1
|
Serbent MP, Magario I, Saux C. Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal. Biotechnol Bioeng 2024; 121:434-455. [PMID: 37990982 DOI: 10.1002/bit.28591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.
Collapse
Affiliation(s)
- Maria Pilar Serbent
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
- Programa de Pós-Graduação em Ciências Ambientais (PPGCAMB), Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brasil
| | - Ivana Magario
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (CONICET), Córdoba, Argentina
| | - Clara Saux
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
| |
Collapse
|
2
|
González-Rodríguez S, Trueba-Santiso A, Lu-Chau TA, Moreira MT, Eibes G. Valorization of bioethanol by-products to produce unspecific peroxygenase with Agrocybe aegerita: technological and proteomic perspectives. N Biotechnol 2023; 76:63-71. [PMID: 37169331 DOI: 10.1016/j.nbt.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Unspecific peroxygenase (UPO) presents a wide range of biotechnological applications. This study targets the use of by-products from bioethanol synthesis to produce UPO by Agrocybe aegerita. Solid-state and submerged fermentations (SSF and SmF) were evaluated, achieving the highest titers of UPO and laccase in SmF using vinasse as nutrients source. Optimized UPO production of 331U/L was achieved in 50% (v:v) vinasse with an inoculum grown for 14 days. These conditions were scaled-up to a 4L reactor, achieving a UPO activity of 265U/L. Fungal proteome expression was analyzed before and after UPO activity appeared by shotgun mass spectrometry proteomics. Laccase, dye-decolorizing peroxidases (DyP), lectins and proteins involved in reactive oxygen species (ROS) production and control were detected (in addition to UPO). Interestingly, the metabolism of complex sugars and nitrogen sources had a different activity at the beginning and end of the submerged fermentation. DATA AVAILABILITY: The data used to support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Sandra González-Rodríguez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Alba Trueba-Santiso
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Thelmo A Lu-Chau
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
3
|
Chenthamara D, Sivaramakrishnan M, Ramakrishnan SG, Esakkimuthu S, Kothandan R, Subramaniam S. Improved laccase production from Pleurotus floridanus using deoiled microalgal biomass: statistical and hybrid swarm-based neural networks modeling approach. 3 Biotech 2022; 12:346. [PMID: 36386567 PMCID: PMC9649576 DOI: 10.1007/s13205-022-03404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Fungal laccases are versatile biocatalyst and occupy a prominent place in various industrial applications due to its broad substrate specificity. The simplest method to enhance the laccase production is by usage of cheap substrates in the fermentation processes incorporating modeling approaches for optimization. Integrated biorefinery concept is receiving wide popularity by making use of various products from microalgal biomass. The research aimed to identify the potential of deoiled microalgal biomass (DMB), a waste product from algal biorefinery as a nutrient supplement to enhance laccase production in Pleurotus floridanus by submerged fermentation. The maximum production was obtained in the presence of DMB as an additional nutrient supplement and copper sulfate as an inducer. The predictive capabilities of the two methodologies Response Surface Methodology (RSM) and hybrid Particle swarm optimization (PSO)-based Artificial Neural Network (ANN) were compared and validated. The results showed that ANN coupled with PSO predicted with more accuracy with an R 2 value of 0.99 than the RSM model with an R 2 value of 0.97. The optimized condition as predicted by superior model hybrid PSO-based ANN was glucose (3.51%), DMB (0.545%), pH (4.9), temperature (24.68 ℃) and CuSO4 (1.35 mM). The experimental laccase activity was 80.45 ± 0.132 U/mL which was 1.3 fold higher than unoptimized condition. This study promotes the usage of DMB as a novel supplement for the improved production of Pleurotus floridanus laccase. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03404-y.
