1
|
Liu Y, Guo C, Wang C. Biochemical characterization of an organic solvent- and salt-tolerant xylanase and its application of arabinoxylan-oligosaccharides production from corn fiber gum. Int J Biol Macromol 2024; 280:136146. [PMID: 39349079 DOI: 10.1016/j.ijbiomac.2024.136146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
A endo-xylanase, of the glycoside hydrolase family 10 from Schizophyllum commune DB01, was expressed in P. pastoris. Recombinant xylanase (Scxyn5) retained above 80 % maximum activity in 10 % dimethyl sulfoxide and retained 90 % maximum activity in 5 M NaCl on the substrate of birchwood xylan. The effect of NaCl on the catalytic activity of Scxyn5 was significantly different toward various substrates, which was caused by the difference of monosaccharide composition and sturcture of the substrates. Furthermore, when corn fiber gum (CFG) was used as a substrate, the catalytic activity of Scxyn5 increased by 1.3-2.03 times in 1-5 M NaCl. Based on response surface methodology, the highest catalytic activity of Scxyn5 in hydrolyzing CFG were achieved with enzymatic temperature of 50 °C, pH value of 6.0, and 4 M NaCl. These properties of Scxyn5 suit the arabinoxylan-oligosaccharides (AXOs) preparation from CFG and some other potential applications in food industry.
Collapse
Affiliation(s)
- Yuchun Liu
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China.
| | - Chao Guo
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China
| | - Chao Wang
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China.
| |
Collapse
|
2
|
Zheng F, Zhang H, Wang J, Chen J, Zhuang H, Basit A. Expression and characterization of a novel halophilic GH10 β-1,4-xylanase from Trichoderma asperellum ND-1 and its synergism with a commercial α-L-arabinofuranosidase on arabinoxylan degradation. Int J Biol Macromol 2024; 282:136885. [PMID: 39454924 DOI: 10.1016/j.ijbiomac.2024.136885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Enzymatic hydrolysis of arabinoxylan is of cost-effective strategy to yield valuable macromolecules, e.g., xylooligosaccharides (XOS). A novel halophilic GH10 xylanase (TaXYL10) from Trichoderma asperellum ND-1 was over-expressed in Pichia pastoris and migrated as a single band (~36 kDa) in SDS-PAGE. TaXYL10 displayed >80 % activity in the presence of 4.28 M NaCl and 10 % ethanol. Moreover, TaXYL10 exhibited optimal activity at pH 6.0 and 55 °C, and remarkable pH stability (>80 % activity at pH 4.0-6.0). K+ and Al3+ could remarkably promote TaXYL10 activity, while the presence of 10 mM Fe2+, Zn2+, Cu2+ and Fe3+ decreased its activity. TaXYL10 possesses the highest catalytic activity towards beechwood xylan. TLC analysis revealed that it could rapidly degrade xylan and XOS with DP ≥ 3, yielding xylotriose and xylobiose. Site-directed mutagenesis indicated that Glu154 and Glu259 are crucial active residues for TaXYL10, while Asp295 and Glu69 played auxiliary roles in xylan hydrolysis. Additionally, TaXYL10 acted cooperatively with a commercial α-L-arabinofuranosidase (AnAra) towards arabinoxylan degradation (583.5 μg/mL), a greater synergy degree of 1.79 was obtained after optimizing enzymatic ratios. This work not only expands the diversity of Trichoderma GH10 xylanases, but also reveals the promising potential of TaXYL10 in various industrial applications.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Hengbin Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang 35200, Pakistan
| |
Collapse
|
3
|
Akram F, Fatima T, Ibrar R, Shabbir I, Shah FI, Haq IU. Trends in the development and current perspective of thermostable bacterial hemicellulases with their industrial endeavors: A review. Int J Biol Macromol 2024; 265:130993. [PMID: 38508567 DOI: 10.1016/j.ijbiomac.2024.130993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hemicellulases are enzymes that hydrolyze hemicelluloses, common polysaccharides in nature. Thermophilic hemicellulases, derived from microbial strains, are extensively studied as natural biofuel sources due to the complex structure of hemicelluloses. Recent research aims to elucidate the catalytic principles, mechanisms and specificity of hemicellulases through investigations into their high-temperature stability and structural features, which have applications in biotechnology and industry. This review article targets to serve as a comprehensive resource, highlighting the significant progress in the field and emphasizing the vital role of thermophilic hemicellulases in eco-friendly catalysis. The primary goal is to improve the reliability of hemicellulase enzymes obtained from thermophilic bacterial strains. Additionally, with their ability to break down lignocellulosic materials, hemicellulases hold immense potential for biofuel production. Despite their potential, the commercial viability is hindered by their high enzyme costs, necessitating the development of efficient bioprocesses involving waste pretreatment with microbial consortia to overcome this challenge.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | | | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
4
|
Oz Tuncay F, Cakmak U, Kolcuoglu Y. Aqueous two-phase extraction and characterization of thermotolerant alkaliphilic Cladophora hutchinsiae xylanase: biochemical properties and potential applications in fruit juice clarification and fish feed supplementation. Prep Biochem Biotechnol 2024; 54:553-563. [PMID: 37668166 DOI: 10.1080/10826068.2023.2253469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Xylanase finds extensive applications in diverse biotechnological fields such as biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. Here, polyethylene glycol (PEG)-phosphate aqueous two-phase system (ATPS) was applied for the purification of an alkaline active and thermotolerant xylanase from a marine source, Cladophora hutchinsiae (C. hutchinsiae). In the purification process, the effects of some experimental factors such as PEG concentration and PEG molar mass, potassium phosphate(K2HP04) concentration, and pH on xylanase distribution were systematically investigated. Relative enzymatic activity and purification factor obtained were 93.21% and 7.18, respectively. A single protein band of 28 kDa was observed on SDS-PAGE. The optimum temperature and pH of xylanase with beechwood xylan were 30 °C and 9.0, respectively. The Lineweaver-Burk graph was utilized to determine the Km (4.5 ± 0.8 mg/mL), Vmax (0.04 ± 0.01 U) and kcat (0.001 s-1) values of the enzyme. It was observed that the purified xylanase maintained 70% of its activity at 4 °C and was found stable at pH 4.0 by retaining almost all of its activity. Enzymatic activity was slightly enhanced with Na+, K+, Ca2+ and acetone. The highest increase in the reducing sugar amount was 53.6 ± 3.8, for orange juice at 50 U/mL enzyme concentration.
