1
|
Mustafa A, Faisal S, Ahmed IA, Munir M, Cipolatti EP, Manoel EA, Pastore C, di Bitonto L, Hanelt D, Nitbani FO, El-Bahy ZM, Inayat A, Abdellatief TMM, Tonova K, Bokhari A, Abomohra A. Has the time finally come for green oleochemicals and biodiesel production using large-scale enzyme technologies? Current status and new developments. Biotechnol Adv 2023; 69:108275. [PMID: 39492461 DOI: 10.1016/j.biotechadv.2023.108275] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
With the growth of the chemical industry over the last decade, the need for cheaper (and more environmentally friendly) alternatives to petrochemicals of ever-increasing cost has grown steadily. Oleochemicals and biodiesel (OC/BD) are considered as green alternatives to petroleum derivatives, because they come from renewable oils and fats. OC/BD are currently produced by the traditional energy intensive chemical catalyzed methods, which have several economic and environmental drawbacks. For these reasons, the enzymatic production of OC/BD has attracted a growing attention for their greener pathway with respect to the chemically catalyzed processes. Lipase-catalyzed processes have a low energy requirement, since reactions are performed under atmospheric pressure and mild temperature and without the creation of side reactions. Furthermore, utilization of enzyme catalysts offers many advantages such as reducing the initial capital investment due to simplified downstream processing steps. Despite all the previous advantages, however, the high cost of lipases restricted their large-scale utilization. In the past decade, efforts have been made to reduce the cost of the enzymatic-catalyzed synthesis of OC/BD. However, most previous studies have studied only the technical feasibility of the lipase-catalyzed reactions and overlocked the economic viability. This review critically discusses the factors affecting the promotion of the economic feasibility of the enzymatic processes from the lab to large scale. These include reactor configuration, type of feedstock, conditions optimization, immobilization, lipase-producing microorganisms, and substrate diversification. In addition, this review reports the recent advances in lipase-catalyzed production of fatty acids, fatty esters, monoglycerides, and biodiesel in the lab as well as in the large-scales. To the best of authors' knowledge, this is the first review article reports the recent global progress achieved in both lab- and large-scale for the enzymatic production of OC/BD.
Collapse
Affiliation(s)
- Ahmad Mustafa
- Faculty of Engineering, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Inas A Ahmed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia
| | - Mamoona Munir
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Eliane Pereira Cipolatti
- Chemical Engineering Department, Institute of Technology, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Evelin Andrade Manoel
- Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro (UFRJ), Rio de Janeito, RJ, Brazil; Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlo Pastore
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5,70132 Bari, Italy
| | - Luigi di Bitonto
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5,70132 Bari, Italy
| | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Febri Odel Nitbani
- Department of Chemistry, Faculty of Science and Engineering, University of Nusa Cendana, Jl. Adisucipto, Penfui, Kupang 85001, Nusa Tenggara Timur, Indonesia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Tamer M M Abdellatief
- Sustainable Energy & Power Systems Research Center, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, EL-Minia 61519, Egypt
| | - Konstantza Tonova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 103, Sofia 1113, Bulgaria
| | - Awais Bokhari
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab 54000, Pakistan; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| |
Collapse
|
2
|
Lv D, Wang M, He W, Wu J, Liu X, Guan Y. Ultra-small magnetic Candida antarctica lipase B nanoreactors for enzyme synthesis of bixin-maltitol ester. Food Chem 2023; 421:136132. [PMID: 37094396 DOI: 10.1016/j.foodchem.2023.136132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Bixin has desirable bioactivities but poor water solubility, which limits its practical applications. Enzymatic transesterification of methyl to alditol groups in bixin by Candida antarctica lipase B (CALB) improves bixin water solubility. Herein, magnetic CALB nanoreactors with diameter of 11.7 nm and CALB layer thickness of 3.5 nm were developed by covalently linking CALB onto silicon covered Fe3O4 nanoparticles. The CALB loading capacity in nanoreactors achieved 30%. The Michaelis constant (Km) and maximum reaction rate of magnetic CALB nanoreactors were 56.1 mmol/L and 0.2 mmol/(L·min). Magnetic CALB nanoreactors could circularly catalyze bixin-maltitol ester synthesis and keep catalytic efficiency of 62.6% after eight repetitive enzymatic reactions. Additionally, the optimal bixin-maltitol ester synthesis procedure was heating bixin-maltitol mixture at molar ratio of 1:7 in anhydrous 2-methyl-2-butanol-dimethylsulfoxide (8:2, v/v) at 50 °C for 24 h. Bixin-maltitol ester showed improved water solubility at pH 5.5 and 7.0.
Collapse
Affiliation(s)
- Danyu Lv
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muyun Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanjun He
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieli Wu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyue Liu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongguang Guan
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Design of a New Chemoenzymatic Process for Producing Epoxidized Monoalkyl Esters from Used Soybean Cooking Oil and Fusel Oil. Catalysts 2023. [DOI: 10.3390/catal13030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
The aim of this study was to produce epoxidized monoalkyl esters (EMAE), a valuable class of oleochemicals used in a wide range of products and industries, from used soybean cooking oil (USCO) and fusel oil via a three-step chemoenzymatic process. This process consists of a first enzymatic hydrolysis of USCO to produce free fatty acids (FFA). Here, five microbial lipases with different specificities were tested as biocatalysts. Full hydrolysis of USCO was obtained after a 180 min reaction time under vigorous stirring (1500 rpm) using a non-specific lipase from Candida rugosa (CRL). Then, monoalkyl esters (MAE) were produced via the esterification of FFA and fusel oil in a solvent-free system using the lipase Eversa® Transform 2.0 (ET2.0) immobilized via physical adsorption on poly(styrenene-divinylbenzene) (PSty-DVB) beads as a biocatalyst. Different water removal strategies (closed and open reactors in the presence or absence of molecular sieves at 5% m.m−1) on the reaction were evaluated. Maximum FFA conversions of 64.3 ± 2.3% (open reactor after a 30 min reaction time) and 73.5 ± 0.4% (closed reactor after a 45 min reaction time) were observed at 40 °C, using a stoichiometric FFA:fusel oil molar ratio (1:1), without molecular sieves, and 5 mg of immobilized protein per gram of reaction mixture. Under these conditions, maximum FFA conversion was only 30.2 ± 2.7% after a 210 min reaction time in a closed reactor using soluble lipase. Reusability tests showed better retention of the original activity of immobilized ET2.0 (around 82%) after eight successive batches of esterification reactions conducted in an open reactor. Finally, the produced MAE was epoxidized via the Prilezhaev reaction, a classical chemical epoxidation process, using hydrogen peroxide and formic acid as a homogeneous catalyst. The products were characterized by standard methods and identified using proton nuclear magnetic resonance (1H NMR). Maximum unsaturated bond conversions into epoxy groups were at approximately 33%, with the experimental epoxy oxygen content (OOCexp.) at 1.75–1.78%, and selectivity (S) at 0.81, using both MAEs produced (open or closed reactors). These results show that this new process is a promising approach for value-added oleochemical production from low-cost and renewable raw materials.
