1
|
Gao Z, Guan J, Wang M, Liu S, Chen K, Liu Q, Chen X. A novel laccase-like Cu-MOF for colorimetric differentiation and detection of phenolic compounds. Talanta 2024; 272:125840. [PMID: 38430865 DOI: 10.1016/j.talanta.2024.125840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The development of convenient, fast, and cost-effective methods for differentiating and detecting common organic pollutant phenols has become increasingly important for environmental and food safety. In this study, a copper metal-organic framework (Cu-MOF) with flower-like morphology was synthesized using 2-methylimidazole (2-MI) as ligands. The Cu-MOF was designed to mimic the natural laccase active site and proved demonstrated excellent mimicry of enzyme-like activity. Leveraging the superior properties of the constructed Cu-MOF, a colorimetric method was developed for analyzing phenolic compounds. This method exhibited a wide linear range from 0.1 to 100 μM with a low limit of detection (LOD) of 0.068 μM. Besides, by employing principal component analysis (PCA), nine kinds of phenols was successfully distinguished and identified. Moreover, the combination of smartphones with RGB profiling enabled real-time, quantitative, and high-throughput detection of phenols. Therefore, this work presents a paradigm and offers guidance for the differentiation and detection of phenolic pollutants in the environment.
Collapse
Affiliation(s)
- Ziyi Gao
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Meng Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
2
|
Yang J, Yang Y, Chang Z, Huang Y, Yuan H, Zhao Y, Liu X, Ni C. Pyrite-assisted degradation of methoxychlor by laccase immobilized on Fe 3S 4/earthworm-like mesoporous SiO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25202-25215. [PMID: 38466381 DOI: 10.1007/s11356-024-32420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Laccase immobilized and cross-linked on Fe3S4/earthworm-like mesoporous SiO2 (Fe3S4/EW-mSiO2) was used to degrade methoxychlor (MXC) in aqueous environments. The effects of various parameters on the degradation of MXC were determined using free and immobilized laccase. Immobilization improved the thermal stability and reuse of laccase significantly. Under the conditions of pH 4.5, temperature 40 °C, and reaction time 8 h, the degradation rate of MXC by immobilized laccase reached a maximum value of 40.99% and remained at 1/3 of the original after six cycles. The excellent degradation performance of Fe3S4/EW-mSiO2 was attributable to the pyrite (FeS2) impurity in Fe3S4, which could act as an electron donor in reductive dehalogenation. Sulfide groups and Fe2+ reduced the activation energy of the system resulting in pyrite-assisted degradation of MXC. The degradation mechanism of MXC in aqueous environments by laccase immobilized on Fe3S4/EW-mSiO2 was determined via mass spectroscopy of the degradation products. This study is a new attempt to use pyrite to support immobilized laccase degradation.
Collapse
Affiliation(s)
- Jiaqi Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Ziling Chang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yi Zhao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
3
|
Iqbal N, Mu G, Dong M, Yang Y, Huang Y, Yuan H, Liu X, Batool I, Carlini R. Hydrolytic degradation of methoxychlor by immobilized cellulase on LDHs@Fe 3O 4 nanocomposites. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:170-186. [PMID: 38214993 PMCID: wst_2023_399 DOI: 10.2166/wst.2023.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In this study, we synthesized Fe3O4 using the co-precipitation method and then prepared magnetic carrier LDHs@Fe3O4 by immobilizing layered double hydroxide on Fe3O4 by in situ growth method. Cellulase was immobilized on this magnetic carrier by using glutaraldehyde as a coupling agent, which can be used for degrading Methoxychlor (MXC). The results demonstrated the maximum MXC removal efficiency of 73.4% at 45 °C and pH = 6.0 with excellent reusability. Through kinetic analysis, it was found that the degradation reaction conforms to the Langmuir-Hinshelwood model and is a first-order reaction. Finally, according to the EPR analysis, the active radicals in the system were found to be OH· and the degradation mechanism was proposed in combination with LC-MS. This study provides a feasible method for degrading organochlorine pesticides, which can be used for groundwater purification.