Collapse
Affiliation(s)
- Fulya Oz Tuncay
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Ummuhan Cakmak
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Yakup Kolcuoglu
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
5
|
Rai R, Samanta D, Goh KM, Chadha BS, Sani RK. Biochemical unravelling of the endoxylanase activity in a bifunctional GH39 enzyme cloned and expressed from thermophilic Geobacillus sp. WSUCF1. Int J Biol Macromol 2024; 257:128679. [PMID: 38072346 DOI: 10.1016/j.ijbiomac.2023.128679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
The glycoside hydrolase family 39 (GH39) proteins are renowned for their extremophilic and multifunctional enzymatic properties, yet the molecular mechanisms underpinning these unique characteristics continue to be an active subject of research. In this study, we introduce WsuXyn, a GH39 protein with a molecular weight of 58 kDa, originating from the thermophilic Geobacillus sp. WSUCF1. Previously reported for its exceptional thermostable β-xylosidase activity, WsuXyn has recently demonstrated a significant endoxylanase activity (3752 U·mg-1) against beechwood xylan, indicating towards its bifunctional nature. Physicochemical characterization revealed that WsuXyn exhibits optimal endoxylanase activity at 70 °C and pH 7.0. Thermal stability assessments revealed that the enzyme is resilient to elevated temperatures, with a half-life of 168 h. Key kinetic parameters highlight the exceptional catalytic efficiency and strong affinity of the protein for xylan substrate. Moreover, WsuXyn-mediated hydrolysis of beechwood xylan has achieved 77 % xylan conversion, with xylose as the primary product. Structural analysis, amalgamated with docking simulations, has revealed strong binding forces between xylotetraose and the protein, with key amino acid residues, including Glu278, Tyr230, Glu160, Gly202, Cys201, Glu324, and Tyr283, playing pivotal roles in these interactions. Therefore, WsuXyn holds a strong promise for biodegradation and value-added product generation through lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Rohit Rai
- Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara 144411, India.
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| | | | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; BuG ReMeDEE consortium and Composite and Nanocomposite Advanced Manufacturing Centre/Biomaterials (CNAM/Bio), Rapid City, SD 57701, USA.
| |
Collapse
|
6
|
Thapa S, Zhou S, O'Hair J, Al Nasr K, Ropelewski A, Li H. Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach. BMC Biotechnol 2023; 23:51. [PMID: 38049781 PMCID: PMC10696843 DOI: 10.1186/s12896-023-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
- Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Joshua O'Hair
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Kamal Al Nasr
- Department of Computer Sciences, College of Engineering, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Alexander Ropelewski
- Pittsburgh Supercomputing Center, 300 S. Craig Street, Pittsburgh, PA, 15213, USA
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA.
| |
Collapse
|
7
|
Kim IJ, Kim SR, Kim KH, Bornscheuer UT, Nam KH. Characterization and structural analysis of the endo-1,4-β-xylanase GH11 from the hemicellulose-degrading Thermoanaerobacterium saccharolyticum useful for lignocellulose saccharification. Sci Rep 2023; 13:17332. [PMID: 37833340 PMCID: PMC10576002 DOI: 10.1038/s41598-023-44495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
Xylanases are important for the enzymatic breakdown of lignocellulose-based biomass to produce biofuels and other value-added products. We report functional and structural analyses of TsaGH11, an endo-1,4-β-xylanase from the hemicellulose-degrading bacterium, Thermoanaerobacterium saccharolyticum. TsaGH11 was shown to be a thermophilic enzyme that favors acidic conditions with maximum activity at pH 5.0 and 70 °C. It decomposes xylans from beechwood and oat spelts to xylose-containing oligosaccharides with specific activities of 5622.0 and 3959.3 U mg-1, respectively. The kinetic parameters, Km and kcat towards beechwood xylan, are 12.9 mg mL-1 and 34,015.3 s-1, respectively, resulting in kcat/Km value of 2658.7 mL mg-1 s-1, higher by 102-103 orders of magnitude compared to other reported GH11s investigated with the same substrate, demonstrating its superior catalytic performance. Crystal structures of TsaGH11 revealed a β-jelly roll fold, exhibiting open and close conformations of the substrate-binding site by distinct conformational flexibility to the thumb region of TsaGH11. In the room-temperature structure of TsaGH11 determined by serial synchrotron crystallography, the electron density map of the thumb domain of the TsaGH11 molecule, which does not affect crystal packing, is disordered, indicating that the thumb domain of TsaGH11 has high structural flexibility at room temperature, with the water molecules in the substrate-binding cleft being more disordered than those in the cryogenic structure. These results expand our knowledge of GH11 structural flexibility at room temperature and pave the way for its application in industrial biomass degradation.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
8
|
Sartaj K, Patel A, Matsakas L, Prasad R. Unravelling Metagenomics Approach for Microbial Biofuel Production. Genes (Basel) 2022; 13:1942. [PMID: 36360179 PMCID: PMC9689425 DOI: 10.3390/genes13111942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Renewable biofuels, such as biodiesel, bioethanol, and biobutanol, serve as long-term solutions to fossil fuel depletion. A sustainable approach feedstock for their production is plant biomass, which is degraded to sugars with the aid of microbes-derived enzymes, followed by microbial conversion of those sugars to biofuels. Considering their global demand, additional efforts have been made for their large-scale production, which is ultimately leading breakthrough research in biomass energy. Metagenomics is a powerful tool allowing for functional gene analysis and new enzyme discovery. Thus, the present article summarizes the revolutionary advances of metagenomics in the biofuel industry and enlightens the importance of unexplored habitats for novel gene or enzyme mining. Moreover, it also accentuates metagenomics potentials to explore uncultivable microbiomes as well as enzymes associated with them.
