (MBM) is highly contagious and causes significant economic losses through reduction in milk quantity and quality, culling and treatment costs. Adhesion and invasion are among the most important virulence mechanisms to establish infection in the mammary gland. M. bovis can elicit both humoral and cellular immune responses during mammary gland infection. There is no effective commercial vaccine against MBM to date and early detection and isolation/culling remains vital control measure for MBM in dairy farms.
Bovine mycoplasmoses, which is mostly caused by Mycoplasma bovis, is a significant problem in the dairy and beef industry. Mycoplasmal mastitis has a global occurrence with notable effects in the United States and Europe. The pathogen was first detected in a mastitis case in California, United States, and regarded as major contagious mastitis. It is highly contagious and resistant to antibiotics and lack cell wall rendering certain group of antibiotics ineffective. Outbreaks mostly originate from introduction of diseased dairy cows to a farm and poor hygienic practices that help to maintain cow to cow transmission. Rapid detection scheme is needed to be in place in dairy farms to devise preventive measures and stop future outbreaks. However; early detection is hampered by the fastidious growth of M. bovis and the need for specialized equipment and reagents in laboratory settings. Intramammary Mycoplasma bovis infections cause elevation in milk somatic cell count which is one of the important factors to determine milk quality for grading and hence dictates milk price. There are multiple attributes of M. bovis regarded as virulence factors such as adhesion to and invasion into host cells, avoidance of phagocytosis, resistance to killing by the alternative complement system, biofilm formation, and hydrogen peroxide production. Nevertheless, there are still undetermined virulence factors that hamper the development of sustainable control tools such as effective vaccine. To date, most vaccine trials have failed, and there is no commercial M. bovis mastitis vaccine. Mycoplasma bovis has been shown to modulate both humoral and cellular immune response during bovine mastitis. In the future, research seeking new immunogenic and protective vaccine targets are highly recommended to control this important dairy cattle disease worldwide.
Collapse
|
5
|
Genome-Wide Association Study Reveals Genetic Markers for Antimicrobial Resistance in Mycoplasma bovis. Microbiol Spectr 2021; 9:e0026221. [PMID: 34612702 PMCID: PMC8510175 DOI: 10.1128/spectrum.00262-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma bovis causes many health and welfare problems in cattle. Due to the absence of clear insights regarding transmission dynamics and the lack of a registered vaccine in Europe, control of an outbreak depends mainly on antimicrobial therapy. Unfortunately, antimicrobial susceptibility testing (AST) is usually not performed, because it is time-consuming and no standard protocol or clinical breakpoints are available. Fast identification of genetic markers associated with acquired resistance may at least partly resolve former issues. Therefore, the aims of this study were to implement a first genome-wide association study (GWAS) approach to identify genetic markers linked to antimicrobial resistance (AMR) in M. bovis using rapid long-read sequencing and to evaluate different epidemiological cutoff (ECOFF) thresholds. High-quality genomes of 100 M. bovis isolates were generated by Nanopore sequencing, and isolates were categorized as wild-type or non-wild-type isolates based on MIC testing results. Subsequently, a k-mer-based GWAS analysis was performed to link genotypes with phenotypes based on different ECOFF thresholds. This resulted in potential genetic markers for macrolides (gamithromycin and tylosin) (23S rRNA gene and 50S ribosomal unit) and enrofloxacin (GyrA and ParC). Also, for tilmicosin and the tetracyclines, previously described mutations in both 23S rRNA alleles and in one or both 16S rRNA alleles were observed. In addition, two new 16S rRNA mutations were possibly associated with gentamicin resistance. In conclusion, this study shows the potential of quick high-quality Nanopore sequencing and GWAS analysis in the evaluation of phenotypic ECOFF thresholds and the rapid identification of M. bovis strains with acquired resistance. IMPORTANCEMycoplasma bovis is a leading cause of pneumonia but also causes other clinical signs in cattle. Since no effective vaccine is available, current M. bovis outbreak treatment relies primarily on the use of antimicrobials. However, M. bovis is naturally resistant to different antimicrobials, and acquired resistance against macrolides and fluoroquinolones is frequently described. Therefore, AST is important to provide appropriate and rapid antimicrobial treatment in the framework of AMR and to prevent the disease from spreading and/or becoming chronic. Unfortunately, phenotypic AST is time-consuming and, due to the lack of clinical breakpoints, the interpretation of AST in M. bovis is limited to the use of ECOFF values. Therefore, the objective of this study was to identify known and potentially new genetic markers linked to AMR phenotypes of M. bovis isolates, exploiting the power of a GWAS approach. For this, we used high-quality and complete Nanopore-sequenced M. bovis genomes of 100 isolates.