Collapse
Affiliation(s)
- Nazar Iqbal
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Nazar lqbal and Guangda Mu contributed equally to this work E-mail:
| | - Guangda Mu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Nazar lqbal and Guangda Mu contributed equally to this work
| | - Mengyang Dong
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou 225009, China
| | - Irum Batool
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Riccardo Carlini
- Chemistry and Material Chemistry Department, LAS Klee-Barabino, 16146 Genova, Italy
| |
Collapse
|
4
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
5
|
Taleb MA, Gomaa SK, Wahba MI, Zaki RA, El-Fiky AF, El-Refai HA, El-Sayed H. Bioscouring of wool fibres using immobilized thermophilic lipase. Int J Biol Macromol 2022; 194:800-810. [PMID: 34848239 DOI: 10.1016/j.ijbiomac.2021.11.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
The hydrophobic nature of wool induced by its surface lipid barrier hinders its wettability during processing. Scouring of wool is conducted to remove this lipid barrier and facilitate any wet processes. Scouring of wool is conducted using soda ash followed by rinsing with huge amount of water to ensure complete removal of alkali. This work aimed at utilization of thermophilic lipase enzyme for removal of wool surface lipid barrier without deterioration on the fibre interior. A thermally stable lipase enzyme was produced from thermophilic microorganism; namely Bacillus aryabhattai B8W22, and was utilized in bio-scouring of wool. The produced enzyme was immobilized on sericin-based discs to enhance its stability and to make it reusable. The activity of both free and immobilized lipase enzymes at different conditions was assessed. The effects of bio-scouring of wool on its dyeability with acid, basic, and reactive dyes, as well as on some of its inherent properties, were monitored. Results showed that the bio-scoured wool exhibits enhanced dyeability with the said classes of dyes more than that of conventionally scoured samples. One-bath scouring and dyeing of wool fibres in two successive steps was conducted to reduce consumption of water and energy during wet processing of wool.
Collapse
Affiliation(s)
- Marwa Abou Taleb
- Proteinic and Man-made Fibres Department, Textile Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt(1)
| | - Sanaa K Gomaa
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt(1)
| | - Marwa I Wahba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt(1); Centre of Scientific Excellence-Group of Advanced Materials and Nanotechnology, National Research Centre, 12622 Dokki, Giza, Egypt(1)
| | - Rania A Zaki
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt(1)
| | - Asmaa F El-Fiky
- Proteinic and Man-made Fibres Department, Textile Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt(1)
| | - Heba A El-Refai
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt(1)
| | - Hosam El-Sayed
- Proteinic and Man-made Fibres Department, Textile Industries Research Division, National Research Centre, 12622 Dokki, Giza, Egypt(1).
| |
Collapse
|
6
|
Mathew GM, Raina D, Narisetty V, Kumar V, Saran S, Pugazhendi A, Sindhu R, Pandey A, Binod P. Recent advances in biodiesel production: Challenges and solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148751. [PMID: 34218145 DOI: 10.1016/j.scitotenv.2021.148751] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Mono alkyl fatty acid ester or methyl ethyl esters (biodiesel) are the promising alternative for fossil fuel or petroleum derived diesel with similar properties and could reduce the carbon foot print and the greenhouse gas emissions. Biodiesel can be produced from renewable and sustainable feedstocks like plant derived oils, and it is biodegradable and non-toxic to the ecosystem. The process for the biodiesel production is either through traditional chemical catalysts (Acid or Alkali Transesterification) or enzyme mediated transesterification, but as enzymes are natural catalysts with environmentally friendly working conditions, the process with enzymes are proposed to overcome the drawbacks of chemical synthesis. At present 95% of the biodiesel production is contributed by edible oils worldwide whereas recycled oils and animal fats contribute 10% and 6% respectively. Although every process has its own limitations, the enzyme efficiency, resistance to alcohols, and recovery rate are the crucial factors to be addressed. Without any benefit of doubt, production of biodiesel using renewable feedstocks and enzymes as the catalysts could be recommended for the commercial purpose, but further research on improving the efficiency could be an advantage.
Collapse
Affiliation(s)
- Gincy Marina Mathew
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India
| | - Diksha Raina
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinod Kumar
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saurabh Saran
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arivalagan Pugazhendi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR- NIIST), Trivandrum 695 019, India.
| |
Collapse
|
7
|
Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 2021. [DOI: 10.3390/catal11091121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Triglycerides are the main constituents of lipids, which are the fatty acids of glycerol. Natural organic triglycerides (viz. virgin vegetable oils, recycled cooking oils, and animal fats) are the main sources for biodiesel production. Biodiesel (mono alkyl esters) is the most attractive alternative fuel to diesel, with numerous environmental advantages over petroleum-based fuel. The most practicable method for converting triglycerides to biodiesel with viscosities comparable to diesel fuel is transesterification. Previous research has proven that biodiesel–diesel blends can operate the compression ignition engine without the need for significant modifications. However, the commercialization of biodiesel is still limited due to the high cost of production. In this sense, the transesterification route is a crucial factor in determining the total cost of biodiesel production. Homogenous base-catalyzed transesterification, industrially, is the conventional method to produce biodiesel. However, this method suffers from limitations both environmentally and economically. Although there are review articles on transesterification, most of them focus on a specific type of transesterification process and hence do not provide a comprehensive picture. This paper reviews the latest progress in research on all facets of transesterification technology from reports published by highly-rated scientific journals in the last two decades. The review focuses on the suggested modifications to the conventional method and the most promising innovative technologies. The potentiality of each technology to produce biodiesel from low-quality feedstock is also discussed.
