1
|
Li J, Shi W. Debates over the role of Traditional Chinese Medicine on COVID-19: A computational comparison between professionals and laypersons in Chinese online knowledge community. Soc Sci Med 2024; 361:117366. [PMID: 39332315 DOI: 10.1016/j.socscimed.2024.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Leveraging a large collection of textual data (N = 21,539) from a Chinese online community, we employed structural topic modeling to investigate the thematic disparities between professionals and laypersons, regarding the effectiveness of Traditional Chinese Medicine (TCM) on COVID-19. Findings reveal that laypersons are the dominant communicators in terms of discussion volume, who often focus on relevant news events, societal or political aspects of TCM. In contrast, professionals keep concentrating on issues related to medical expertise, and do not shift attentions as frequent as laypersons. Despite the dominant influence of professionals on laypersons' agenda, two-way agenda interactions identified confirm that lay public is empowered to negotiate with elite professionals under certain topics. Our results provide novel insights into the dynamic nature of attentions, behaviors, and relations among prominent communication actors, and encourage future research to examine the individual-level and societal-level impacts of these constructs in the emerging online media landscape.
Collapse
Affiliation(s)
- Jinhui Li
- School of Journalism and Communication, Jinan University, 601 Huangpu Ave West, Guangzhou, Guangdong, 510632, China.
| | - Wen Shi
- School of Journalism and Communication, Jinan University, 601 Huangpu Ave West, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
2
|
Irsal RA, Gholam GM, Dwicesaria MA, Mansyah TF, Chairunisa F. Exploring the potential of Scabiosa columbaria in Alzheimer's disease treatment: An in silico approach. J Taibah Univ Med Sci 2024; 19:947-960. [PMID: 39397872 PMCID: PMC11470288 DOI: 10.1016/j.jtumed.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Objectives Alzheimer's disease (AD) is posing an increasing global threat and currently lacks effective treatments. Therefore, this study was aimed at exploring phytochemicals in Scabiosa columbaria (S. columbaria) as inhibitors of acetylcholinesterase (AChE), β-site APP cleavage enzyme 1 (BACE1), and TNF-α converting enzyme (TACE) in AD. S. columbaria contains various bioactive compounds, such as chlorogenic acid, linalool, and catechins, which are known for their detoxification properties, capacity to resist and manage harmful moisture buildup, and therapeutic roles in COVID-19. Several studies have also shown that S. columbaria extract has strong antioxidant activity, and may potentially decrease neuroinflammation in AD. Therefore, this study investigated the interactions between S. columbaria phytochemicals and key enzymes associated with AD, thus providing opportunities for the development of new therapeutic candidates. Methods A total of 27 phytochemicals were evaluated for their inhibitory activity against AChE, BACE1, and TACE with YASARA Structure. ADMET profiles and toxicity were assessed. The top candidate compounds underwent 100 ns MD simulations. Results All ligands met Lipinski's rule and showed low toxicity. Catechins, compared with the known drug galantamine, showed higher inhibitory activity and interacted with additional active sites on AChE, thus suggesting potentially higher efficacy. Moreover, chlorogenic acid showed stronger inhibitory activity against TACE than the control drug (aryl-sulfonamide), thereby suggesting a different mechanism of action. MD simulation revealed that the formed complexes had good stability. However, further exploration is necessary. Conclusion S. columbaria derivative compounds are promising drug candidates because of their properties, including the affinity of chlorogenic acid toward TACE and hydrogen bond enhancing ligand-receptor interactions. MD simulation indicated stable ligand-protein complexes, and the radius of gyration and MM-PBSA calculations revealed favorable binding and interaction energies. Our findings demonstrate the identified compounds' potential for further drug development.