Collapse
|
4
|
Huang C, Lin Z, Zhang Y, Liu Z, Tang X, Li C, Lin L, Huang W, Ye Y. Structure-guided preparation of fuctional oil rich in 1,3-diacylglycerols and linoleic acid from Camellia oil by combi-lipase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:108-117. [PMID: 35810339 DOI: 10.1002/jsfa.12117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/13/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diacylglycerol (DAG)-enriched oil has been attracting attention because of its nutritional benefits and biological functions, although the composition of its various free fatty acids (FFAs) and an unclear relationship between substrate and yield make it difficult to be identified and qualified with respect to its production. In the present study, linoleic acid-enriched diacylglycerol (LA-DAG) was synthesized and enriched from Camellia oil by the esterification process using the combi-lipase Lipozyme TL IM/RM IM system. RESULTS The relationship between FFA composition and DAG species productivity was revealed. The results showed that heterogeneous FFA with a major constituent (more than 50%) exhibited higher DAG productivity and inhibited triacylglycerol productivity compared to homogeneous constituents. Joint characterization by high-performance liquid chromatography-evaporative light scattering detection, gas chromatography-mass spectrometry and ultra-performance liquid chromatography-heated electrospray ionization-tandem mass spectrometry identified that DAG components contained dilinoleic acid acyl glyceride, linoleyl-oleyl glyceride and dioleic acid acyl glyceride in esterification products. Under the optimum conditions, 60.4% 1,3-DAG and 61.3% LA-DAG in the crude product at 1 h reaction were obtained, and further purified to 81.7% LA-DAG and 94.7% DAG via silica column chromatography. CONCLUSION The present study provides a guideline for the identification of DAG species, as well as a structure-guided preparation method of DAG-enriched oils via the cost-effective combi-lipase. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanqing Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Zepeng Lin
- Guangdong Kangxin Detection Technology Co., Ltd., Guangzhou, China
| | - Yunlong Zhang
- Guangdong Kangxin Detection Technology Co., Ltd., Guangzhou, China
| | - Zeyu Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoyue Tang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Lin Lin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wenqian Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
5
|
Co-Enzymes with Dissimilar Stabilities: A Discussion of the Likely Biocatalyst Performance Problems and Some Potential Solutions. Catalysts 2022. [DOI: 10.3390/catal12121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enzymes have several excellent catalytic features, and the last few years have seen a revolution in biocatalysis, which has grown from using one enzyme to using multiple enzymes in cascade reactions, where the product of one enzyme reaction is the substrate for the subsequent one. However, enzyme stability remains an issue despite the many benefits of using enzymes in a catalytic system. When enzymes are exposed to harsh process conditions, deactivation occurs, which changes the activity of the enzyme, leading to an increase in reaction time to achieve a given conversion. Immobilization is a well-known strategy to improve many enzyme properties, if the immobilization is properly designed and controlled. Enzyme co-immobilization is a further step in the complexity of preparing a biocatalyst, whereby two or more enzymes are immobilized on the same particle or support. One crucial problem when designing and using co-immobilized enzymes is the possibility of using enzymes with very different stabilities. This paper discusses different scenarios using two co-immobilized enzymes of the same or differing stability. The effect on operational performance is shown via simple simulations using Michaelis–Menten equations to describe kinetics integrated with a deactivation term. Finally, some strategies for overcoming some of these problems are discussed.
Collapse
|
6
|
Efficient biodiesel production from waste cooking oil by fast co-immobilization of lipases from Aspergillus oryzae and Rhizomucor miehei in magnetic chitosan microcapsules. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme. Int J Biol Macromol 2022; 208:688-697. [PMID: 35358572 DOI: 10.1016/j.ijbiomac.2022.03.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Although Lecitase and the lipase from Thermomyces lanuginosus (TLL) could be coimmobilized on octyl-agarose, the stability of Lecitase was lower than that of TLL causing the user to discard active immobilized TLL when Lecitase was inactivated. Here, we propose the chemical amination of immobilized TLL to ionically exchange Lecitase on immobilized TLL, which should be released to the medium after its inactivation by incubation at high ionic strength. Using conditions where Lecitase was only adsorbed on immobilized TLL after its amination, the combibiocatalyst was produced. Unfortunately, the release of Lecitase was not possible using just high ionic strength solutions, and if detergent was added, TLL was also released from the support. This occurred when using 0.25 M ammonium sulfate, Lecitase did not immobilize on aminated TLL. That makes the use octyl-vinylsulfone supports necessary to irreversibly immobilize TLL, and after blocking with ethylendiamine, the immobilized TLL was aminated. Lecitase immobilized and released from this biocatalyst using 0.25 M ammonium sulfate and 0.1% Triton X-100. That way, a coimmobilized TLL and Lecitase biocatalyst could be produced, and after Lecitase inactivation, it could be released and the immobilized, aminated, and fully active TLL could be utilized to build a new combibiocatalyst.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Enzymatic Hydrolysis of Waste Cooking Oil by Lipase Catalysis: Simplex Mixture Design Optimization. Catal Letters 2022. [DOI: 10.1007/s10562-022-04025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Kuang G, Du Y, Lu S, Wang Z, Zhang Z, Fan X, Bilal M, Cui J, Jia S. Silica@lipase hybrid biocatalysts with superior activity by mimetic biomineralization in oil/water two-phase system for hydrolysis of soybean oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
11
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
12
|
de Sousa RR, Pinto MCC, Aguieiras ECG, Cipolatti EP, Manoel EA, da Silva AS, Pinto JC, Freire DMG, Ferreira-Leitão VS. Comparative performance and reusability studies of lipases on syntheses of octyl esters with an economic approach. Bioprocess Biosyst Eng 2021; 45:131-145. [PMID: 34605995 DOI: 10.1007/s00449-021-02646-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
A suitable immobilized lipase for esters syntheses should be selected considering not only its cost. We evaluated five biocatalysts in syntheses of octyl caprylate, octyl caprate, and octyl laurate, in which conversions higher than 90% were achieved. Novozym® 435 and non-commercial preparations (including a dry fermented solid) were selected for short-term octyl laurate syntheses using different biocatalysts loadings. By increasing the biocatalyst's loading the lipase's reusability also raised, but without strict proportionality, which resulted in a convergence between the lowest biocatalyst loading and the lowest cost per batch. The use of a dry fermented solid was cost-effective, even using loadings as high as 20.0% wt/wt due to its low obtaining cost, although exhibiting low productiveness. The combination of biocatalyst's cost, esterification activity, stability, and reusability represents proper criteria for the choice. This kind of assessment may help to establish quantitative goals to improve or to develop new biocatalysts.