Collapse
Affiliation(s)
- Km Sartaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
9
|
Isolation and Molecular Identification of Xylanase-Producing Bacteria from Ulva flexuosa of the Persian Gulf. Processes (Basel) 2022. [DOI: 10.3390/pr10091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The marine ecosystem is one of the richest sources of biologically active compounds, such as enzymes, among which seaweed is one of the most diverse marine species and has a rich diversity of bacteria that produce different enzymes. Among these, the bacteria-derived xylanase enzyme has many applications in the fruit juice, paper, and baking industries; so, to consider the economic value of the xylanase enzyme and the isolation and identification of xylanase-producing bacteria is of particular importance. In this study, specimens of the alga Ulva flexuosa species were collected from the coasts of Bandar Abbas and Qeshm Island. The bacteria coexisting with the algae were isolated using a nutrient agar medium. The bacteria producing the xylanase enzyme were then screened by a specific solid culture medium containing xylan, and the activity of the xylanase enzyme isolated from the bacteria was measured using a xylan substrate. The bacteria with the highest enzymatic activity were selected and identified by 16S rRNA gene sequence analysis, and the culture medium conditions for the enzyme production by the selected bacterial strains were optimized. Among the bacterial community, two strains with the highest xylanase activity, which belonged to the genera Bacillus and Shewanella, were identified as Bacillus subtilis strain HR05 and Shewanella algae strain HR06, respectively. The two selected bacteria were registered in the NCBI gene database. The results demonstrated that the two selected strains had different optimal growing conditions in terms of pH and temperature, as well as the sources of carbon and nitrogen for enzyme production. It seems that the xylanase enzyme isolated from the bacterial strains HR05 and HR06, which coexist with alga Ulva flexousa, could be potential candidates for biotechnology and various industries, such as pulp production, paper, and food manufacture, due to their high activity and optimal alkaline pH.
Collapse
|
10
|
Tian Y, Xu J, Shi J, Kong M, Guo C, Cui C, Wang Y, Wang Y, Zhou C. Cloning, Expression, and Characterization of a GHF 11 Xylanase from Alteromonas macleodii HY35 in Escherichia coli. J GEN APPL MICROBIOL 2022; 68:134-142. [PMID: 35965062 DOI: 10.2323/jgam.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A xylanase gene xynZT-1 from Alteromonas macleodii HY35 was cloned and expressed in Escherichia coli (E. coli). The sequencing results showed that the ORF of xynZT-1 was 831 bp. The xylanase DNA sequence encoded a 29 amino acids (aa) signal peptide and a 247-aa mature peptide. The XynZT-1 has been a calculated molecular weight (MW) of 27.93 kDa, isoelectric point (pI) of 5.11 and the formula C1266H1829N327O384S5. The amino acid sequence of the xynZT-1 had a high similarity with that of glycosyl hydrolase family 11 (GHF11) reported from other microorganisms. The DNA sequence encoding mature peptide was subcloned into pET-28a(+) expression vector. The resulted plasmid pET-28a-xynZT-1 was transformed into E. coli BL21(DE3), and the recombinant strain BL21(DE3)/xynZT-1 was obtained. The optimum temperature and pH of the recombinant XynZT-1 were 45 ℃ and 5.0, respectively.
Collapse
Affiliation(s)
- Yanjie Tian
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Jia Xu
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Jianing Shi
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Mengyuan Kong
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Changjiang Guo
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Caixia Cui
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Yongtao Wang
- The First Affiliated Hospital, Xinxiang Medical University
| | - Yan Wang
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Chenyan Zhou
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| |
Collapse
|
11
|
Rivas-Párraga R, Izquierdo A, Sánchez K, Bolaños-Guerrón D, Alfaro-Núñez A. Identification and phylogenetic characterization based on DNA sequences from RNA ribosomal genes of thermophilic microorganisms in a high elevation Andean tropical geothermal spring. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Several microorganisms can survive in harsh acid environments in geothermal springs at high temperatures across the Equatorial Andes Mountains. However, little is known about their physiological features and phylogenetic composition. Here we identify thermophilic microorganisms (bacteria, fungi, and microalgae) hosted in an almost unexplored geothermal spring (known as “Aguas Hediondas”). The phylogeny of the cultures was determined by analyzing physiological features and DNA sequences of PCR products for 16S rRNA, ITS, and 23S rRNA genes. Twenty pure cultures were isolated from the samples, including 17 for bacteria, one for cyanobacterium, one for eukaryotic microalgae, and one for fungus. Most bacterial strains were gram-positive, spore-forming, and bacilli (Bacillus). Cyanobacterium strain belonged to Chroococcidiopsis and the eukaryotic microalgae to Chlorophyta. The unique fungal strain isolated was closely related to T. duponti. Through our study, isolated thermophilic bacteria, microalgae and fungi from the “Aguas Hediondas” geothermal spring were characterized and identified. This study represents one of the first extensive molecular characterizations of extremophile microbes in the Tropical Equatorial Andes.
