1
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
2
|
Czajka JJ, Han Y, Kim J, Mondo SJ, Hofstad BA, Robles A, Haridas S, Riley R, LaButti K, Pangilinan J, Andreopoulos W, Lipzen A, Yan J, Wang M, Ng V, Grigoriev IV, Spatafora JW, Magnuson JK, Baker SE, Pomraning KR. Genome-scale model development and genomic sequencing of the oleaginous clade Lipomyces. Front Bioeng Biotechnol 2024; 12:1356551. [PMID: 38638323 PMCID: PMC11024372 DOI: 10.3389/fbioe.2024.1356551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
The Lipomyces clade contains oleaginous yeast species with advantageous metabolic features for biochemical and biofuel production. Limited knowledge about the metabolic networks of the species and limited tools for genetic engineering have led to a relatively small amount of research on the microbes. Here, a genome-scale metabolic model (GSM) of Lipomyces starkeyi NRRL Y-11557 was built using orthologous protein mappings to model yeast species. Phenotypic growth assays were used to validate the GSM (66% accuracy) and indicated that NRRL Y-11557 utilized diverse carbohydrates but had more limited catabolism of organic acids. The final GSM contained 2,193 reactions, 1,909 metabolites, and 996 genes and was thus named iLst996. The model contained 96 of the annotated carbohydrate-active enzymes. iLst996 predicted a flux distribution in line with oleaginous yeast measurements and was utilized to predict theoretical lipid yields. Twenty-five other yeasts in the Lipomyces clade were then genome sequenced and annotated. Sixteen of the Lipomyces species had orthologs for more than 97% of the iLst996 genes, demonstrating the usefulness of iLst996 as a broad GSM for Lipomyces metabolism. Pathways that diverged from iLst996 mainly revolved around alternate carbon metabolism, with ortholog groups excluding NRRL Y-11557 annotated to be involved in transport, glycerolipid, and starch metabolism, among others. Overall, this study provides a useful modeling tool and data for analyzing and understanding Lipomyces species metabolism and will assist further engineering efforts in Lipomyces.
Collapse
Affiliation(s)
- Jeffrey J. Czajka
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Yichao Han
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
| | - Stephen J. Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Beth A. Hofstad
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - AnaLaura Robles
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - William Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Juying Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jon K. Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
| | - Scott E. Baker
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kyle R. Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| |
Collapse
|
3
|
Wei S, Wang H, Fan M, Cai X, Hu J, Zhang R, Song B, Li J. Application of adaptive laboratory evolution to improve the tolerance of Rhodotorula strain to methanol in crude glycerol and development of an effective method for cell lysis. Biotechnol J 2024; 19:e2300483. [PMID: 38041508 DOI: 10.1002/biot.202300483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.
Collapse
Affiliation(s)
- Shiyu Wei
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Meixi Fan
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xinrui Cai
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Junpeng Hu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Baocai Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
4
|
Jayaraj JJ. Extraction of biodiesel from vegetable waste hydrolysates and evaluation of its engine performance and emission characteristics. 3 Biotech 2023; 13:188. [PMID: 37193323 PMCID: PMC10182914 DOI: 10.1007/s13205-023-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Recently, microbial oil has become one of the promising next-generation feedstocks for producing biodiesel. While microbial oil can be extracted from different sources, there is only limited work on microbial production from fruits and vegetables. In this work, biodiesel was extracted through a two-step process: microbial conversion of vegetable waste into microbial oil using Lipomyces starkeyi, followed by transesterification of microbial oil into biodiesel. The lipid accumulation, composition of microbial oil, and the fuel properties of biodiesel were evaluated. The microbial oil consisted mainly of C16:0, C18:0 and C18:1, which were close to the properties of palm oil. The fuel properties of biodiesel comply with the EN14214:2012 standard. Thus, the vegetable waste can be a good biodiesel feedstock. Three blends (MOB10, MOB20 and MOB30 with 10, 20, and 30% of biodiesel) were tested for engine performance and emission characteristics in a 3.5 kW VCR research engine. At full load, MOB20 reduced the pollutant emissions of CO and HC by 47.8% and 33.2% with the penalty of increased NOx by 3.9%, while BTE reduced by 0.8% with the increased BSFC by 5.2%. Thus, the addition of vegetable waste biodiesel blends reduced the emissions of CO and HC significantly with slight reduction of brake thermal efficiency.