Collapse
Affiliation(s)
- Ronaldo Rodrigues de Sousa
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Martina Costa Cerqueira Pinto
- Federal University of Rio de Janeiro, Chemical Engineering Program, COPPE, Rio de Janeiro, RJ, 21941-972, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Erika Cristina Gonçalves Aguieiras
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Federal University of Rio de Janeiro Campus, UFRJ - Duque de Caxias, Prof. Geraldo Cidade, Duque de Caxias, RJ, 25240-005, Brazil
| | - Eliane Pereira Cipolatti
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Evelin Andrade Manoel
- Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Ayla Sant'Ana da Silva
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - José Carlos Pinto
- Federal University of Rio de Janeiro, Chemical Engineering Program, COPPE, Rio de Janeiro, RJ, 21941-972, Brazil
| | | | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil. .,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
13
|
Ng AMJ, Yang R, Zhang H, Xue B, Yew WS, Nguyen GKT. A Novel Lipase from Lasiodiplodia theobromae Efficiently Hydrolyses C8-C10 Methyl Esters for the Preparation of Medium-Chain Triglycerides' Precursors. Int J Mol Sci 2021; 22:10339. [PMID: 34638680 PMCID: PMC8508680 DOI: 10.3390/ijms221910339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Medium-chain triglycerides (MCTs) are an emerging choice to treat neurodegenerative disorders such as Alzheimer's disease. They are triesters of glycerol and three medium-chain fatty acids, such as capric (C8) and caprylic (C10) acids. The availability of C8-C10 methyl esters (C8-C10 ME) from vegetable oil processes has presented an opportunity to use methyl esters as raw materials for the synthesis of MCTs. However, there are few reports on enzymes that can efficiently hydrolyse C8-C10 ME to industrial specifications. Here, we report the discovery and identification of a novel lipase from Lasiodiplodia theobromae fungus (LTL1), which hydrolyses C8-C10 ME efficiently. LTL1 can perform hydrolysis over pH ranges from 3.0 to 9.0 and maintain thermotolerance up to 70 °C. It has high selectivity for monoesters over triesters and displays higher activity over commercially available lipases for C8-C10 ME to achieve 96.17% hydrolysis within 31 h. Structural analysis by protein X-ray crystallography revealed LTL1's well-conserved lipase core domain, together with a partially resolved N-terminal subdomain and an inserted loop, which may suggest its hydrolytic preference for monoesters. In conclusion, our results suggest that LTL1 provides a tractable route towards to production of C8-C10 fatty acids from methyl esters for the synthesis of MCTs.
Collapse
Affiliation(s)
- Andre Mong Jie Ng
- WIL@NUS Corporate Laboratory, Wilmar International Limited, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; (A.M.J.N.); (R.Y.); (H.Z.)
- Wilmar Innovation Centre, Wilmar International Limited, 28 Biopolis Road, Singapore 138568, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore;
- NUS Synthetic Biology for Clinical and Technological Innovation, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
- NUS Synthetic Biology Translational Research Programme, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Renliang Yang
- WIL@NUS Corporate Laboratory, Wilmar International Limited, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; (A.M.J.N.); (R.Y.); (H.Z.)
- Wilmar Innovation Centre, Wilmar International Limited, 28 Biopolis Road, Singapore 138568, Singapore
| | - Hongfang Zhang
- WIL@NUS Corporate Laboratory, Wilmar International Limited, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; (A.M.J.N.); (R.Y.); (H.Z.)
- Wilmar Innovation Centre, Wilmar International Limited, 28 Biopolis Road, Singapore 138568, Singapore
| | - Bo Xue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore;
- NUS Synthetic Biology for Clinical and Technological Innovation, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
- NUS Synthetic Biology Translational Research Programme, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore;
- NUS Synthetic Biology for Clinical and Technological Innovation, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
- NUS Synthetic Biology Translational Research Programme, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Giang Kien Truc Nguyen
- WIL@NUS Corporate Laboratory, Wilmar International Limited, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; (A.M.J.N.); (R.Y.); (H.Z.)
- Wilmar Innovation Centre, Wilmar International Limited, 28 Biopolis Road, Singapore 138568, Singapore
| |
Collapse
|
14
|
Filipe HAL, Almeida MCF, Teixeira RR, Esteves MIM, Henriques CA, Antunes FE. Dancing with oils - the interaction of lipases with different oil/water interfaces. SOFT MATTER 2021; 17:7086-7098. [PMID: 34155497 DOI: 10.1039/d1sm00590a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of enzymes as biocatalysts in industrial applications has received much attention during the last few years. Lipases are widely employed in the food and cosmetic industry, for the synthesis of novel biomaterials and as a greener solution for the treatment of waste cooking oils (WCO). The latter topic has been widely explored with the use of enzymes from several origins and types, for the treatment of different used and non-used cooking oils. The experimental conditions of such works are also quite broad, hampering the detailed understanding of the process. In this work we present a detailed characterization of the interaction of several commonly used lipases with different types of vegetal oils and food fats through coarse-grained molecular dynamics simulations. First, the molecular details of the oil/water (O/W) mixtures, namely at the O/W interface, are described. The O/W interface was found to be enriched in triglyceride molecules with higher polarity. Then, the interaction of lipases with oil mixtures is characterized from different perspectives, including the identification of the most important protein residues for this process. The lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Candida antarctica (CALB) were found to bind to the O/W interface in a manner that makes the protein binding site more available for the oil molecules. These enzymes were also found to efficiently bind to the O/W interface of all oil mixtures, which in addition to reactivity factors, may explain the efficient applicability of these enzymes to a large variety of edible oils and WCO.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Maëva C F Almeida
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Rafaela R Teixeira
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Margarida I M Esteves
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - César A Henriques
- EcoXperience, HIESE, Quinta Vale do Espinhal, 3230-343, Penela, Portugal
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
15
|
Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 2021; 179:170-195. [PMID: 33667561 DOI: 10.1016/j.ijbiomac.2021.02.198] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.