Keywords. microbial diversity; DNA markers; extremophiles; phylogenetics
Collapse
Affiliation(s)
- Roque Rivas-Párraga
- Life science and Agriculture Department. Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Andrés Izquierdo
- Life science and Agriculture Department. Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, P.O. Box 171-5-231B, Sangolquí, Ecuador Ecuador Grupo de Investigación en Microbiología y Ambiente (GIMA), Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Karen Sánchez
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuqui, Ecuador
| | - Darío Bolaños-Guerrón
- Department of Earth Science and Constructions, Geographical and Environmental Engineering, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, P.O. Box 171-5-231B, Sangolquí, Ecuador Ecuador
| | - Alonzo Alfaro-Núñez
- Clinical Biochemistry Department, Næstved Hospital, Ringstegade 57a, 4700 Næstved, Denmark 5 Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| |
Collapse
|
12
|
Ajeje SB, Hu Y, Song G, Peter SB, Afful RG, Sun F, Asadollahi MA, Amiri H, Abdulkhani A, Sun H. Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Front Bioeng Biotechnol 2021; 9:794304. [PMID: 34976981 PMCID: PMC8715034 DOI: 10.3389/fbioe.2021.794304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The bioconversion of lignocellulose into monosaccharides is critical for ensuring the continual manufacturing of biofuels and value-added bioproducts. Enzymatic degradation, which has a high yield, low energy consumption, and enhanced selectivity, could be the most efficient and environmentally friendly technique for converting complex lignocellulose polymers to fermentable monosaccharides, and it is expected to make cellulases and xylanases the most demanded industrial enzymes. The widespread nature of thermophilic microorganisms allows them to proliferate on a variety of substrates and release substantial quantities of cellulases and xylanases, which makes them a great source of thermostable enzymes. The most significant breakthrough of lignocellulolytic enzymes lies in lignocellulose-deconstruction by enzymatic depolymerization of holocellulose into simple monosaccharides. However, commercially valuable thermostable cellulases and xylanases are challenging to produce in high enough quantities. Thus, the present review aims at giving an overview of the most recent thermostable cellulases and xylanases isolated from thermophilic and hyperthermophilic microbes. The emphasis is on recent advancements in manufacturing these enzymes in other mesophilic host and enhancement of catalytic activity as well as thermostability of thermophilic cellulases and xylanases, using genetic engineering as a promising and efficient technology for its economic production. Additionally, the biotechnological applications of thermostable cellulases and xylanases of thermophiles were also discussed.
Collapse
Affiliation(s)
- Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sunday Bulus Peter
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
13
|
Revealing the Potential of Xylanase from a New Halophilic Microbulbifer sp. CL37 with Paper De-Inking Ability. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
15
|
Cao L, Zhang R, Zhou J, Huang Z. Biotechnological Aspects of Salt-Tolerant Xylanases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8610-8624. [PMID: 34324332 DOI: 10.1021/acs.jafc.1c03192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-1,4-Xylan is the main component of hemicelluloses in land plant cell walls, whereas β-1,3-xylan is widely found in seaweed cell walls. Complete hydrolysis of xylan requires a series of synergistically acting xylanases. High-saline environments, such as saline-alkali lands and oceans, frequently occur in nature and are also involved in a broad range of various industrial processes. Thus, salt-tolerant xylanases may contribute to high-salt and marine food processing, aquatic feed production, industrial wastewater treatment, saline-alkali soil improvement, and global carbon cycle, with great commercial and environmental benefits. This review mainly introduces the definition, sources, classification, biochemical and molecular characteristics, adaptation mechanisms, and biotechnological applications of salt-tolerant xylanases. The scope of development for salt-tolerant xylanases is also discussed. It is anticipated that this review would serve as a reference for further development and utilization of salt-tolerant xylanases and other salt-tolerant enzymes.
Collapse
Affiliation(s)
- Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
16
|
Wu M, Jiang Y, Liu Y, Mou L, Zhang W, Xin F, Jiang M. Microbial application of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Appl Microbiol Biotechnol 2021; 105:5739-5749. [PMID: 34283269 DOI: 10.1007/s00253-021-11450-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Recently, thermophilic Thermoanaerobacterium species have attracted increasing attentions in consolidated bioprocessing (CBP), which can directly utilize lignocellulosic materials for biofuels production. Compared to the mesophilic process, thermophilic process shows greater prospects in CBP due to its relatively highly efficiency of lignocellulose degradation. In addition, thermophilic conditions can avoid microbial contamination, reduce the cooling costs, and further facilitate the downstream product recovery. However, only few reviews specifically focused on the microbial applications of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Accordingly, this review will comprehensively summarize the recent advances of Thermoanaerobacterium species in lignocellulosic biorefinery, including their secreted xylanases and bioenergy production. Furthermore, the co-culture can significantly reduce the metabolic burden and achieve the more complex work, which will be discussed as the further perspectives. KEY POINTS: • Thermoanaerobacterium species, promising chassis for lignocellulosic biorefinery. • Potential capability of hemicellulose degradation for Thermoanaerobacterium species. • Efficient bioenergy production by Thermoanaerobacterium species through metabolic engineering.
Collapse
Affiliation(s)
- Mengdi Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
17
|
Saleem A, Waris S, Ahmed T, Tabassum R. Biochemical characterization and molecular docking of cloned xylanase gene from Bacillus subtilis RTS expressed in E. coli. Int J Biol Macromol 2020; 168:310-321. [PMID: 33309670 DOI: 10.1016/j.ijbiomac.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
This study employed mesophilic Bacillus subtilis RTS strain isolated from soil with high xylanolytic activity. A 642 bp (xyn) xylanase gene (GenBank accession number MT677937) was extracted from Bacillus subtilis RTS and cloned in Escherichia coli BL21 cells using pET21c expression system. The cloned gene belongs to glycoside hydrolase family 11 with protein size of approximately 23 KDa. The recombinant xylanase showed optimal enzyme activity at 60 °C and at pH 6.5. Thermostability of recombinant xylanase was observed between the temperature range of 30-60 °C. Xylanase also remained stable in different concentration of various organic solvents (ethanol, butanol). This might be due to the formation of protein/organic solvent interface which prevents stripping of essential water molecules from enzyme, thus enzyme conformation and activity remained stable. Finally, the molecular docking analysis through AutoDock Vina showed the involvement of Tyr 108, Arg140 and Pro144 in protein-ligand interaction, which stabilizes this complex. The observed stability of recombinant xylanase at higher temperature and in the presence of organic solvent (ethanol, butanol) suggested possible application of this enzyme in biofuel and other industrial applications.