Collapse
|
8
|
Thangaraj B, Solomon PR. Immobilization of Lipases – A Review. Part I: Enzyme Immobilization. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900016] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Baskar Thangaraj
- Jiangsu UniversitySchool of Food and Biological Engineering 301 Xuefu road 212013 Zhenjiang Jiangsu Province China
| | - Pravin Raj Solomon
- SASTRA Deemed UniversitySchool of Chemical & Biotechnology, Tirumalaisamudram 613401 Thanjavur Tamil Nadu India
| |
Collapse
|
9
|
Yang J, Huang Y, Yang Y, Yuan H, Liu X. Cagelike mesoporous silica encapsulated with microcapsules for immobilized laccase and 2, 4-DCP degradation. J Environ Sci (China) 2015; 38:52-62. [PMID: 26702968 DOI: 10.1016/j.jes.2015.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 06/05/2023]
Abstract
In this study, cage-like mesoporous silica was used as the carrier to immobilize laccase by a physical approach, followed by encapsulating with chitosan/alginate microcapsule membranes to form microcapsules of immobilized laccase based on layer-by-layer technology. The relationship between laccase activity recovery/leakage rate and the coating thickness was simultaneously investigated. Because the microcapsule layers have a substantial network of pores, they act as semipermeable membranes, while the laccase immobilized inside the microcapsules acts as a processing plant for degradation of 2,4-dichlorophenol. The microcapsules of immobilized laccase were able to degrade 2,4-dichlorophenol within a wide range of 2,4-dichlorophenol concentration, temperature and pH, with mean degradation rate around 62%. Under the optimal conditions, the thermal stability and reusability of immobilized laccase were shown to be improved significantly, as the removal rate and degradation rate remained over 40.2% and 33.8% respectively after 6cycles of operation. Using mass spectrometry (MS) and nuclear magnetic resonance (NMR), diisobutyl phthalate and dibutyl phthalate were identified as the products of 2,4-dichlorophenol degradation by the microcapsules of immobilized laccase and laccase immobilized by a physical approach, respectively, further demonstrating the degradation mechanism of 2,4-dichlorophenol by microcapsule-immobilized laccase.
Collapse
Affiliation(s)
- Junya Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Immobilization of Candida antarctica lipase onto cellulose acetate-coated Fe2O3 nanoparticles for glycerolysis of olive oil. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0020-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Reshmi R, Sugunan S. Superior activities of lipase immobilized on pure and hydrophobic clay supports: Characterization and catalytic activity studies. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Ghasemi S, Sadighi A, Heidary M, Bozorgi‐Koushalshahi M, Habibi Z, Faramarzi MA. Immobilisation of lipase on the surface of magnetic nanoparticles and non‐porous glass beads for regioselective acetylation of prednisolone. IET Nanobiotechnol 2013; 7:100-8. [DOI: 10.1049/iet-nbt.2012.0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sabrieh Ghasemi
- Department of ChemistryFaculty of ScienceShahid Beheshti University, G.C.TehranIran
| | - Armin Sadighi
- Department of Pharmaceutical BiotechnologyFaculty of Pharmacy and Biotechnology Research CenterTehran University of Medical SciencesP.O. Box 14155–6451Tehran 14174Iran
| | - Marjan Heidary
- Department of ChemistryFaculty of ScienceShahid Beheshti University, G.C.TehranIran
| | - Maryam Bozorgi‐Koushalshahi
- Department of Pharmaceutical BiotechnologyFaculty of Pharmacy and Biotechnology Research CenterTehran University of Medical SciencesP.O. Box 14155–6451Tehran 14174Iran
| | - Zohreh Habibi
- Department of ChemistryFaculty of ScienceShahid Beheshti University, G.C.TehranIran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical BiotechnologyFaculty of Pharmacy and Biotechnology Research CenterTehran University of Medical SciencesP.O. Box 14155–6451Tehran 14174Iran
| |
Collapse
|
13
|
Abstract
This chapter aims at providing an overview of the potential of layered double hydroxides (LDHs) or hydrotalcite-like compounds (HTs) for contributing to the catalysis of the synthesis of biodiesel through the transesterification of triglycerides. First, the main methods of preparation of HTs and the most relevantfeatures of these materials are presented, with emphasis on their basic properties. Afterwards, the literature on the use of HTs as catalysts, catalysts precursors, and supports of transesterification catalysts is reviewed. HTs are promising materials for the synthesis of biodiesel from refined and waste vegetable oils, showing reasonable resistance to water and free fatty acids but an improvement of the chemical stability under the desired reaction conditions is still necessary.