Collapse
Affiliation(s)
- Riyan A.P. Irsal
- Biomatics, Bogor, West Java, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Gusnia M. Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics, Malang, Indonesia
| | - Maheswari A. Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Tiyara F. Mansyah
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | | |
Collapse
|
3
|
Rolta R, Salaria D, Fadare OA, Fadare RY, Masih GD, Prakash A, Medhi B. Identification of novel inhibitor phytoconstituents for Influenza A H3N2: an in silico approach. J Biomol Struct Dyn 2024:1-10. [PMID: 38247233 DOI: 10.1080/07391102.2024.2305313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Influenza A virus subtype H3N2 is a highly infectious respiratory virus that is responsible for global seasonal flu epidemics. The current study was designed to investigate the antiviral activity of 150 phytocompounds of North Western Himalayas medicinal plants by molecular docking. Two target proteins of hemagglutinin of influenza virus A (PDB ID 4WE8) and Influenza virus H3N2 nucleoprotein - R416A mutant (PDB ID 7NT8) are selected for this study. Molecular docking was done by AutoDock vina tool, toxicity and drug-likeness prediction was done by protox II and Moleinspiration. MD simulation of best protein-ligand complexes was done by using Gromacs, version 2021.5. Molecular docking and toxicity data revealed that clicoemodin and rumexocide showed the best binding with both target proteins 4WEB & 7NT8. Clicoemodin showed the -7.5 KJ/mol binding energy with 4WE8 and 7NT8. Similarly, rumexoside showed the -7.6 KJ/mol binding energy with 4WE8 and -7.6 KJ/mol with 7NT8. Furthermore, Molecular dynamic simulation and MMPBSA binding free energy validated the stability of protein-ligand complexes. The current study suggested that clicoemodin and rumexocide are the promising inhibitors of H3N2 proteins hemagglutinin of influenza virus A and Influenza virus H3N2 nucleoprotein - R416A mutant, though there is further in vitro and in vivo validation is required.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajan Rolta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deeksha Salaria
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Olatomide A Fadare
- Organic Chemistry Research Lab, Obafemi Awolowo University, Ile-Ife Osun, Nigeria
| | - Racheal Y Fadare
- Department of Physical and Chemical Sciences, Elizade University, Ilara-Mokin, Nigeria
| | - Gladson David Masih
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Liu X, Yang T, Chen L, Lan L, Sun G, Guo P. A strategy takes "Yiqing" tablets as an example to carry out simpler multi-component quantification and use fingerprint technology for comprehensive quality consistency evaluation. J Pharm Biomed Anal 2024; 238:115809. [PMID: 37944458 DOI: 10.1016/j.jpba.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The comprehensive evaluation of the quality of traditional Chinese medicines (TCM) is an important issue for the continuous progress and exploration of TCM. In this study, a "Yiqing" tablet (YQT) was taken as an example, and the sample quality was comprehensively investigated by multi-component quantification, multi-dimensional fingerprint construction, and antioxidant activity analysis. Based on high performance liquid chromatography (HPLC) and fourier transform infrared spectroscopy (FTIR) fingerprint, accurate and fast multi-component quantification is achieved by reliable Multi-markers assay by mono-linear method (MAML) method and verified partial least squares regression (PLSR) model. The basic HPLC fingerprint and the special FTIR quantitative fingerprint were evaluated by SQFM, and the rich fingerprint qualitative and quantitative information of the sample was obtained. The characteristic parameter (blocking rate (BR)) characterizing antioxidant activity in the electrochemical (EC) fingerprint was excavated for the first time, and the fingerprint-efficacy analysis results with HPLC and FTIR were obtained through bivariate correlation analysis (BCA). The results showed that 25 components in the HPLC fingerprint and had antioxidant activity, and most bands of FTIR showed antioxidant activity. Finally, by combining the evaluation results of HPLC and FTIR fingerprint using the mean method, all samples were classified as first level, except for S1, demonstrating the consistency of sample quality. Based on the comprehensive quality evaluation system combining vertical and horizontal combination, this study provides a new idea for achieving comprehensive quality evaluation of TCM.