Collapse
|
16
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Savickaite A, Sadauskas M, Gudiukaite R. Immobilized GDEst-95, GDEst-lip and GD-95RM lipolytic enzymes for continuous flow hydrolysis and transesterification reactions. Int J Biol Macromol 2021; 173:421-434. [PMID: 33493559 DOI: 10.1016/j.ijbiomac.2021.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
In this study lipolytic biocatalysts GD-95RM, GDEst-95 and GDEst-lip were immobilized by encapsulation in calcium alginate beads. All three immobilized biocatalysts demonstrated significantly increased thermal stability at 60-70 °C temperatures and the activity of GD-95RM lipase increased by 50% at 70-80 °C following the immobilization. Moreover, encapsulated GDEst-95 esterase retained higher than 50% lipolytic activity after 3 months of incubation with butanol (25%) and ethanol (50%); GDEst-lip enzyme possessed 50% activity after 2 months of treatment with ethanol (25%) and methanol (25%); and GD-95RM lipase displayed higher that 50% activity after two-week incubation with methanol (50%). All three immobilized enzymes displayed long-term storage capability (>50% activity) at least until 3 months at 4 °C. It was also detected that immobilized GD-95RM and GDEst-lip can perform flow hydrolysis of both avocado oil and p-NP dodecanoate in prototype packed-bed column reactor. The analysis of continuous transesterification of avocado or sunflower oil with ethanol or methanol as substrates confirmed that encapsulated GD-95RM and GDEst-lip enzymes is a useful approach to produce fatty acid alkyl esters.
Collapse
Affiliation(s)
- Agne Savickaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Mikas Sadauskas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Renata Gudiukaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
18
|
Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts 2020. [DOI: 10.3390/catal10101207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lipases A and B from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TLL) or Rhizomucor miehei (RML), and the commercial and artificial phospholipase Lecitase ultra (LEU) may be co-immobilized on octyl agarose beads. However, LEU and RML became almost fully inactivated under conditions where CALA, CALB and TLL retained full activity. This means that, to have a five components co-immobilized combi-lipase, we should discard 3 fully active and immobilized enzymes when the other two enzymes are inactivated. To solve this situation, CALA, CALB and TLL have been co-immobilized on octyl-vinyl sulfone agarose beads, coated with polyethylenimine (PEI) and the least stable enzymes, RML and LEU have been co-immobilized over these immobilized enzymes. The coating with PEI is even favorable for the activity of the immobilized enzymes. It was checked that RML and LEU could be released from the enzyme-PEI coated biocatalyst, although this also produced some release of the PEI. That way, a protocol was developed to co-immobilize the five enzymes, in a way that the most stable could be reused after the inactivation of the least stable ones. After RML and LEU inactivation, the combi-biocatalysts were incubated in 0.5 M of ammonium sulfate to release the inactivated enzymes, incubated again with PEI and a new RML and LEU batch could be immobilized, maintaining the activity of the three most stable enzymes for at least five cycles of incubation at pH 7.0 and 60 °C for 3 h, incubation on ammonium sulfate, incubation in PEI and co-immobilization of new enzymes. The effect of the order of co-immobilization of the different enzymes on the co-immobilized biocatalyst activity was also investigated using different substrates, finding that when the most active enzyme versus one substrate was immobilized first (nearer to the surface of the particle), the activity was higher than when this enzyme was co-immobilized last (nearer to the particle core).
Collapse
|
19
|
Rocha TG, de L. Gomes PH, de Souza MCM, Monteiro RRC, dos Santos JCS. Lipase Cocktail for Optimized Biodiesel Production of Free Fatty Acids from Residual Chicken Oil. Catal Letters 2020. [DOI: 10.1007/s10562-020-03367-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Filipe HAL, Esteves MIM, Henriques CA, Antunes FE. Effect of Protein Flexibility from Coarse-Grained Elastic Network Parameterizations on the Calculation of Free Energy Profiles of Ligand Binding. J Chem Theory Comput 2020; 16:4734-4743. [PMID: 32496775 DOI: 10.1021/acs.jctc.0c00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characterization of the affinity and binding mechanism of specific molecules to a protein active site is scientifically and industrially relevant for many applications. In principle, this information can be obtained using molecular dynamics (MD) simulations by calculating the free energy profile of the process. However, this is a computationally demanding calculation. Currently, coarse-grained (CG) force fields are very well implemented for MD simulations of biomolecular systems. These computationally efficient force fields are a major advantage to the study of large model systems and/or those requiring long simulation times. The Martini model is currently one of the most popular CG force fields for these systems. For the specific case of protein simulations, to correctly maintain the macromolecular three-dimensional structure, the Martini model needs to include an elastic network (EN). In this work, the effect of protein flexibility, as induced by three EN models compatible with the Martini force field, was tested on the calculation of free energy profiles for protein-ligand binding. The EN models used were ElNeDyn, GoMartini, and GEN. The binding of triolein (TOG) and triacetin (TAG) to a lipase protein (thermomyces lanuginosa lipase-TLL) was used as a case study. The results show that inclusion of greater flexibility in the CG parameterization of proteins is of high importance in the calculation of the free energy profiles of protein-ligand systems. However, care must be taken in order to avoid unjustified large protein deformations. In addition, due to molecular flexibility there may be no absolute need for the center of the ligand to reach the center of the protein-binding site. The calculation of the energy profile to a distance of about 0.5 nm from the active site center can be sufficient to differentiate the affinity of different ligands to a protein.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Margarida I M Esteves
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - César A Henriques
- EcoXperience, HIESE, Quinta Vale do Espinhal, Penela 3230-343, Portugal
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| |
Collapse
|
21
|
Souza JES, Monteiro RRC, Rocha TG, Moreira KS, Cavalcante FTT, de Sousa Braz AK, de Souza MCM, Dos Santos JCS. Sonohydrolysis using an enzymatic cocktail in the preparation of free fatty acid. 3 Biotech 2020; 10:254. [PMID: 32426206 DOI: 10.1007/s13205-020-02227-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
In this work, the concept of lipase cocktail has been proposed in the ultrasound-assisted hydrolysis of coconut oil. Lipase from Thermomyces lanuginosus (TLL), lipase from Rhizomucor miehei (RML), and lipase B from Candida antarctica (CALB) were evaluated as biocatalysts in different combinations. The best conversion (33.66%) was achieved using only RML; however, the best lipase cocktail (75% RML and 25% CALB) proposed by the triangular response surface was used to achieve higher conversions. At the best lipase cocktail, reaction parameters [temperature, biocatalyst content and molar ratio (water/oil)] were optimized by a Central Composite Design, allowing to obtain more than 98% of conversion in the hydrolysis of coconut oil in 3 h of incubation at 37 kHz, 300 W and 45 °C by using 20% of the lipase cocktail (w/w) and a molar ratio of 7.5:1 (water/oil). The lipase cocktail retained about 50% of its initial activity after three consecutive cycles of hydrolysis. To the authors' knowledge, up to date, this communication is the first report in the literature for the ultrasound-assisted hydrolysis of coconut oil catalyzed by a cocktail of lipases. Under ultrasound irradiation, the concept of lipase cocktail was successfully applied, and this strategy could be useful for the other types of reactions using heterogeneous substrates.