Collapse
Affiliation(s)
- Dhrisya Chenthamara
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Sankar Ganesh Ramakrishnan
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Sadhasivam Subramaniam
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
- Department of Extension and Career Guidance, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Chmelová D, Legerská B, Kunstová J, Ondrejovič M, Miertuš S. The production of laccases by white-rot fungi under solid-state fermentation conditions. World J Microbiol Biotechnol 2022; 38:21. [PMID: 34989891 DOI: 10.1007/s11274-021-03207-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Laccases (E.C. 1.10.3.2) produced by white-rot fungi (WRF) can be widely used, but the high cost prevents their use in large-scale industrial processes. Finding a solution to the problem could involve laccase production by solid-state fermentation (SSF) simulating the natural growth conditions for WRF. SSF offers several advantages over conventional submerged fermentation (SmF), such as higher efficiency and productivity of the process and pollution reduction. The aim of this review is therefore to provide an overview of the current state of knowledge about the laccase production by WRF under SSF conditions. The focus is on variations in the up-stream process, fermentation and down-stream process and their impact on laccase activity. The variations of up-stream processing involve inoculum preparation, inoculation of the medium and formulation of the propagation and production media. According to the studies, the production process can be shortened to 5-7 days by the selection of a suitable combination of lignocellulosic material and laccase producer without the need for any additional components of the culture medium. Efficient laccase production was achieved by valorisation of wastes as agro-food, municipal wastes or waste generated from wood processing industries. This leads to a reduction of costs and an increase in competitiveness compared to other commonly used methods and/or procedures. There will be significant challenges and opportunities in the future, where SSF could become more efficient and bring the enzyme production to a higher level, especially in new biorefineries, bioreactors and biomolecular/genetic engineering.
Collapse
Affiliation(s)
- Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Jana Kunstová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic.
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| |
Collapse
|
5
|
A Islam ST, Zhang J, Tonin F, Hinderks R, Deurloo YN, Urlacher VB, Hagedoorn PL. Isothermal titration calorimetric assessment of lignin conversion by laccases. Biotechnol Bioeng 2021; 119:493-503. [PMID: 34796477 PMCID: PMC9299204 DOI: 10.1002/bit.27991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 01/04/2023]
Abstract
Lignin valorization may offer a sustainable approach to achieve a chemical industry that is not completely dependent on fossil resources for the production of aromatics. However, lignin is a recalcitrant, heterogeneous, and complex polymeric compound for which only very few catalysts can act in a predictable and reproducible manner. Laccase is one of those catalysts and has often been referred to as an ideal “green” catalyst, as it is able to oxidize various linkages within lignin to release aromatic products, with the use of molecular oxygen and formation of water as the only side product. The extent and rate of laccase‐catalyzed lignin conversion were measured using the label‐free analytical technique isothermal titration calorimetry (ITC). IITC provides the molar enthalpy of the reaction, which reflects the extent of conversion and the time‐dependent power trace, which reflects the rate of the reaction. Calorimetric assessment of the lignin conversion brought about by various fungal and bacterial laccases in the absence of mediators showed marked differences in the extent and rate of conversion for the different enzymes. Kraft lignin conversion by Trametes versicolor laccase followed Michaelis–Menten kinetics and was characterized by the following thermodynamic and kinetic parameters ΔHITC = −(2.06 ± 0.06)·103 kJ mol−1, KM = 6.6 ± 1.2 μM and Vmax = 0.30 ± 0.02 U/mg at 25°C and pH 6.5. We envision calorimetric techniques as important tools for the development of enzymatic lignin valorization strategies.