Collapse
Affiliation(s)
- Jeya Jeevahan Jayaraj
- School of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu India
| |
Collapse
|
5
|
Sundaramahalingam MA, Sivashanmugam P, Rajeshbanu J, Ashokkumar M. A review on contemporary approaches in enhancing the innate lipid content of yeast cell. CHEMOSPHERE 2022; 293:133616. [PMID: 35033523 DOI: 10.1016/j.chemosphere.2022.133616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
For the past few decades, industrialization has made a huge environmental hazard to the world with its waste. The approach of waste to wealth in the recent era has made many Eco-economical suggestions for the industries. The valuable products in biorefinery aspects of the eco-economical suggestions include; energy products, high-value drugs and novel materials. Bio-lipids are found to be the major influencing eco-economical products in the process. Production of bio-lipid from microbial sources has paved the way for future research on lipid-bioproducts. The yeast cell is a unique organism with a large unicellular structure capable of accumulating a high amount of lipids. It constitutes 90% of neutral lipids. Various strategies enhance the lipid profile of yeast cells: usage of oleaginous yeast, usage of low cost (or) alternative substrates, developing stress conditions in the growth medium, using genetically modified yeast, altering metabolic pathways of yeast and by using the symbiotic cultures of yeast with other microbes. The metabolic alterations of lipid pathways such as lipid biosynthesis, lipid elongation, lipid accumulation and lipid degradation have been a striking feature of research in lipid-based microbial work. The lipid-bioproducts have also made a strong footprint in the history of alternative energy products. It includes partial acyl glycerol, oleochemicals, phospholipids and biofuels. This report comprises the recent approaches carried out in the yeast cell for enhancing its lipid content. The limitations, challenges and future scope of individual strategies were also highlighted in this article.
Collapse
Affiliation(s)
- M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | | |
Collapse
|
6
|
Zhou P, Zhang L, Ding H, Gao X, Chen Y, Li D. Optimization of culture conditions of screened Galactomyces candidum for the production of single cell protein from biogas slurry. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Sanya DRA, Onésime D, Passoth V, Maiti MK, Chattopadhyay A, Khot MB. Yeasts of the Blastobotrys genus are promising platform for lipid-based fuels and oleochemicals production. Appl Microbiol Biotechnol 2021; 105:4879-4897. [PMID: 34110474 DOI: 10.1007/s00253-021-11354-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/31/2022]
Abstract
Strains of the yeast genus Blastobotrys (subphylum Saccharomycotina) represent a valuable biotechnological resource for basic biochemistry research, single-cell protein, and heterologous protein production processes. Species of this genus are dimorphic, non-pathogenic, thermotolerant, and can assimilate a variety of hydrophilic and hydrophobic substrates. These can constitute a single-cell oil platform in an emerging bio-based economy as oleaginous traits have been discovered recently. However, the regulatory network of lipogenesis in these yeasts is poorly understood. To keep pace with the growing market demands for lipid-derived products, it is critical to understand the lipid biosynthesis in these unconventional yeasts to pinpoint what governs the preferential channelling of carbon flux into lipids instead of the competing pathways. This review summarizes information relevant to the regulation of lipid metabolic pathways and prospects of metabolic engineering in Blastobotrys yeasts for their application in food, feed, and beyond, particularly for fatty acid-based fuels and oleochemicals. KEY POINTS: • The production of biolipids by heterotrophic yeasts is reviewed. • Summary of information concerning lipid metabolism regulation is highlighted. • Special focus on the importance of diacylglycerol acyltransferases encoding genes in improving lipid production is made.