Collapse
|
14
|
Temoçin Z. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1618-35. [DOI: 10.1080/09205063.2013.786970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zülfikar Temoçin
- a Department of Chemistry , Kırıkkale University , Kırıkkale , Turkey
| |
Collapse
|
15
|
Costantino U, Leroux F, Nocchetti M, Mousty C. LDH in Physical, Chemical, Biochemical, and Life Sciences. DEVELOPMENTS IN CLAY SCIENCE 2013. [DOI: 10.1016/b978-0-08-098259-5.00026-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Zhang B, Weng Y, Xu H, Mao Z. Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol 2011; 93:61-70. [DOI: 10.1007/s00253-011-3672-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/10/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
|
17
|
Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability. J Biosci Bioeng 2011; 113:166-72. [PMID: 22071144 DOI: 10.1016/j.jbiosc.2011.09.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/14/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022]
Abstract
In this study, three membranes: regenerated cellulose (RC), glass fiber (GF) and polyvinylidene fluoride (PVDF), were grafted with 1,4-diaminobutane (DA) and activated with glutaraldehyde (GA) for lipase covalent immobilization. The efficiencies of lipases immobilized on these membranes with different hydrophobic/hydrophilic properties were compared. The lipase immobilized on hydrophobic PVDF-DA-GA membrane exhibited more than an 11-fold increase in activity compared to its immobilization on a hydrophilic RC-DA-GA membrane. The relationship between surface hydrophobicity and immobilized efficiencies was investigated using hydrophobic/hydrophilic GF membranes which were prepared by grafting a different ratio of n-butylamine/1,4-diaminobutane (BA/DA). The immobilized lipase activity on the GF membrane increased with the increased BA/DA ratio. This means that lipase activity was exhibited more on the hydrophobic surface. Moreover, the modified PVDF-DA membrane was grafted with GA, epichlorohydrin (EPI) and cyanuric chloride (CC), respectively. The lipase immobilized on the PVDF-DA-EPI membrane displayed the highest specific activity compared to other membranes. This immobilized lipase exhibited more significant stability on pH, thermal, reuse, and storage than did the free enzyme. The results exhibited that the EPI modified PVDF is a promising support for lipase immobilization.
Collapse
|
18
|
Direct penicillin G acylase immobilization by using the self-prepared immobilized metal affinity membrane. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Karimpil JJ, Melo J, D'Souza S. Hen egg white as a feeder protein for lipase immobilization. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.04.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Galynkin VA, Garabadzhiu AV, Enikeev AH, Karasev MM, Kozlov GV. Marine biological resources: An advanced raw material base for biofuel. CATALYSIS IN INDUSTRY 2011. [DOI: 10.1134/s2070050411010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. CATAL COMMUN 2011. [DOI: 10.1016/j.catcom.2010.12.032] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Guérard-Hélaine C, Légeret B, Fernandes C, Prévot V, Forano C, Lemaire M. Efficient immobilization of fructose-6-phosphate aldolase in layered double hydroxide: improved stereoselective synthesis of sugar analogues. NEW J CHEM 2011. [DOI: 10.1039/c0nj00956c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ali Khan A, Alzohairy MA. Recent Advances and Applications of Immobilized Enzyme Technologies: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rjbsci.2010.565.575] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Immobilization of acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon for the hydrolysis of olive oil. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Lestari S, Mäki-Arvela P, Beltramini J, Lu GQM, Murzin DY. Transforming triglycerides and fatty acids into biofuels. CHEMSUSCHEM 2009; 2:1109-19. [PMID: 19862784 DOI: 10.1002/cssc.200900107] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fuels derived from biobased materials are attracting attention for their potential in securing the energy supply and protecting the environment. In this Minireview, we evaluate the use of biobased sources, particularly fatty acids and triglycerides from seed oils and animal fats, as fuels. The physical and chemical properties of these fatty acids and triglycerides are discussed, including the link to their sources and current availability to meet fuel demands. The current technologies, also known as the first-generation ones, for converting triglycerides into fuels are covered, including conventional methods such as transesterification, pyrolysis, cracking, and emulsions. Recent, second-generation technological developments that lead to more commercially viable biofuels based on diesel-like hydrocarbons are also discussed.
Collapse
Affiliation(s)
- Siswati Lestari
- Process Chemistry Centre, Abo Akademi University, Turku, 20500, Finland.
| | | | | | | | | |
Collapse
|