Collapse
Affiliation(s)
- José E S Souza
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| | - Rodolpho R C Monteiro
- 2Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, Fortaleza, CE 60455760 Brazil
| | - Thales G Rocha
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| | - Katerine S Moreira
- 2Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, Fortaleza, CE 60455760 Brazil
| | - Francisco T T Cavalcante
- 2Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, Fortaleza, CE 60455760 Brazil
| | - Ana K de Sousa Braz
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| | - Maria C M de Souza
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| | - José C S Dos Santos
- 1Instituto de Engenharias E Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus da Auroras, Redenção, CE 62790970 Brazil
| |
Collapse
|
22
|
One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts 2020. [DOI: 10.3390/catal10060605] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipases are among the most utilized enzymes in biocatalysis. In many instances, the main reason for their use is their high specificity or selectivity. However, when full modification of a multifunctional and heterogeneous substrate is pursued, enzyme selectivity and specificity become a problem. This is the case of hydrolysis of oils and fats to produce free fatty acids or their alcoholysis to produce biodiesel, which can be considered cascade reactions. In these cases, to the original heterogeneity of the substrate, the presence of intermediate products, such as diglycerides or monoglycerides, can be an additional drawback. Using these heterogeneous substrates, enzyme specificity can promote that some substrates (initial substrates or intermediate products) may not be recognized as such (in the worst case scenario they may be acting as inhibitors) by the enzyme, causing yields and reaction rates to drop. To solve this situation, a mixture of lipases with different specificity, selectivity and differently affected by the reaction conditions can offer much better results than the use of a single lipase exhibiting a very high initial activity or even the best global reaction course. This mixture of lipases from different sources has been called “combilipases” and is becoming increasingly popular. They include the use of liquid lipase formulations or immobilized lipases. In some instances, the lipases have been coimmobilized. Some discussion is offered regarding the problems that this coimmobilization may give rise to, and some strategies to solve some of these problems are proposed. The use of combilipases in the future may be extended to other processes and enzymes.
Collapse
|
23
|
Production of volatile compounds by yeasts using hydrolysed grape seed oil obtained by immobilized lipases in continuous packed-bed reactors. Bioprocess Biosyst Eng 2020; 43:1391-1402. [DOI: 10.1007/s00449-020-02334-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
|
24
|
Coimmobilization of different lipases: Simple layer by layer enzyme spatial ordering. Int J Biol Macromol 2020; 145:856-864. [DOI: 10.1016/j.ijbiomac.2019.10.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
|
25
|
Improving the Yields and Reaction Rate in the Ethanolysis of Soybean Oil by Using Mixtures of Lipase CLEAs. Molecules 2019; 24:molecules24234392. [PMID: 31805665 PMCID: PMC6930585 DOI: 10.3390/molecules24234392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Due to the heterogeneity of oils, the use of mixtures of lipases with different activity for a large number of glycerol-linked carboxylic acids that compose the substrate has been proposed as a better alternative than the use of one specific lipase preparation in the enzymatic synthesis of biodiesel. In this work, mixtures of lipases from different sources were evaluated in their soluble form in the ethanolysis of soybean oil. A mixture of lipases (50% of each lipase, in activity basis) from porcine pancreas (PPL) and Thermomyces lanuginosus lipase (TLL) gave the highest fatty acid ethyl ester (FAEE) yield (around 20 wt.%), while the individual lipases gave FAEE yields 100 and 5 times lower, respectively. These lipases were immobilized individually by the cross-linked enzyme aggregates (CLEAs) technique, yielding biocatalysts with 89 and 119% of expressed activity, respectively. A mixture of these CLEAs (also 50% of each lipase, in activity basis) gave 90.4 wt.% FAEE yield, while using separately CLEAs of PPL and TLL, the FAEE yields were 84.7 and 75.6 wt.%, respectively, under the same reaction conditions. The mixture of CLEAs could be reused (five cycles of 6 h) in the ethanolysis of soybean oil in a vortex flow-type reactor yielding an FAEE yield higher than 80% of that of the first batch.