Collapse
Affiliation(s)
- Shams T A Islam
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jie Zhang
- Chongqing Engineering Research Center for Processing, Storage and Transportation of Characterized Agro-Products, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Renske Hinderks
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Yanthi N Deurloo
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
6
|
Debnath R, Saha T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101645] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Zhang J, Li F, Wang R, Tan X, Hagedoorn PL. Dialysis membrane enclosed laccase catalysis combines a controlled conversion rate and recyclability without enzyme immobilization. AMB Express 2020; 10:19. [PMID: 31993852 PMCID: PMC6987272 DOI: 10.1186/s13568-020-0955-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 11/29/2022] Open
Abstract
Laccase is a versatile multicopper oxidase that holds great promise for many biotechnological applications. For such applications, it is essential to explore good biocatalytic systems for high activity and recyclability. The feasibility of membrane enclosed enzymatic catalysis (MEEC) for enzyme recycling with laccase was evaluated. The dialysis membrane enclosed laccase catalysis (DMELC) was tested for the conversion of the non-phenolic model substrate 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS). Trametes versicolor laccase was found to be completely retained by the dialysis membrane during the process. The ABTS total conversion after DMELC reached the same values as the batch reaction of the enzyme in solution. The efficiency of DMELC conversion of ABTS under different process conditions including shaking speed, temperature, ABTS concentration and pH was investigated. The repetitive dialysis minimally affected the activity and the protein content of the enclosed laccase. DMELC retained 70.3 ± 0.8% of its initial conversion after 5 cycles. The usefulness of MEEC extends to other enzymes with the benefit of superior activity of an enzyme in solution and the recyclability which is normally only obtained with immobilized enzymes.![]()
Collapse
|
8
|
Papadaki A, Kachrimanidou V, Papanikolaou S, Philippoussis A, Diamantopoulou P. Upgrading Grape Pomace through Pleurotus spp. Cultivation for the Production of Enzymes and Fruiting Bodies. Microorganisms 2019; 7:microorganisms7070207. [PMID: 31330906 PMCID: PMC6680548 DOI: 10.3390/microorganisms7070207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Grape pomace, a by-product derived from winery industries, was used as fermentation media for the production of added-value products through the cultivation of two Pleurotus species. Solid-state (SSF), semiliquid (SLF), and submerged (SmF) fermentations were carried out using grape pomace as substrate. The effect of the different fermentations on the consumption of phenolic compounds, the production of mycelial mass and enzymes was evaluated using P. ostreatus and P. pulmonarius. The production of fungal biomass and enzymes was influenced by the fermentation mode. The maximum biomass values of ~0.5 g/g were obtained for both P. pulmonarius and P. ostreatus in SmF. Laccase production was induced in SSF and a maximum activity of 26.247 U/g was determined for P. ostreatus, whereas the highest endoglucanase activity (0.93 U/g) was obtained in the SmF of the same fungi. Analysis of phenolic compounds showed that both strains were able to degrade up to 79% of total phenolic content, regardless the culture conditions. Grape pomace was also evaluated as substrate for mushroom production. P. pulmonarius recorded the highest yield and biological efficiency of 14.4% and 31.4%, respectively. This study showed that mushroom cultivation could upgrade winery by-products towards the production of valuable food products.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, 14123 -Lykovryssi, 14123 Attiki, Greece.
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Kefalonia, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Antonios Philippoussis
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, 14123 -Lykovryssi, 14123 Attiki, Greece
| | - Panagiota Diamantopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, 14123 -Lykovryssi, 14123 Attiki, Greece.
| |
Collapse
|
9
|
Production of polyextremotolerant laccase by Achromobacter xylosoxidans HWN16 and Citrobacter freundii LLJ16. ACTA ACUST UNITED AC 2019; 22:e00337. [PMID: 31016143 PMCID: PMC6468157 DOI: 10.1016/j.btre.2019.e00337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 01/06/2023]
Abstract
The biochemical properties of two proteobacteria laccases were assessed. Polyextremotolerant qualities of the laccases were identified. Multiple laccase-encoding genes were observed in laccase-producing strains. Their implication in biotechnological applications was deliberated.