Collapse
Affiliation(s)
- Xiaoling Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ting Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Lu Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Lili Lan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Ping Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Gasmi A, Noor S, Dadar M, Semenova Y, Menzel A, Gasmi Benahmed A, Bjørklund G. The Role of Traditional Chinese Medicine and Chinese Pharmacopoeia in the Evaluation and Treatment of COVID-19. Curr Pharm Des 2024; 30:1060-1074. [PMID: 38523518 DOI: 10.2174/0113816128217263240220060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
The epidemic prompted by COVID-19 continues to spread, causing a great risk to the general population's safety and health. There are still no drugs capable of curing it. Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the two other diseases caused by coronaviruses. Traditional Chinese Medicine (TCM) showed benefits in treating SARS and MERS by preventing the disease early, substantially mitigating symptoms, shortening the treatment period, and minimizing risks and adverse reactions caused by hormone therapy. Although several vaccines have been developed and are being used for the treatment of COVID-19, existing vaccines cannot provide complete protection against the virus due to the rapid evolution and mutation of the virus, as mutated viral epitopes evade the vaccine's target and decrease the efficacy of vaccines. Thus, there is a need to develop alternative options. TCM has demonstrated positive effects in the treatment of COVID-19. Previous research studies on TCM showed broad-spectrum antiviral activity, offering a range of possibilities for their potential use against COVID-19. This study shed some light on common TCM used for SARS and MERS outbreaks and their effective use for COVID-19 management. This study provides new insights into COVID-19 drug discovery.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Dadar
- CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
6
|
Anderson BJ, Zappa M, Glickstein B, Taylor-Swanson L. "The History of Chinese Medicine Really Is Very Detailed Regarding Pandemics": A Qualitative Analysis of Evidence-Based Practice and the Use of Chinese Herbal Medicine by Licensed Acupuncturists During the COVID-19 Pandemic in the United States. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2023; 29:738-746. [PMID: 37307022 PMCID: PMC10663696 DOI: 10.1089/jicm.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Objective: The objective of this qualitative study was to understand how licensed acupuncturists determined treatment strategies for patients with symptoms likely related to COVID-19 using Chinese herbal medicine (CHM) and the impact of the pandemic upon their clinical practice. Methods: A qualitative instrument was developed with questions aligned with when participants started treating patients with symptoms likely related to COVID-19 and the availability of information related to the use of CHM for COVID-19. Interviews took place between March 8 and May 28, 2021, and were transcribed verbatim by a professional transcription service. Inductive theme analysis and ATLAS.ti Web software were used to determine themes. Results: Theme saturation was achieved after 14 interviews lasting 11-42 min. Treatment predominantly started before mid-March 2020. Four themes emerged (1) information sources; (2) diagnostic and treatment decision-making; (3) practitioner experience; (4) resources and supplies. Conclusion: Primary sources of information informing treatment strategies came from China through professional networks and were widely disseminated throughout the United States. Scientific studies evaluating the effectiveness of CHM for COVID-19 were generally not deemed useful for informing patient care because treatment had been initiated before they were published and because of limitations associated with the research and the ability to apply it to real world practice.
Collapse
Affiliation(s)
- Belinda J. Anderson
- College of Health Professions, Pace University, New York, NY, USA
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melissa Zappa
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
7
|
Li Q, Shah T, Wang B, Qu L, Wang R, Hou Y, Baloch Z, Xia X. Cross-species transmission, evolution and zoonotic potential of coronaviruses. Front Cell Infect Microbiol 2023; 12:1081370. [PMID: 36683695 PMCID: PMC9853062 DOI: 10.3389/fcimb.2022.1081370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Coronaviruses (CoVs) continuously evolve, crossing species barriers and spreading across host ranges. Over the last two decades, several CoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2) have emerged in animals and mammals, causing significant economic and human life losses. Due to CoV cross-species transmission and the evolution of novel viruses, it is critical to identify their natural reservoiurs and the circumstances under which their transmission occurs. In this review, we use genetic and ecological data to disentangle the evolution of various CoVs in wildlife, humans, and domestic mammals. We thoroughly investigate several host species and outline the epidemiology of CoVs toward specific hosts. We also discuss the cross-species transmission of CoVs at the interface of wildlife, animals, and humans. Clarifying the epidemiology and diversity of species reservoirs will significantly impact our ability to respond to the future emergence of CoVs in humans and domestic animals.