Collapse
Affiliation(s)
- Aimen Saleem
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Science (PIEAS), Islamabad, Pakistan
| | - Saboora Waris
- Dept of Biological Sciences, Quaid- e-Azam University, Islamabad, Pakistan; Dept of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Toheed Ahmed
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Romana Tabassum
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Science (PIEAS), Islamabad, Pakistan.
| |
Collapse
|
18
|
Characterization of a novel xylanase from an extreme temperature hot spring metagenome for xylooligosaccharide production. Appl Microbiol Biotechnol 2020; 104:4889-4901. [DOI: 10.1007/s00253-020-10562-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
|
19
|
Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140312. [DOI: 10.1016/j.bbapap.2019.140312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023]
|
20
|
Alves KJ, da Silva MCP, Cotta SR, Ottoni JR, van Elsas JD, de Oliveira VM, Andreote FD. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz J Microbiol 2019; 51:217-228. [PMID: 31741310 DOI: 10.1007/s42770-019-00162-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/19/2019] [Indexed: 11/25/2022] Open
Abstract
Xylanase and α-amylase enzymes participate in the degradation of organic matter, acting in hemicellulose and starch mineralization, respectively, and are in high demand for industrial use. Mangroves represent a promising source for bioprospecting enzymes due to their unique characteristics, such as fluctuations in oxic/anoxic conditions and salinity. In this context, the present work aimed to bioprospect xylanases from mangrove soil using cultivation-dependent and cultivation-independent methods. Through screening from a metagenomic library, three potentially xylanolytic clones were obtained and sequenced, and reads were assembled into contigs and annotated. The contig MgrBr135 was affiliated with the Planctomycetaceae family and was one of 30 ORFs selected for subcloning that demonstrated only amylase activity. Through the cultivation method, 38 bacterial isolates with xylanolytic activity were isolated. Isolate 11 showed an enzymatic index of 10.9 using the plate assay method. Isolate 39 achieved an enzyme activity of 0.43 U/mL using the colorimetric method with 3,5-dinitrosalicylic acid. Isolate 39 produced xylanase on culture medium with salinity ranging from 1.25 to 5%. Partial 16S rRNA gene sequencing identified isolates in the Bacillus and Paenibacillus genera. The results of this study highlight the importance of mangroves as an enzyme source and show that bacterial groups can be used for starch and hemicellulose degradation.
Collapse
Affiliation(s)
- Kelly Jaqueline Alves
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Mylenne Calciolari Pinheiro da Silva
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| | - Simone Raposo Cotta
- Center for Nuclear Energy in Agriculture, University of São Paulo, Centenario Avenue, 303, Piracicaba, São Paulo, 13416-000, Brazil
| | - Júlia Ronzella Ottoni
- University Center Dinâmica das Cataratas, Castelo Branco Street, 349, Foz do Iguaçu, Paraná, 85852-010, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands
| | - Valeria Maia de Oliveira
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato Avenue, 999, Paulínia, São Paulo, 13140-000, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, Laboratory of Soil Microbiology, University of Sao Paulo, Padua Dias Avenue, 11 CP 09, Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
21
|
Yu H, Zhao S, Fan Y, Hu C, Lu W, Guo L. Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Appl Microbiol Biotechnol 2019; 103:8899-8909. [DOI: 10.1007/s00253-019-10140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
22
|
Xian L, Li Z, Tang AX, Qin YM, Li QY, Liu HB, Liu YY. A novel neutral and thermophilic endoxylanase from Streptomyces ipomoeae efficiently produced xylobiose from agricultural and forestry residues. BIORESOURCE TECHNOLOGY 2019; 285:121293. [PMID: 30999191 DOI: 10.1016/j.biortech.2019.03.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Endoxylanases capable of producing high ratios of xylobiose from agricultural and forestry residues in neutral and high temperature conditions are attractive for the prebiotic and alternative sweetener industries. In this study, a putative glycosyl hydrolase gene from Streptomyces ipomoeae was cloned and expressed in Escherichia coli. The recombinant enzyme, named as SipoEnXyn10A, hydrolyzed beechwood xylan in endo-action mode releasing xylobiose as its main end product. It was most active at pH 6.5 and 75-80 °C and showed remarkable stability at 65 °C. The xylobiose yield from 10 g corncob and moso bamboo reached 1.123 ± 0.021 and 0.229 ± 0.005 g, respectively, at pH 6.5 and 70 °C, whichwas higher than other reports using the same material. Moreover, high ratios of xylobiose in the xylose-based product of about 85% were obtained from corncob, moso bamboo sawdust, cassava stem and Chinese fir sawdust. These results demonstrated that SipoEnXyn10A has potential for industrial application.