Collapse
|
26
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
27
|
Goersch MCDS, Schäfer L, Tonial M, de Oliveira VR, Ferraz ADBF, Fachini J, da Silva JB, Niekraszewicz LAB, Rodrigues CE, Pasquali G, Dias JF, Kist TBL, Picada JN. Nutritional composition of Eragrostis teff and its association with the observed antimutagenic effects. RSC Adv 2019; 9:3764-3776. [PMID: 35518081 PMCID: PMC9060251 DOI: 10.1039/c8ra09733j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 12/28/2022] Open
Abstract
Eragrostis teff is an Ethiopian native grass plant (Poaceae or Gramineae family) whose importance as a crop grain has increased in recent years. The aim of this study is to analyze the nutritional composition of its seeds and the mutagenic/antimutagenic activity of the hydroalcoholic extract of the seed flour. Chemical elements (colloquially known as minerals) were determined using Particle-Induced X-ray Emission (PIXE) and Flame Atomic Absorption Spectroscopy (FAAS), while the content of amino acids (aminogram) and fatty acids (profile of fatty acids) were quantified by HPLC. Mutagenic activities were tested using Salmonella/microsome assay. Mutagens doxorubicin, 4-nitroquinolin N-oxide, methylmethanosulphonate, and aflatoxin B-1 were used in Salmonella typhimurium TA98 and TA100 strains to assess antimutagenic activities. The major elements observed were K, P, S, Mg, and Ca. Almost all essential amino acids were observed and the predominance of unsaturated fatty acids in the total oil content of 2.72% (w/w) is also noted, including the two essential fatty acids alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid). Hydroalcoholic extract of E. teff seed flour showed antimutagenic activity, protecting against frameshift and base pair substitution mutations. These findings provide valuable information for further development of healthier foods that can be produced with increasing yields and minimal environmental impact. Eragrostis teff is an Ethiopian native grass plant (Poaceae or Gramineae family) whose importance as a crop grain has increased in recent years.![]()
Collapse
Affiliation(s)
- Maria Clara da Silva Goersch
- Graduating Program in Cell and Molecular Biology Applied to Health, Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA) Farroupilha Avenue 8001 92425-900 Canoas RS Brazil +55 51 34771313 +55 51 34779158
| | - Laura Schäfer
- Laboratory of Methods, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul Bento Goncalves Avenue 9500 Porto Alegre RS Brazil
| | - Marina Tonial
- Laboratory of Methods, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul Bento Goncalves Avenue 9500 Porto Alegre RS Brazil
| | - Viviani Ruffo de Oliveira
- Department of Nutrition, Medical School, Federal University of Rio Grande do Sul Ramiro Barcelos Street 2400 Porto Alegre RS Brazil
| | | | - Jean Fachini
- Graduating Program in Cell and Molecular Biology Applied to Health, Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA) Farroupilha Avenue 8001 92425-900 Canoas RS Brazil +55 51 34771313 +55 51 34779158
| | - Juliana Bondan da Silva
- Graduating Program in Cell and Molecular Biology Applied to Health, Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA) Farroupilha Avenue 8001 92425-900 Canoas RS Brazil +55 51 34771313 +55 51 34779158
| | - Liana Appel Boufleur Niekraszewicz
- Ion Implantation Laboratory (LII), Institute of Physics, Federal University of Rio Grande do Sul Bento Goncalves Avenue 9500 Porto Alegre RS Brazil
| | - Carlos Eduardo Rodrigues
- Laboratory of Methods, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul Bento Goncalves Avenue 9500 Porto Alegre RS Brazil.,Graduating Program in Cell and Molecular Biology, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Giancarlo Pasquali
- Graduating Program in Cell and Molecular Biology, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory (LII), Institute of Physics, Federal University of Rio Grande do Sul Bento Goncalves Avenue 9500 Porto Alegre RS Brazil
| | - Tarso B Ledur Kist
- Laboratory of Methods, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul Bento Goncalves Avenue 9500 Porto Alegre RS Brazil
| | - Jaqueline Nascimento Picada
- Graduating Program in Cell and Molecular Biology Applied to Health, Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA) Farroupilha Avenue 8001 92425-900 Canoas RS Brazil +55 51 34771313 +55 51 34779158
| |
Collapse
|
28
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
29
|
Sun S, Tian L. Novozym 40086 as a novel biocatalyst to improve benzyl cinnamate synthesis. RSC Adv 2018; 8:37184-37192. [PMID: 35557827 PMCID: PMC9089159 DOI: 10.1039/c8ra08433e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022] Open
Abstract
Benzyl cinnamate is one of the derivatives of cinnamic acid, which can be used as the main constituent in perfume, UV filters and medicines. In this work, several commercial immobilized lipases (Novozym 40086, Novozym 435 and Lipozyme TLIM) and free lipases (lipase A and B from Candida sp., and lipozyme from Thermomyces linuginosous) were used as catalysts for benzyl cinnamate preparation by the esterification of benzyl alcohol with cinnamic acid. The effect of various esterification parameters (reaction time, reaction temperature, lipase concentration and substrate ratio) on benzyl cinnamate yield were also optimized and evaluated using response surface methodology (RSM). Among all tested lipases, Novozym 40086, as a new commercial immobilized lipase from Rhizomucor miehei immobilized on acrylic resin beads, showed the best activity for the esterification. Esterification parameters were optimized as follows: reaction temperature 46.3 °C, substrate molar ratio 1 : 3 (cinnamic acid/benzyl alcohol), Novozym 40086 concentration 23.1 mg mL-1, reaction time 11.3 h, and maximum benzyl cinnamate yield (96.2 ± 1.4%) were achieved under the optimal conditions. Novozym 40086 can be reused 9 times without significant decrease in benzyl cinnamate yield (90.1% yield after nine times). The activation energy for the Novozym 40086-catalyzed esterification was 14.96 ± 0.25 kJ mol-1. These results showed that Novozym 40086 was a novel and efficient biocatalyst for the esterification, which can be used as a good alternative for benzyl cinnamate production.
Collapse
Affiliation(s)
- Shangde Sun
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology Lianhua Road 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| | - Liya Tian
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology Lianhua Road 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| |
Collapse
|
30
|
Performance of 3‑[4‑(bromomethyl)phenyl]‑7‑(diethylamino) coumarin as a derivatization reagent for the analysis of medium and long chain fatty acids using HPLC with LIF detection. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:50-57. [DOI: 10.1016/j.jchromb.2018.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/15/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022]
|
31
|
Lotti M, Pleiss J, Valero F, Ferrer P. Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation. Biotechnol J 2018; 13:e1700155. [PMID: 29461685 DOI: 10.1002/biot.201700155] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/10/2018] [Indexed: 01/15/2023]
Abstract
Lipase-catalyzed transesterification of triglycerides and alcohols to obtain biodiesel is an environmentally friendly and sustainable route for fuels production since, besides proceeding in mild reaction conditions, it allows for the use of low-cost feedstocks that contain water and free fatty acids, for example non-edible oils and waste oils. This review article reports recent advances in the field and focus in particular on a major issue in the enzymatic process, the inactivation of most lipases caused by methanol, the preferred acyl acceptor used for alcoholysis. The recent results about immobilization of enzymes on nano-materials and the use of whole-cell biocatalysts, as well as the use of cell-surface display technologies and metabolic engineering strategies for microbial production of biodiesel are described. It is discussed also insight into the effects of methanol on lipases obtained by modeling approaches and report on studies aimed at mining novel alcohol stable enzymes or at improving robustness in existing ones by protein engineering.
Collapse
Affiliation(s)
- Marina Lotti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
32
|
Abstract
Global shortages of fossil fuels, significant rise in the price of crude oil, and increased environmental concerns have stimulated the rapid growth of biodiesel production. Biodiesel is generally produced through transesterification reaction catalyzed either chemically or enzymatically. Enzymatic transesterification is of interest since it shows advantages over the chemical process and, in addition, is considered a "green" process. This chapter reviews the current status of biodiesel production with a lipase biocatalysis approach, including sources of lipases, kinetics, lipase immobilization techniques, and lipase reaction mechanism for biodiesel production. Factors affecting biodiesel production and the economic feasibility of lipase biodiesel production are also covered.