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Université Paris-Saclay, Institut Micalis, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Université Paris-Saclay, Institut Micalis, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mahesh B Khot
- Laboratorio de Recursos Renovables, Centro de Biotecnologia, Universidad de Concepcion, Barrio Universitario s/n, Concepcion, Chile
| |
Collapse
|
8
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|
9
|
Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Microbial lipids from organic wastes: Outlook and challenges. BIORESOURCE TECHNOLOGY 2021; 323:124612. [PMID: 33418352 DOI: 10.1016/j.biortech.2020.124612] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Microbial lipids have recently drawn a lot of attention as renewable sources for biochemicals production. Strong research efforts have been addressed to efficiently use organic wastes as carbon source for microbial lipids, which would definitively increase the profitability of the production process and boost a bio-based economy. This review compiles interesting traits of oleaginous microorganisms and highlights current trends on microbial- and process-oriented approaches to maximize microbial oil production from inexpensive substrates like lignocellulosic sugars, volatile fatty acids and glycerol. Furthermore, downstream processes such as cell harvesting or lipid extraction, that are decisive for the cost-effectiveness of the process, are discussed. To underpin microbial oils within the so demanded circular economy, associated challenges, recent advances and possible industrial applications that are also identified in this review.
Collapse
Affiliation(s)
- E Tomás-Pejó
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain.
| | - S Morales-Palomo
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| | - C González-Fernández
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| |
Collapse
|
10
|
da Cunha Abreu Xavier M, Teixeira Franco T. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi. Biotechnol Lett 2021; 43:967-979. [PMID: 33517513 DOI: 10.1007/s10529-021-03080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The extraction of the hemicellulose fraction of sugarcane bagasse (SCB) by acid hydrolysis was evaluated in an autoclave and a Parr reactor aiming the application of the hydrolysate as a carbon source for lipid production by Lipomyces starkeyi. RESULTS The hydrolysis that resulted in the highest sugar concentration was obtained by treatment in the Parr reactor (HHR) at 1.5% (m/v) H2SO4 and 120 °C for 20 min, reaching a hemicellulose conversion of approximately 82%. The adaptation of the yeast to the hydrolysate provided good fermentability and no lag phase. The fermentation of hemicellulose-derived sugars (HHR) by L. starkeyi resulted in a 27.8% (w/w) lipid content and YP/S of 0.16 g/l.h. Increasing the inoculum size increased the lipid content by approximately 61%, reaching 44.8% (w/w). CONCLUSION The hemicellulose hydrolysate from SCB is a potential substrate for L. starkeyi to produce lipids for biodiesel synthesis based on the biorefinery concept.
Collapse
Affiliation(s)
- Michelle da Cunha Abreu Xavier
- Department of Bioprocess Engineering and Biotechnology, Federal University of Tocantins (UFT), Badejos Street 69-72, Jardim Cervilha, Gurupi, TO, 77404-970, Brazil.