Collapse
Affiliation(s)
- Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China,The First Affiliated Hospital & Clinical Medical College, Dali University, Dali, Yunnan, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Linyu Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Rui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China,*Correspondence: Xueshan Xia,
| |
Collapse
|
8
|
Wang Z, Zhan J, Gao H. Computer-aided drug design combined network pharmacology to explore anti-SARS-CoV-2 or anti-inflammatory targets and mechanisms of Qingfei Paidu Decoction for COVID-19. Front Immunol 2022; 13:1015271. [PMID: 36618410 PMCID: PMC9816407 DOI: 10.3389/fimmu.2022.1015271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. Severe cases of COVID-19 are characterized by an intense inflammatory process that may ultimately lead to organ failure and patient death. Qingfei Paidu Decoction (QFPD), a traditional Chines e medicine (TCM) formula, is widely used in China as anti-SARS-CoV-2 and anti-inflammatory. However, the potential targets and mechanisms for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects remain unclear. Methods In this study, Computer-Aided Drug Design was performed to identify the antiviral or anti-inflammatory components in QFPD and their targets using Discovery Studio 2020 software. We then investigated the mechanisms associated with QFPD for treating COVID-19 with the help of multiple network pharmacology approaches. Results and discussion By overlapping the targets of QFPD and COVID-19, we discovered 8 common targets (RBP4, IL1RN, TTR, FYN, SFTPD, TP53, SRPK1, and AKT1) of 62 active components in QFPD. These may represent potential targets for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects. The result showed that QFPD might have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation-related pathways. Our work will promote the development of new drugs for COVID-19.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
9
|
Ren L, Xu Y, Ning L, Pan X, Li Y, Zhao Q, Pang B, Huang J, Deng K, Zhang Y. TCM2COVID: A resource of anti-COVID-19 traditional Chinese medicine with effects and mechanisms. IMETA 2022; 1:e42. [PMID: 36245702 PMCID: PMC9537919 DOI: 10.1002/imt2.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
In China, traditional Chinese medicine (TCM) has been widely used for coronavirus infectious disease 2019 (COVID-19) prevention, treatment, and recovery and has played a part in the battle against the disease. A variety of TCM treatments have been recommended for different stages of COVID-19. But, to the best of our knowledge, a comprehensive database for storing and organizing anti-COVID TCM treatments is still lacking. Herein, we developed TCM2COVID, a manually curated resource of anti-COVID TCM formulas, natural products (NPs), and herbs. The current version of TCM2COVID (1) documents over 280 TCM formulas (including over 300 herbs) with detailed clinical evidence and therapeutic mechanism information; (2) records over 80 NPs with detailed potential therapeutic mechanisms; and (3) launches a useful web server for querying, analyzing and visualizing documented formulas similar to those supplied by the user (formula similarity analysis). In summary, TCM2COVD provides a user-friendly and practical platform for documenting, querying, and browsing anti-COVID TCM treatments, and will help in the development and elucidation of the mechanisms of action of new anti-COVID TCM therapies to support the fight against the COVID-19 epidemic. TCM2COVID is freely available at http://zhangy-lab.cn/tcm2covid/.
Collapse
Affiliation(s)
- Liping Ren
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for InterdisciplineChengdu University of Traditional Chinese MedicineChengduChina
- School of Healthcare TechnologyChengdu Neusoft UniversityChengduChina
| | - Yi Xu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
| | - Lin Ning
- School of Healthcare TechnologyChengdu Neusoft UniversityChengduChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
| | - Xianrun Pan
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yuchen Li
- School of Healthcare TechnologyChengdu Neusoft UniversityChengduChina
| | - Qi Zhao
- College of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Bo Pang
- Beijing CapitalBio Technology Co., Ltd.BeijingChina
| | - Jian Huang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
| | - Kejun Deng
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of China (UESTC)ChengduChina
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for InterdisciplineChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
10
|
Shah T, Shah Z, Yasmeen N, Baloch Z, Xia X. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front Immunol 2022; 13:909011. [PMID: 35784278 PMCID: PMC9246416 DOI: 10.3389/fimmu.2022.909011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is an infectious disease that poses severe threats to global public health and significant economic losses. The COVID-19 global burden is rapidly increasing, with over 246.53 million COVID-19 cases and 49.97 million deaths reported in the WHO 2021 report. People with compromised immunity, such as tuberculosis (TB) patients, are highly exposed to severe COVID-19. Both COVID-19 and TB diseases spread primarily through respiratory droplets from an infected person to a healthy person, which may cause pneumonia and cytokine storms, leading to severe respiratory disorders. The COVID-19-TB coinfection could be fatal, exacerbating the current COVID-19 pandemic apart from cellular immune deficiency, coagulation activation, myocardial infarction, and other organ dysfunction. This study aimed to assess the pathogenesis of SARS-CoV-2-Mycobacterium tuberculosis coinfections. We provide a brief overview of COVID19-TB coinfection and discuss SARS-CoV-2 host cellular receptors and pathogenesis. In addition, we discuss M. tuberculosis host cellular receptors and pathogenesis. Moreover, we highlight the impact of SARS-CoV-2 on TB patients and the pathological pathways that connect SARS-CoV-2 and M. tuberculosis infection. Further, we discuss the impact of BCG vaccination on SARS-CoV-2 cases coinfected with M. tuberculosis, as well as the diagnostic challenges associated with the coinfection.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zahir Shah
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|