Collapse
Affiliation(s)
- Marcos Vargas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Xochitl Niehus
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Leticia Casas-Godoy
- Cátedras CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico.
| |
Collapse
|
33
|
Lipase-Catalyzed Synthesis of Kojic Acid Derivative in Bioreactors and the Analysis of Its Depigmenting and Antioxidant Activities. COSMETICS 2017. [DOI: 10.3390/cosmetics4030022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Zhao T, Choi N, Kim H, Kim Y, Kim HR, Kim IH. Lipase-Mediated Synthesis of Fatty Acid Esters Using a Blending Alcohol Consisting of Methanol and 1-Butanol. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-2967-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
|
36
|
Mulinari J, Venturin B, Sbardelotto M, Dall Agnol A, Scapini T, Camargo AF, Baldissarelli DP, Modkovski TA, Rossetto V, Dalla Rosa C, Reichert FW, Golunski SM, Vieitez I, Vargas GDLP, Dalla Rosa C, Mossi AJ, Treichel H. Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases. ULTRASONICS SONOCHEMISTRY 2017; 35:313-318. [PMID: 27746067 DOI: 10.1016/j.ultsonch.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the waste cooking oil (WCO) hydrolysis in ultrasonic system using lipase as catalyst. Lipase was produced by the fungus Aspergillus niger via solid state fermentation (SSF) using canola meal as substrate. Prior to the hydrolysis reaction, the lipase behavior when subjected to ultrasound was evaluated by varying the temperature of the ultrasonic bath, the exposure time and the equipment power. Having optimized the treatment on ultrasound, the WCO hydrolysis reaction was carried out by evaluating the oil:water ratio and the lipase concentration. For a greater homogenization of the reaction medium, a mechanical stirrer at 170rpm was used. All steps were analyzed by experimental design technique. The lipase treatment in ultrasound generated an increase of about 320% in its hydrolytic activity using 50% of ultrasonic power for 25min. at 45°C. The results of the experimental design conducted for ultrasound-assisted hydrolysis showed that the best condition was using an oil:water ratio of 1:3 (v:v) and enzyme concentration of 15% (v/v), generating 62.67μmol/mL of free fatty acids (FFA) in 12h of reaction. Thus, the use of Aspergillus niger lipase as a catalyst for hydrolysis reaction of WCO can be considered as a possible pretreatment technique of the oil in order to accelerate its degradation.
Collapse
Affiliation(s)
- J Mulinari
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - B Venturin
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - M Sbardelotto
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - A Dall Agnol
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - T Scapini
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - A F Camargo
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - D P Baldissarelli
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - T A Modkovski
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - V Rossetto
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - C Dalla Rosa
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - F W Reichert
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - S M Golunski
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - I Vieitez
- Grupo de Derivados de la Industria Alimentaria, Departamento de Ciencia y Tecnología de Alimentos (CYTAL), Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - G D L P Vargas
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - C Dalla Rosa
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - A J Mossi
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - H Treichel
- Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil.
| |
Collapse
|
37
|
Todeschini JK, Aguieiras EC, Castro AMD, Langone MA, Freire DM, Rodrigues RC. Synthesis of butyl esters via ultrasound-assisted transesterification of macaúba (Acrocomia aculeata) acid oil using a biomass-derived fermented solid as biocatalyst. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Qiao H, Zhang F, Guan W, Zuo J, Feng D. Optimisation of combi-lipases from Aspergillus niger
for the synergistic and efficient hydrolysis of soybean oil. Anim Sci J 2016; 88:772-780. [DOI: 10.1111/asj.12718] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Hanzhen Qiao
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Fei Zhang
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Wutai Guan
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Jianjun Zuo
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
| | - Dingyuan Feng
- SCAU-UniOil Feeding Oil﹠Fat Research Centre; Guangzhou China
| |
Collapse
|
39
|
Salehi Z, Ghahfarokhi HH, Kodadadi AA, Rahimnia R. Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2015.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Aguieiras ECG, Ribeiro DS, Couteiro PP, Bastos CMB, de Queiroz DS, Parreira JM, Langone MAP. Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity. Appl Biochem Biotechnol 2016; 179:485-96. [DOI: 10.1007/s12010-016-2008-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
41
|
Razack SA, Duraiarasan S. Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 47:98-104. [PMID: 26248487 DOI: 10.1016/j.wasman.2015.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/29/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
In the recent scenario, consumption of petroleum fuels has increased to greater height which has led to deforestation and decline in fossil fuels. In order to tackle the perilous situation, alternative fuel has to be generated. Biofuels play a vital role in substituting the diesel fuels as they are renewable and ecofriendly. Biodiesel, often referred to as green fuel, could be a potential replacement as it could be synthesized from varied substrates, advantageous being the microalgae in several ways. The present investigation was dealt with the interesterification of waste cooking oil using immobilised lipase from mixed cultures for biodiesel production. In order to standardize the production for a scale up process, the parameters necessary for interesterification had been optimized using the statistical tool, Central Composite Design - Response Surface Methodology. The optimal conditions required to generate biodiesel were 2 g enzyme load, 1:12 oil to methyl acetate ratio, 60 h reaction time and 35 °C temperature, yielding a maximum of 93.61% biodiesel. The immobilised lipase beads remain stable without any changes in their function and structure even after 20 cycles which made this study, less cost intensive. In conclusion, the study revealed that the cooking oil, a residue of many dining centers, left as waste product, can be used as a potential raw material for the production of ecofriendly and cost effective biofuel, the biodiesel.
Collapse
Affiliation(s)
- Sirajunnisa Abdul Razack
- Bioprocess Laboratory, Department of Chemical Engineering, Annamalai University, Annamalainagar, Tamil Nadu 608002, India.
| | - Surendhiran Duraiarasan
- Bioprocess Laboratory, Department of Chemical Engineering, Annamalai University, Annamalainagar, Tamil Nadu 608002, India.
| |
Collapse
|
42
|
Norjannah B, Ong HC, Masjuki HH, Juan JC, Chong WT. Enzymatic transesterification for biodiesel production: a comprehensive review. RSC Adv 2016. [DOI: 10.1039/c6ra08062f] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biodiesel catalyzed by enzyme is affected by many factors. This review will critically discuss the three major components of enzymatic production of biodiesel and the methods used to improve the reaction.