Given the upwelling of a variety of potential applications laccases could participate in, it would be fitting to equally make available laccases that are well suited for the aforementioned. Therefore historian understanding of the catalytic and physicochemical properties is desirable. Owing to this, the biochemical properties of the crude laccases from Achromobacter xylosoxidans HWN16 (Hb9c) and Citrobacter freundii LLJ 16 (Ie1c) were assessed. Furthermore, a hint of the molecular basis for their production from respective organisms was presented. Results showed that both laccases were tolerant, and sometimes had their activities improved by the set of parameters tested. They were active at broad range of temperature (0–90 °C), pH (3–11), and were equally thermo- and pH-stable. Their activities were either improved, or left unabated by cations, detergents, and chloride (5–40%), however, the highlight of the study was their augmented activity, when they were incubated with certain concentrations of fluoride (2–20%), a potent inhibitor. They were depicted to have multiple homologous laccase encoding genes, on molecular evaluation, which may be responsible the conferral of these remarkable qualities they possess. Therefore, the laccases might be beneficial, if employed in formulations for a wide range of environmental and biotechnological applications. Moreover, the molecular machinery of their production be exploited for economical benefits in the immediate future.
Collapse
|
10
|
Sharma A, Jain KK, Srivastava A, Shrivastava B, Thakur VV, Jain RK, Kuhad RC. Potential of in situ SSF laccase produced from Ganoderma lucidum RCK 2011 in biobleaching of paper pulp. Bioprocess Biosyst Eng 2018; 42:367-377. [DOI: 10.1007/s00449-018-2041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
11
|
Ravindran R, Hassan SS, Williams GA, Jaiswal AK. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering (Basel) 2018; 5:E93. [PMID: 30373279 PMCID: PMC6316327 DOI: 10.3390/bioengineering5040093] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 01/21/2023] Open
Abstract
Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical⁻chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold. This article gives an overview of how agricultural waste can be productively harnessed as a raw material for fermentation. Furthermore, a detailed analysis of studies conducted in the production of different commercially important enzymes using lignocellulosic food waste has been provided.
Collapse
Affiliation(s)
- Rajeev Ravindran
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Shady S Hassan
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Gwilym A Williams
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
| |
Collapse
|
12
|
Vishvakarma R, Mishra A. Production of a protease inhibitor from edible mushroom Agaricus bisporus and its statistical optimization by response surface methodology. Prep Biochem Biotechnol 2017; 47:450-457. [PMID: 28140750 DOI: 10.1080/10826068.2017.1286851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The production of a protease inhibitor from Agaricus bisporus through solid-state fermentation was studied. The purpose was to produce protease inhibitor from natural, cheap, and readily available carbon and nitrogen sources. Solid-state fermentation enhanced the mycelia growth and also gave a higher yield of the product. Further, fungal growth and other production parameters were statistically optimized. The specificity of the inhibitor was tested and was effective against trypsin. Screening of significant factors (wheat bran, cyanobacterial biomass, initial pH, temperature, incubation period, and moisture content and inoculum size) was performed using Plackett-Burman design. Central composite design was used to determine the optimized values of the significant variables which were found to be temperature (27.5°C), incubation time (156 hr), cyanobacterial biomass (1 g), and moisture content (50%) and gave a statistical yield of 980 PIU/g which was 25.6% higher than experimental yield (780 PIU/g). The inhibitor was purified by ammonium sulfate precipitation and diethylaminoethyl (DEAE) cellulose chromatography (yield 43.89% and 0.21%, respectively) and subjected to reversed-phase HPLC to validate its identity. Since protease inhibitors act against proteases, finding ample therapeutic roles; the isolated protease inhibitor from A. bisporus can also be a probable medicinal agent after its further characterization.