Collapse
|
6
|
Liu Y, Deng Z, Xu S, Liu G, Lin Y, Khan S, Gao J, Qu W, Kastelic JP, Han B. Mycoplasma bovis subverts autophagy to promote intracellular replication in bovine mammary epithelial cells cultured in vitro. Vet Res 2021; 52:130. [PMID: 34649594 PMCID: PMC8515657 DOI: 10.1186/s13567-021-01002-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
Mycoplasma species are the smallest prokaryotes capable of self-replication. To investigate Mycoplasma induced autophagy in mammalian cells, Mycoplasma bovis (M. bovis) and bovine mammary epithelial cells (bMEC) were used in an in vitro infection model. Initially, intracellular M. bovis was enclosed within a membrane-like structure in bMEC, as viewed with transmission electron microscopy. In infected bMEC, increased LC3II was verified by Western blotting, RT-PCR and laser confocal microscopy, confirming autophagy at 1, 3 and 6 h post-infection (hpi), with a peak at 6 hpi. However, the M. bovis-induced autophagy flux was subsequently blocked. P62 degradation in infected bMEC was inhibited at 3, 6, 12 and 24 hpi, based on Western blotting and RT-PCR. Beclin1 expression decreased at 12 and 24 hpi. Furthermore, autophagosome maturation was subverted by M. bovis. Autophagosome acidification was inhibited by M. bovis infection, based on detection of mCherry-GFP-LC3 labeled autophagosomes; the decreases in protein levels of Lamp-2a indicate that the lysosomes were impaired by infection. In contrast, activation of autophagy (with rapamycin or HBSS) overcame the M. bovis-induced blockade in phagosome maturation by increasing delivery of M. bovis to the lysosome, with a concurrent decrease in intracellular M. bovis replication. In conclusion, although M. bovis infection induced autophagy in bMEC, the autophagy flux was subsequently impaired by inhibiting autophagosome maturation. Therefore, we conclude that M. bovis subverted autophagy to promote its intracellular replication in bMEC. These findings are the impetus for future studies to further characterize interactions between M. bovis and mammalian host cells.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sohrab Khan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Jaÿ M, Poumarat F, Colin A, Tricot A, Tardy F. Addressing the Antimicrobial Resistance of Ruminant Mycoplasmas Using a Clinical Surveillance Network. Front Vet Sci 2021; 8:667175. [PMID: 34195247 PMCID: PMC8236625 DOI: 10.3389/fvets.2021.667175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Antimicrobial resistance (AMR) surveillance of mycoplasmas of veterinary importance has been held back for years due to lack of harmonized methods for antimicrobial susceptibility testing (AST) and interpretative criteria, resulting in a crucial shortage of data. To address AMR in ruminant mycoplasmas, we mobilized a long-established clinical surveillance network called "Vigimyc." Here we describe our surveillance strategy and detail the results obtained during a 2-year monitoring period. We also assess how far our system complies with current guidelines on AMR surveillance and how it could serve to build epidemiological cut-off values (ECOFFs), as a first attainable criterion to help harmonize monitoring efforts and move forward to clinical breakpoints. Clinical surveillance through Vigimyc enables continuous collection, identification and preservation of Mycoplasma spp. isolates along with metadata. The most frequent pathogens, i.e., M. bovis and species belonging to M. mycoides group, show stable clinicoepidemiological trends and were included for annual AST. In the absence of interpretative criteria for ruminant mycoplasmas, we compared yearly minimum inhibitory concentration (MIC) results against reference datasets. We also ran a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis on the overall service provided by our AMR surveillance strategy. Results of the 2018-2019 surveillance campaign were consistent with the reference datasets, with M. bovis isolates showing high MIC values for all antimicrobial classes except fluoroquinolones, and species of the Mycoides group showing predominantly low MIC values. A few new AMR patterns were detected, such as M. bovis with lower spectinomycin MICs. Our reference dataset partially complied with European Committee on Antimicrobial Susceptibility Testing (EUCAST) requirements, and we were able to propose tentative epidemiological cut-off values (TECOFFs) for M. bovis with tilmicosin and spectinomycin and for M. mycoides group with tilmicosin and lincomycin. These TECOFFs were consistent with other published data and the clinical breakpoints of Pasteurellaceae, which are often used as surrogates for mycoplasmas. SWOT analysis highlighted the benefit of pairing clinical and antimicrobial resistance surveillance despite the AST method-related gaps that remain. The international community should now direct efforts toward AST method harmonization and clinical interpretation.