Collapse
Affiliation(s)
- B. Norjannah
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Hwai Chyuan Ong
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - H. H. Masjuki
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - J. C. Juan
- Nanotechnology & Catalysis Research Centre (NanoCat)
- Institute of Postgraduate Studies
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - W. T. Chong
- Department of Mechanical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
43
|
An alternative method for production of microalgal biodiesel using novel Bacillus lipase. 3 Biotech 2015; 5:715-725. [PMID: 28324526 PMCID: PMC4569617 DOI: 10.1007/s13205-014-0271-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022] Open
Abstract
In this study, enzymatic interesterification is carried out using encapsulated lipase as biocatalyst with methyl acetate as acyl acceptor in a solvent-free system. Lipase, isolated from a marine bacterial isolate, Bacillus sp.S23 (KF220659.1) was immobilized in sodium alginate beads. This investigation elaborated on the effects of various parameters, namely enzyme loading, temperature, water, molar ratio, reaction time and agitation for interesterification. The study resulted in the following optimal conditions: 1.5 g immobilized lipase, 1:12 molar ratio of oil to methyl acetate, 35 °C, 8 % water, 60 h reaction time, 250 rpm of agitation. With the standardized condition, the maximum conversion efficiency was 95.68 %. The immobilized beads, even after ten cycles of repeated usage showed high stability in the presence of methyl acetate and no loss of lipase activity. The microalgal biodiesel composition was analyzed using gas chromatography. The current study was efficient in using immobilized lipase for the interesterification process, since the method was cost-effective and eco-friendly, no solvent was involved and the enzyme was encapsulated in a natural polymer.
Collapse
|
44
|
Marzuki NHC, Huyop F, Aboul-Enein HY, Mahat NA, Wahab RA. Modelling and optimization ofCandida rugosananobioconjugates catalysed synthesis of methyl oleate by response surface methodology. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1078744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
Speranza P, Ribeiro APB, Macedo GA. Lipase catalyzed interesterification of Amazonian patauá oil and palm stearin for preparation of specific-structured oils. Journal of Food Science and Technology 2015; 52:8268-75. [PMID: 26604403 DOI: 10.1007/s13197-015-1943-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/28/2015] [Accepted: 07/03/2015] [Indexed: 11/24/2022]
Abstract
This study showed that enzymatic interesterification of Amazonian oils could be an important tool in order to produce new oils with physicochemical properties that improve the applications of these raw materials. Structured oils of Amazonian patauá oil and palm stearin using two lipases were produced in three different enzymatic systems: first, a crude lipase from the fungus Rhizopus sp (a microorganism isolated in our laboratory); second, a commercial lipase; and third, to check any synergistic effect, a mixture of both lipases (Rhizopus sp and commercial). The lipase from Rhizopus sp was specific in the incorporation of oleic acid at the sn-1,3 positions of the triacylglycerol, resulting in an oil richer in saturated fatty acid in the sn-2 position. This enzyme, produced by solid-state fermentation, even though crude, was fatty acid and positional specific and able to operate at low concentration (2.5 %, w/w). In the second enzyme system, the commercial lipase from Thermomyces lanuginosus was not specific in the tested conditions; there was no change in the distribution of saturated and unsaturated fatty acids in the three positions of the triacylglycerol profile, there was only a replacement by the type of fatty acid at the same position. In the third enzyme system, the mixture of both lipases shows no synergic effect. The structured oils retained the concentration of bioactive α- and γ- tocopherol in the three enzyme systems. Triacylglycerol classes and Thermal behavior tests indicated the formation of more homogeneous triacylglycerols, especially the mono and di-unsaturated.
Collapse
Affiliation(s)
- Paula Speranza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato St., 13083-970 Campinas, SP Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Technology, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato St., 13083-970 Campinas, SP Brazil
| | - Gabriela Alves Macedo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato St., 13083-970 Campinas, SP Brazil
| |
Collapse
|
46
|
Lima LN, Oliveira GC, Rojas MJ, Castro HF, Da Rós PCM, Mendes AA, Giordano RLC, Tardioli PW. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. J Ind Microbiol Biotechnol 2015; 42:523-35. [PMID: 25626526 DOI: 10.1007/s10295-015-1586-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
This work describes the preparation of biocatalysts for ethanolysis of soybean and babassu oils in solvent-free systems. Polystyrene, Amberlite (XAD-7HP), and octyl-silica were tested as supports for the immobilization of Pseudomonas fluorescens lipase (PFL). The use of octyl-silica resulted in a biocatalyst with high values of hydrolytic activity (650.0 ± 15.5 IU/g), immobilization yield (91.3 ± 0.3 %), and recovered activity (82.1 ± 1.5 %). PFL immobilized on octyl-silica was around 12-fold more stable than soluble PFL, at 45 °C and pH 8.0, in the presence of ethanol at 36 % (v/v). The biocatalyst provided high vegetable oil transesterification yields of around 97.5 % after 24 h of reaction using babassu oil and around 80 % after 48 h of reaction using soybean oil. The PFL-octyl-silica biocatalyst retained around 90 % of its initial activity after five cycles of transesterification of soybean oil. Octyl-silica is a promising support that can be used to immobilize PFL for subsequent application in biodiesel synthesis.
Collapse
Affiliation(s)
- Lionete N Lima
- Graduate Program in Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Speranza P, Badan Ribeiro AP, Cunha RL, Macedo JA, Macedo GA. Influence of emulsion droplet size on antimicrobial activity of interesterified Amazonian oils. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Li Z, Chen H, Wang W, Qu M, Tang Q, Yang B, Wang Y. Substrate-constituted three-liquid-phase system: a green, highly efficient and recoverable platform for interfacial enzymatic reactions. Chem Commun (Camb) 2015; 51:12943-6. [DOI: 10.1039/c5cc04457j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using substrate (oil) as one phase, a three-liquid-phase system was fabricated, wherein the highly efficient interfacial enzymatic hydrolysis of oil toward the production of fatty acids could be readily achieved.
Collapse
Affiliation(s)
- Zhigang Li
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Huayong Chen
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Weifei Wang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| | - Man Qu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Qingyun Tang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| | - Bo Yang
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Yonghua Wang
- School of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
49
|
Understanding the Behavior of Thermomyces lanuginosus Lipase in Acylation of Pyrimidine Nucleosides Possessing 2′-Substituent. Appl Biochem Biotechnol 2014; 174:556-63. [DOI: 10.1007/s12010-014-1096-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Ghaffari-Moghaddam M, Yekke-Ghasemi Z, Khajeh M, Rakhshanipour M, Yasin Y. Application of response surface methodology in enzymatic synthesis: A review. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014030054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|