Collapse
Affiliation(s)
- Reena Vishvakarma
- a School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh , India
| | - Abha Mishra
- a School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh , India
| |
Collapse
|
13
|
Lee J, Shin SG, Ahn J, Han G, Hwang K, Kim W, Hwang S. Use of Swine Wastewater as Alternative Substrate for Mycelial Bioconversion of White Rot Fungi. Appl Biochem Biotechnol 2016; 181:844-859. [PMID: 27696140 DOI: 10.1007/s12010-016-2253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
Abstract
Seven white rot fungal species were tested for growth as mycelia using swine wastewater (SW), an agro-waste with tremendous environmental footprint, as the sole nutrient source. The SW contained high concentrations of carbon and nitrogen components, which could support nutritional requirements for mycelial growth. Out of the seven species, Pleurotus ostreatus and Hericium erinaceus were successfully cultivated on the SW medium using solid-state fermentation. Response surface methodology was employed to determine the combination of pH, temperature (T), and substrate concentration (C) that maximizes mycelial growth rate (Kr) for the two species. The optimum condition was estimated as pH = 5.8, T = 28.8 °C, and C = 11.2 g chemical oxygen demand (COD)/L for P. ostreatus to yield Kr of 11.0 mm/day, whereas the greatest Kr (3.1 mm/day) was anticipated at pH = 4.6, T = 25.5 °C, and C = 11.9 g COD/L for H. erinaceus. These Kr values were comparable to growth rates obtained using other substrates in the literature. These results demonstrate that SW can be used as an effective substrate for mycelial cultivation of the two white rot fungal species, suggesting an alternative method to manage SW with the production of potentially valuable biomass.
Collapse
Affiliation(s)
- Jangwoo Lee
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Seung Gu Shin
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Jinmo Ahn
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea.,Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Gyuseong Han
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Kwanghyun Hwang
- Environmental Process Engineering Team, Global Engineering Division, GS E&C, 33, Jong-ro, Jongno-Gu, Seoul, 110-130, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Seokhwan Hwang
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Republic of Korea.
| |
Collapse
|
14
|
Asgher M, Wahab A, Bilal M, Nasir Iqbal HM. Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Reduced toxicity of malachite green decolorized by laccase produced from Ganoderma sp. rckk-02 under solid-state fermentation. 3 Biotech 2015; 5:621-631. [PMID: 28324517 PMCID: PMC4569633 DOI: 10.1007/s13205-014-0258-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/30/2014] [Indexed: 11/05/2022] Open
Abstract
Statistical designs were applied for optimizing laccase production from a white-rot fungus, Ganoderma sp. rckk-02 under solid-state fermentation (SSF). Compared to unoptimized conditions [2,154 U/gds (Unit per gram of dry substrate)], the optimization process resulted in a 17.3-fold increase in laccase production (37,423 U/gds). The laccase produced was evaluated for its potential to decolorize a recalcitrant synthetic dye, malachite green. Laccase at dosage of 30 U/ml in presence of 1 mM of 1-hydroxybenzotriazole (HBT) almost completely decolorized 100 and 200 mg/l of malachite green in 16 and 20 h, respectively, at 30 °C, pH 5.5 and 150 rpm. While, higher dyes concentrations of 300, 400 and 500 mg/l were decolorized to 72, 62 and 55 % in 24, 28 and 32 h, respectively, under similar conditions. Furthermore, it was observed that the decolorized malachite green was less toxic towards the growth of five white-rot fungi tested viz. Crinipellis sp. RCK-1, Ganoderma sp. rckk-02, Coriolopsis Caperata RCK 2011, Phanerochaete chrysosporium K3 and Pycnoporous cinnabarinus PB. The present study demonstrates the potential of Ganoderma sp. rckk-02 to produce high titres of laccase under SSF, which can be exploited in conjunction with redox mediator for the decolorization of high concentrations of malachite green from water bodies.
Collapse
|
16
|
Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:181204. [PMID: 26180784 PMCID: PMC4477062 DOI: 10.1155/2015/181204] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 11/17/2022]
Abstract
Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation.