Collapse
Affiliation(s)
- Liang Xian
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zhong Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Ai-Xing Tang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Yi-Min Qin
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Qing-Yun Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - Hai-Bo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China
| | - You-Yan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Guangxi Key Laboratory of Biorefinery, Nanning 530003, Guangxi, PR China.
| |
Collapse
|
23
|
Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: From genetic modifications to applications. BIORESOURCE TECHNOLOGY 2019; 279:350-361. [PMID: 30755321 DOI: 10.1016/j.biortech.2019.01.087] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Thermozymes (from thermophiles or hyperthermophiles) offer obvious advantages due to their excellent thermostability, broad pH adaptation, and hydrolysis ability, resulting in diverse industrial applications including food, paper, and textile processing, biofuel production. However, natural thermozymes with low yield and poor adaptability severely hinder their large-scale applications. Extensive studies demonstrated that using genetic modifications such as directed evolution, semi-rational design, and rational design, expression regulations and chemical modifications effectively improved enzyme's yield, thermostability and catalytic efficiency. However, mechanism-based techniques for thermozymes improvements and applications need more attention. In this review, stabilizing mechanisms of thermozymes are summarized for thermozymes improvements, and these improved thermozymes eventually have large-scale industrial applications.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
24
|
|
25
|
Characterization of a novel cold-active xylanase from Luteimonas species. World J Microbiol Biotechnol 2018; 34:123. [DOI: 10.1007/s11274-018-2505-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
|
26
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
27
|
Swain MR, Natarajan V, Krishnan C. Marine Enzymes and Microorganisms for Bioethanol Production. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 80:181-197. [PMID: 28215326 DOI: 10.1016/bs.afnr.2016.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production.
Collapse
Affiliation(s)
- M R Swain
- Indian Institute of Technology Madras, Chennai, India
| | - V Natarajan
- Indian Institute of Technology Madras, Chennai, India
| | - C Krishnan
- Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
28
|
Yegin S. Single-step purification and characterization of an extreme halophilic, ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry. Food Chem 2016; 221:67-75. [PMID: 27979257 DOI: 10.1016/j.foodchem.2016.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
An extracellular xylanase from Aureobasidium pullulans NRRL Y-2311-1 produced on wheat bran was purified by a single-step chromatographic procedure. The enzyme had a molecular weight of 21.6kDa. The optimum pH and temperature for xylanase activity were 4.0 and 30-50°C, respectively. The enzyme was stable in the pH range of 3.0-8.0. The inactivation energy of the enzyme was calculated as 218kJmol-1. The xylanase was ethanol tolerant and kept complete activity in the presence of 10% ethanol. Likewise, it retained almost complete activity at a concentration range of 0-20% NaCl. In general, the enzyme was resistant to several metal ions and reagents. Mg2+, Zn2+, Cu2+, K1+, EDTA and β-mercaptoethanol resulted in enhanced xylanase activity. The Km and Vmax values on beechwood xylan were determined to be 19.43mgml-1 and 848.4Uml-1, respectively. The enzyme exhibits excellent characteristics and could, therefore, be a promising candidate for application in food and bio-industries.
Collapse
Affiliation(s)
- Sirma Yegin
- Department of Food Engineering, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
29
|
Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, Kim SK. Extremozymes from Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:43-66. [PMID: 27770863 DOI: 10.1016/bs.afnr.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - M Krishnan
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | - S-K Kim
- Marine Bioprocess Research Center; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
30
|
Zhou J, Song Z, Zhang R, Ding L, Wu Q, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Characterization of a NaCl-tolerant β-N-acetylglucosaminidase from Sphingobacterium sp. HWLB1. Extremophiles 2016; 20:547-57. [DOI: 10.1007/s00792-016-0848-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
31
|
Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A. Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Kumar S, Grewal J, Sadaf A, Hemamalini R, K. Khare S. Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Long-Term Enrichment on Cellulose or Xylan Causes Functional and Taxonomic Convergence of Microbial Communities from Anaerobic Digesters. Appl Environ Microbiol 2015; 82:1519-1529. [PMID: 26712547 DOI: 10.1128/aem.03360-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023] Open
Abstract
Cellulose and xylan are two major components of lignocellulosic biomass, which represents a potentially important energy source, as it is abundant and can be converted to methane by microbial action. However, it is recalcitrant to hydrolysis, and the establishment of a complete anaerobic digestion system requires a specific repertoire of microbial functions. In this study, we maintained 2-year enrichment cultures of anaerobic digestion sludge amended with cellulose or xylan to investigate whether a cellulose- or xylan-digesting microbial system could be assembled from sludge previously used to treat neither of them. While efficient methane-producing communities developed under mesophilic (35°C) incubation, they did not under thermophilic (55°C) conditions. Illumina amplicon sequencing results of the archaeal and bacterial 16S rRNA genes revealed that the mature cultures were much lower in richness than the inocula and were dominated by single archaeal (genus Methanobacterium) and bacterial (order Clostridiales) groups, although at finer taxonomic levels the bacteria were differentiated by substrates. Methanogenesis was primarily via the hydrogenotrophic pathway under all conditions, although the identity and growth requirements of syntrophic acetate-oxidizing bacteria were unclear. Incubation conditions (substrate and temperature) had a much greater effect than inoculum source in shaping the mature microbial community, although analysis based on unweighted UniFrac distance found that the inoculum still determined the pool from which microbes could be enriched. Overall, this study confirmed that anaerobic digestion sludge treating nonlignocellulosic material is a potential source of microbial cellulose- and xylan-digesting functions given appropriate enrichment conditions.
Collapse
|
34
|
Cobucci-Ponzano B, Strazzulli A, Iacono R, Masturzo G, Giglio R, Rossi M, Moracci M. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries. Enzyme Microb Technol 2015. [PMID: 26215346 DOI: 10.1016/j.enzmictec.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2h vs 12h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Andrea Strazzulli
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Roberta Iacono
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Giuseppe Masturzo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Rosa Giglio
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Mosè Rossi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Marco Moracci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
35
|
Bhalla A, Bischoff KM, Sani RK. Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass. Front Bioeng Biotechnol 2015; 3:84. [PMID: 26137456 PMCID: PMC4468944 DOI: 10.3389/fbioe.2015.00084] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/22/2015] [Indexed: 01/04/2023] Open
Abstract
Efficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylooligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail) when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70°C, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70°C, respectively. At 70°C, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, Cellic-HTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70°C). High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes.