Collapse
Affiliation(s)
- Maryne Jaÿ
- UMR Mycoplasmoses animales, Anses, Université de Lyon, Lyon, France.,UMR Mycoplasmoses animales, VetAgro Sup, Université de Lyon, Marcy-l'Étoile, France
| | - François Poumarat
- UMR Mycoplasmoses animales, Anses, Université de Lyon, Lyon, France.,UMR Mycoplasmoses animales, VetAgro Sup, Université de Lyon, Marcy-l'Étoile, France
| | - Adélie Colin
- UMR Mycoplasmoses animales, Anses, Université de Lyon, Lyon, France.,UMR Mycoplasmoses animales, VetAgro Sup, Université de Lyon, Marcy-l'Étoile, France
| | - Agnès Tricot
- UMR Mycoplasmoses animales, Anses, Université de Lyon, Lyon, France.,UMR Mycoplasmoses animales, VetAgro Sup, Université de Lyon, Marcy-l'Étoile, France
| | - Florence Tardy
- UMR Mycoplasmoses animales, Anses, Université de Lyon, Lyon, France.,UMR Mycoplasmoses animales, VetAgro Sup, Université de Lyon, Marcy-l'Étoile, France
| |
Collapse
|
8
|
Bokma J, Gille L, De Bleecker K, Callens J, Haesebrouck F, Pardon B, Boyen F. Antimicrobial Susceptibility of Mycoplasma bovis Isolates from Veal, Dairy and Beef Herds. Antibiotics (Basel) 2020; 9:antibiotics9120882. [PMID: 33316982 PMCID: PMC7764132 DOI: 10.3390/antibiotics9120882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/28/2023] Open
Abstract
Mycoplasma bovis is an important pathogen causing mostly pneumonia in calves and mastitis in dairy cattle. In the absence of an effective vaccine, antimicrobial therapy remains the main control measure. Antimicrobial use in veal calves is substantially higher than in conventional herds, but whether veal calves also harbor more resistant M. bovis strains is currently unknown. Therefore, we compared antimicrobial susceptibility test results of M. bovis isolates from different cattle sectors and genomic clusters. The minimum inhibitory concentration of nine antimicrobials was determined for 141 Belgian M. bovis isolates (29 dairy, 69 beef, 12 mixed, 31 veal farms), and was used to estimate the epidemiological cut-off. Acquired resistance was frequently observed for the macrolides, while no acquired resistance to oxytetracycline and doxycycline, minimal acquired resistance to florfenicol and tiamulin, and a limited acquired resistance to enrofloxacin was seen. M. bovis isolates from beef cattle or genomic cluster III had higher odds of being gamithromycin-resistant than those from dairy cattle or genomic clusters IV and V. In this study, no cattle industry could be identified as source of resistant M. bovis strains. A single guideline for antimicrobial use for M. bovis infections, with a small remark for gamithromycin, is likely sufficient.
Collapse
Affiliation(s)
- Jade Bokma
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.G.); (B.P.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.H.); (F.B.)
- Correspondence:
| | - Linde Gille
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.G.); (B.P.)
| | - Koen De Bleecker
- Animal Health Service-Flanders, Industrielaan 29, 8820 Torhout, Belgium; (K.D.B.); (J.C.)
| | - Jozefien Callens
- Animal Health Service-Flanders, Industrielaan 29, 8820 Torhout, Belgium; (K.D.B.); (J.C.)
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.H.); (F.B.)
| | - Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.G.); (B.P.)
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.H.); (F.B.)
| |
Collapse
|
9
|
Liu Y, Zhou M, Xu S, Khan MA, Shi Y, Qu W, Gao J, Liu G, Kastelic JP, Han B. Mycoplasma bovis-generated reactive oxygen species and induced apoptosis in bovine mammary epithelial cell cultures. J Dairy Sci 2020; 103:10429-10445. [PMID: 32921448 DOI: 10.3168/jds.2020-18599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
Abstract
Mycoplasma bovis is an important cause of bovine mastitis in China and worldwide. We hypothesized that M. bovis damages bovine mammary epithelial cells (bMEC), with the degree of damage varying among field isolates. Our objective was to evaluate 2 novel sequence type (ST) field strains of M. bovis (ST172 and ST173) for their ability to induce oxidative stress, cytotoxicity, pathomorphological changes, and apoptosis in bMEC, as a model for pathogenesis of M. bovis-induced bovine mastitis. Cytotoxicity (as indicated by release of lactate dehydrogenase, LDH) from bMEC depended on multiplicity of infection (MOI), with a high MOI (1:1,000) being required to induce cytotoxicity. Morphological changes in bMEC, including shrinkage, loss of cell integrity, and heavy staining (hematoxylin and eosin) of cytoplasm were apparent 24 h after infection with ST172 or ST173 M. bovis, with more severe changes being induced by the latter strain. Adhesion and invasion assays both had curvilinear patterns, peaking 12 h after infection with MOI of 1:1,000. Both production of reactive oxygen species (ROS) and proportion of apoptotic cells increased with time after infection. Increased Bax/Bcl-2 ratios and activation of caspase-3 implied involvement of mitochondria-dependent pathways of apoptosis. Furthermore, intracellular ROS generation, apoptosis, and cleaved caspase-3 were mitigated by N-acetyl-l-cysteine, a ROS scavenger. Both interleukin (IL)-1β and IL-6 were significantly upregulated by ST172 and ST173 M. bovis, with little change in expression of tumor necrosis factor-α. One ST173 M. bovis isolate had the greatest cytotoxicity of all of our field isolates, with the highest LDH release, adhesion, invasion, ROS production, and apoptosis. In conclusion, our hypothesis was supported: M. bovis damaged bMEC by generating ROS and initiating a mitochondria-dependent pathway of apoptosis, with the degree of damage varying among field isolates. This study provided new knowledge regarding pathogenesis of M. bovis-induced bovine mastitis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Muhammad Asfandyar Khan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuxiang Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|