Collapse
|
17
|
Overproduction of laccase from a newly isolated Ganoderma lucidum using the municipal food waste as main carbon and nitrogen supplement. Bioprocess Biosyst Eng 2014; 38:957-66. [PMID: 25533042 DOI: 10.1007/s00449-014-1341-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
A strain of Ganoderma lucidum was separated and identified according to its morphological characteristics and phylogenetic data. The fungus is a laccase producer and it can secrete laccase using the municipal food waste (FW) as carbon and nitrogen supplement. After the statistic optimization, a laccase activity of 42,000 ± 600 U/l was obtained at 500 ml flask level and the activity is 12,000 U/l higher than that obtained by fermenting glucose and peptone, indicating that the use of FW to produce laccase not only reduces production cost, but also improves laccase activity. In 15 l bioreactor, FW is also suitable for laccase production and the maximum laccase activity reached 54,000 U/l. Moreover, some details of laccase overproduction using FW were investigated. The G. lucidum consumes FW by secreting a series of hydrolases and proteases and the improvement of laccase activity is because FW induces over-expression of three isoenzymes by polyacrylamide gel electrophoresis analysis.
Collapse
|
18
|
Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst Eng 2012; 36:215-22. [DOI: 10.1007/s00449-012-0777-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/15/2012] [Indexed: 11/26/2022]
|
19
|
Karp SG, Faraco V, Amore A, Birolo L, Giangrande C, Soccol VT, Pandey A, Soccol CR. Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. BIORESOURCE TECHNOLOGY 2012; 114:735-739. [PMID: 22487128 DOI: 10.1016/j.biortech.2012.03.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
Laccases are oxidative enzymes linked to biological degradation of lignin. The aim of this work was to evaluate the effect of inducers and different concentrations of nitrogen on production level of total laccase activity and pattern of laccase isoforms, produced in solid state fermentation of sugarcane bagasse by a selected strain of Pleurotus ostreatus. The addition of yeast extract 5 g/L, copper sulfate 150 μM and ferulic acid 2 mM provided highest enzymatic activity (167 U/g) and zymograms indicated the presence of six laccase isoforms (POXA1b, POXA3, POXC and three other isoforms). Results of protein identification by mass spectrometry confirmed the presence of POXC and POXA3 as the main isoenzymes, and also identified a glyoxal oxidase and three galactose oxidases. The fact that the isoenzyme POXA1b was not identified in the analyzed samples can be possibly explained by its sensitivity to protease degradation.
Collapse
Affiliation(s)
- Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 210, Zip Code 81531-990 Curitiba, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. N Biotechnol 2011; 28:616-26. [DOI: 10.1016/j.nbt.2011.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/18/2011] [Accepted: 05/19/2011] [Indexed: 11/23/2022]
|
21
|
Neifar M, Kamoun A, Jaouani A, Ellouze-Ghorbel R, Ellouze-Chaabouni S. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation. Enzyme Res 2011; 2011:368525. [PMID: 23008760 PMCID: PMC3112507 DOI: 10.4061/2011/368525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/25/2011] [Accepted: 03/30/2011] [Indexed: 11/20/2022] Open
Abstract
Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2(5)3(3)//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl(2) concentration, CuSO(4) concentration, and incubation time were selected for further optimization studies using a Hoke design. The application of the response surface methodology allows us to determine a set of optimal conditions (CaCl(2), 5.5 mg/gs, CuSO(4), 2.5 mg/gs, inoculum size, 3 fungal discs (6 mm Ø), and 13 days of static cultivation). Experiments carried out under these conditions led to a laccase production yield of 150 U/g dry substrate.
Collapse
Affiliation(s)
- Mohamed Neifar
- Unité Enzymes et Bioconversion, Ecole Nationale d'Ingénieurs de Sfax, route de Soukra 3038 Sfax, Tunisia
| | - Amel Kamoun
- Laboratoire de Chimie Industrielle, Ecole Nationale d'Ingénieurs de Sfax, route de Soukra 3038 Sfax, Tunisia
| | - Atef Jaouani
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
| | - Raoudha Ellouze-Ghorbel
- Unité Enzymes et Bioconversion, Ecole Nationale d'Ingénieurs de Sfax, route de Soukra 3038 Sfax, Tunisia
| | - Semia Ellouze-Chaabouni
- Unité Enzymes et Bioconversion, Ecole Nationale d'Ingénieurs de Sfax, route de Soukra 3038 Sfax, Tunisia
| |
Collapse
|
22
|
Mishra A, Kumar S. Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|