Collapse
Affiliation(s)
- Aditya Bhalla
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, SD , USA
| | - Kenneth M Bischoff
- Renewable Product Technology Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, U.S. Department of Agriculture , Peoria, IL , USA
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology , Rapid City, SD , USA
| |
Collapse
|
36
|
Zhou J, Lu Q, Peng M, Zhang R, Mo M, Tang X, Li J, Xu B, Ding J, Huang Z. Cold-active and NaCl-tolerant exo-inulinase from a cold-adapted Arthrobacter sp. MN8 and its potential for use in the production of fructose at low temperatures. J Biosci Bioeng 2015; 119:267-74. [DOI: 10.1016/j.jbiosc.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/19/2014] [Accepted: 08/07/2014] [Indexed: 01/09/2023]
|
37
|
Zhou J, Peng M, Zhang R, Li J, Tang X, Xu B, Ding J, Gao Y, Ren J, Huang Z. Characterization of Sphingomonas sp. JB13 exo-inulinase: a novel detergent-, salt-, and protease-tolerant exo-inulinase. Extremophiles 2015; 19:383-93. [PMID: 25575614 DOI: 10.1007/s00792-014-0724-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/11/2014] [Indexed: 11/24/2022]
Abstract
A glycoside hydrolase family 32 exo-inulinase gene was cloned from Sphingomonas sp. JB13 and expressed in Escherichia coli BL21 (DE3). The purified recombinant enzyme (rInuAJB13) showed an apparently optimal activity at pH 5.5 and 55 °C and remained activity at 10-70 °C. The addition of most metal ions and chemical reagents showed little or no effect (retaining more than 76.5 % activity) on the enzyme activity, notably the addition of surfactants SDS, CTAB, Tween 80, and Triton X-100. Most local liquid detergents, including Balin, Walch, Ariel, Tide, Tupperware, and Bluemoon, also showed little or no effect (retaining more than 77.8 % activity) on the enzyme activity. rInuAJB13 exhibited 135.3-163.6 % activity at the NaCl concentration of 1.0-4.5 M. After incubation with up to 57.0 mg mL(-1) trypsin and 90.0 mg mL(-1) proteinase K at 37 °C for 60 min (pH 7.2), rInuAJB13 retained more than 80 % of its initial activity. The enzyme presents a high proportion (28.0 %) of amino acid residues G, A, and V. This paper is the first to report a detergent-, salt-, and protease-tolerant exo-inulinase.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:198251. [PMID: 27350996 PMCID: PMC4897549 DOI: 10.1155/2014/198251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/17/2022]
Abstract
A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0-25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca(2+), Mn(2+), and Mg(2+) but strongly inhibited by heavy metals such as Hg(2+), Fe(3+), Ni(2+), and Zn(2+). Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications.
Collapse
|
39
|
Jia X, Mi S, Wang J, Qiao W, Peng X, Han Y. Insight into glycoside hydrolases for debranched xylan degradation from extremely thermophilic bacterium Caldicellulosiruptor lactoaceticus. PLoS One 2014; 9:e106482. [PMID: 25184498 PMCID: PMC4153629 DOI: 10.1371/journal.pone.0106482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/05/2014] [Indexed: 11/18/2022] Open
Abstract
Caldicellulosiruptor lactoaceticus 6A, an anaerobic and extremely thermophilic bacterium, uses natural xylan as carbon source. The encoded genes of C. lactoaceticus 6A for glycoside hydrolase (GH) provide a platform for xylan degradation. The GH family 10 xylanase (Xyn10A) and GH67 α-glucuronidase (Agu67A) from C. lactoaceticus 6A were heterologously expressed, purified and characterized. Both Xyn10A and Agu67A are predicted as intracellular enzymes as no signal peptides identified. Xyn10A and Agu67A had molecular weight of 47.0 kDa and 80.0 kDa respectively as determined by SDS-PAGE, while both appeared as homodimer when analyzed by gel filtration. Xyn10A displayed the highest activity at 80 °C and pH 6.5, as 75 °C and pH 6.5 for Agu67A. Xyn10A had good stability at 75 °C, 80 °C, and pH 4.5-8.5, respectively, and was sensitive to various metal ions and reagents. Xyn10A possessed hydrolytic activity towards xylo-oligosaccharides (XOs) and beechwood xylan. At optimum conditions, the specific activity of Xyn10A was 44.6 IU/mg with beechwood xylan as substrate, and liberated branched XOs, xylobiose, and xylose. Agu67A was active on branched XOs with methyl-glucuronic acids (MeGlcA) sub-chains, and primarily generated XOs equivalents and MeGlcA. The specific activity of Agu67A was 1.3 IU/mg with aldobiouronic acid as substrate. The synergistic action of Xyn10A and Agu67A was observed with MeGlcA branched XOs and xylan as substrates, both backbone and branched chain of substrates were degraded, and liberated xylose, xylobiose, and MeGlcA. The synergism of Xyn10A and Agu67A provided not only a thermophilic method for natural xylan degradation, but also insight into the mechanisms for xylan utilization of C. lactoaceticus.
Collapse
Affiliation(s)
- Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shuofu Mi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Jinzhi Wang
- Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weibo Qiao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Qiao W, Tang S, Mi S, Jia X, Peng X, Han Y. Biochemical characterization of a novel thermostable GH11 xylanase with CBM6 domain from Caldicellulosiruptor kronotskyensis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Poosarla VG, Chandra TS. Purification and Characterization of Novel Halo-Acid-Alkali-Thermo-stable Xylanase from Gracilibacillus sp. TSCPVG. Appl Biochem Biotechnol 2014; 173:1375-90. [DOI: 10.1007/s12010-014-0939-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
42
|
A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha) 2014; 59:423-31. [DOI: 10.1007/s12223-014-0316-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
|
43
|
Biochemical characterization of xylanase produced from Streptomyces sp. CS624 using an agro residue substrate. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Liu X, Huang Z, Zhang X, Shao Z, Liu Z. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 2014; 18:441-50. [DOI: 10.1007/s00792-014-0629-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
|
45
|
Zhao L, Meng K, Shi P, Bai Y, Luo H, Huang H, Wang Y, Yang P, Yao B. A novel thermophilic xylanase from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing and other industries. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Tarayre C, Brognaux A, Brasseur C, Bauwens J, Millet C, Mattéotti C, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P. Isolation and Cultivation of a Xylanolytic Bacillus subtilis Extracted from the Gut of the Termite Reticulitermes santonensis. Appl Biochem Biotechnol 2013; 171:225-45. [DOI: 10.1007/s12010-013-0337-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
47
|
Heterologous expression and characterization of a malathion-hydrolyzing carboxylesterase from a thermophilic bacterium, Alicyclobacillus tengchongensis. Biotechnol Lett 2013; 35:1283-9. [PMID: 23801110 PMCID: PMC3701795 DOI: 10.1007/s10529-013-1195-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/20/2013] [Indexed: 11/21/2022]
Abstract
A carboxylesterase gene from thermophilic bacterium, Alicyclobacillus tengchongensis, was cloned and expressed in Escherichia coli BL21 (DE3). The gene coded for a 513 amino acid protein with a calculated molecular mass of 57.82 kDa. The deduced amino acid sequence had structural features highly conserved among serine hydrolases, including Ser204, Glu325, and His415 as a catalytic triad, as well as type-B carboxylesterase serine active site (FGGDPENITIGGQSAG) and type-B carboxylesterase signature 2 (EDCLYLNIWTP). The purified enzyme exhibited optimum activity with β-naphthyl acetate at 60 °C and pH 7 as well as stability at 25 °C and pH 7. One unit of the enzyme hydrolyzed 5 mg malathion l−1 by 50 % within 25 min and 89 % within 100 min. The enzyme strongly degraded malathion and has a potential use for the detoxification of malathion residues.
Collapse
|
48
|
Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World J Microbiol Biotechnol 2013; 29:2407-15. [PMID: 23793944 DOI: 10.1007/s11274-013-1409-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Extracellular cellulase free xylanase from Thermomyces lanuginosus sp. SS-8, isolated from self heating plant wreckage material was identified as β-1,4-endo-xylanase precursor, a monomer of 21.3 kDa with no carbohydrate residue. This xylanase retained 80 % activity at 60 °C for 96 h, was active at a wide pH range of 3-11 and uniquely hydrolyzed xylan to xylose without production of xylo-oligosaccharides. Gene xynSS8 encoding xylanase from T. lanuginosus SS-8 was cloned and functionally expressed in Escherichia coli XL1 Blue using pTZ57R/T plasmid and xynSS8/pQE-9 expression vector construct respectively. Gene xynSS8 was of 777 bp and deduced amino acid sequence was a mature xylanase of 258 amino acids. XynSS8 has extra 33 amino acids compared to its nearest homolog and was thermo-alkali tolerant as that of native protein. The xylanase could degrade pulp and release substantial chromophoric materials and lignin derived compounds indicating its effective utility in pulp bleaching. Novel characteristics of the enzyme may contribute to its wide industrial usage. This is first report of cloning and functional expression of the novel xylanase from T. lanuginosus SS-8.
Collapse
|
49
|
Gene cloning, expression and characterization of a novel xylanase from the marine bacterium, Glaciecola mesophila KMM241. Mar Drugs 2013; 11:1173-87. [PMID: 23567318 PMCID: PMC3705397 DOI: 10.3390/md11041173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 11/16/2022] Open
Abstract
Marine xylanases are rather less studied compared to terrestrial xylanases. In this study, a new xylanase gene, xynB, was cloned from the marine bacterium, Glaciecola mesophila KMM241, and expressed in Escherichia coli. xynB encodes a multi-domain xylanase XynB of glycoside hydrolase (GH) family 8. The recombinant XynB comprises an N-terminal domain (NTD) with unknown function and a catalytic domain, which is structurally novel among the characterized xylanases of GH family 8. XynB has the highest identity (38%) to rXyn8 among the characterized xylanases. The recombinant XynB showed maximal activity at pH 6–7 and 35 °C. It is thermolabile and salt-tolerant. XynB is an endo-xylanase that demands at least five sugar moieties for effective cleavage and to hydrolyze xylohexaose and xylopentaose into xylotetraose, xylotriose and xylobiose. NTD was expressed in Escherichia coli to analyze its function. The recombinant NTD exhibited a high binding ability to insoluble xylan and avicel and little binding ability to chitosan and chitin. Since the NTD shows no obvious homology to any known carbohydrate-binding module (CBM) sequence in public databases, XynB may contain a new type of CBM.
Collapse
|
50
|
Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. BIORESOURCE TECHNOLOGY 2013; 128:751-9. [PMID: 23246299 DOI: 10.1016/j.biortech.2012.10.145] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/20/2012] [Accepted: 10/29/2012] [Indexed: 05/07/2023]
Abstract
Second-generation feedstock, especially nonfood lignocellulosic biomass is a potential source for biofuel production. Cost-intensive physical, chemical, biological pretreatment operations and slow enzymatic hydrolysis make the overall process of lignocellulosic conversion into biofuels less economical than available fossil fuels. Lignocellulose conversions carried out at ≤ 50 °C have several limitations. Therefore, this review focuses on the importance of thermophilic bacteria and thermostable enzymes to overcome the limitations of existing lignocellulosic biomass conversion processes. The influence of high temperatures on various existing lignocellulose conversion processes and those that are under development, including separate hydrolysis and fermentation, simultaneous saccharification and fermentation, and extremophilic consolidated bioprocess are also discussed.
Collapse
Affiliation(s)
- Aditya Bhalla
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | | | |
Collapse
|