| | - Telma Teixeira Franco
- Department of Process Engineering (DEPro), School of Chemical Engineering, State University of Campinas (UNICAMP), Albert Einstein Avenue, 500, Zeferino Vaz University City, Campinas, SP, 13083-852, Brazil
| |
Collapse
|
11
|
Kamal R, Liu Y, Li Q, Huang Q, Wang Q, Yu X, Zhao ZK. Exogenous l-proline improved Rhodosporidium toruloides lipid production on crude glycerol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:159. [PMID: 32944075 PMCID: PMC7490893 DOI: 10.1186/s13068-020-01798-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Crude glycerol as a promising feedstock for microbial lipid production contains several impurities that make it toxic stress inducer at high amount. Under stress conditions, microorganisms can accumulate l-proline as a safeguard. Herein, l-proline was assessed as an anti-stress agent in crude glycerol media. RESULTS Crude glycerol was converted to microbial lipids by the oleaginous yeast Rhodosporidium toruloides CGMCC 2.1389 in a two-staged culture mode. The media was supplied with exogenous l-proline to improve lipid production efficiency in high crude glycerol stress. An optimal amount of 0.5 g/L l-proline increased lipid titer and lipid yield by 34% and 28%, respectively. The lipid titer of 12.2 g/L and lipid content of 64.5% with a highest lipid yield of 0.26 g/g were achieved with l-proline addition, which were far higher than those of the control, i.e., lipid titer of 9.1 g/L, lipid content of 58% and lipid yield of 0.21 g/g. Similarly, l-proline also improved cell growth and glycerol consumption. Moreover, fatty acid compositional profiles of the lipid products was found suitable as a potential feedstock for biodiesel production. CONCLUSION Our study suggested that exogenous l-proline improved cell growth and lipid production on crude glycerol by R. toruloides. The fact that higher lipid yield as well as glycerol consumption indicated that l-proline might act as a potential anti-stress agent for the oleaginous yeast strain.
Collapse
Affiliation(s)
- Rasool Kamal
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yuxue Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qiang Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qitian Huang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Qian Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Xue Yu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| |
Collapse
|
12
|
Oleaginous yeast for biofuel and oleochemical production. Curr Opin Biotechnol 2019; 57:73-81. [DOI: 10.1016/j.copbio.2019.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023]
|
13
|
Huang XF, Wang YH, Shen Y, Peng KM, Lu LJ, Liu J. Using non-ionic surfactant as an accelerator to increase extracellular lipid production by oleaginous yeast Cryptococcus curvatus MUCL 29819. BIORESOURCE TECHNOLOGY 2019; 274:272-280. [PMID: 30529332 DOI: 10.1016/j.biortech.2018.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 05/20/2023]
Abstract
The aim of this work was to study the effects of non-ionic surfactant on the accumulation of total microbial lipids and extracellular lipid by Cryptococcus curvatus MUCL 29819 with acetic acid as carbon source. Compared with Brij 58 and Triton X-100, Brij 58 most increased the total lipids, with a yield up to 2.84 g/L (extracellular lipid up to 47%). Brij 58 also increased the metabolic flow of acetic acid to lipid accumulation (maximum conversion of 0.54 g/g at 1.0 g/L Brij 58) and limited its conversion to non-lipid biomass (minimum conversion 0.12 g/g at 0.5 g/L Brij 58). The improvement in the proportion of extracellular lipid by tea saponin and Brij 58 was due to changes in cell membrane permeability and improvement of cell membrane fluidity. Triton X-100, having weaker surface activity, promoted release of extracellular lipid and also increased the proportion of polyunsaturated fatty acid (C22:6, docosahexaenoic acid).
Collapse
Affiliation(s)
- Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yi-Han Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yi Shen
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Kai-Ming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Li-Jun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
High-affinity transport, cyanide-resistant respiration, and ethanol production under aerobiosis underlying efficient high glycerol consumption by Wickerhamomyces anomalus. J Ind Microbiol Biotechnol 2019; 46:709-723. [PMID: 30680472 DOI: 10.1007/s10295-018-02119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2018] [Indexed: 01/11/2023]
Abstract
Wickerhamomyces anomalus strain LBCM1105 was originally isolated from the wort of cachaça (the Brazilian fermented sugarcane juice-derived Brazilian spirit) and has been shown to grow exceptionally well at high amounts of glycerol. This paramount residue from the biodiesel industry is a promising cheap carbon source for yeast biotechnology. The assessment of the physiological traits underlying the W. anomalus glycerol consumption ability in opposition to Saccharomyces cerevisiae is presented. A new WaStl1 concentrative glycerol-H+ symporter with twice the affinity of S. cerevisiae was identified. As in this yeast, WaSTL1 is repressed by glucose and derepressed/induced by glycerol but much more highly expressed. Moreover, LBCM1105 aerobically growing on glycerol was found to produce ethanol, providing a redox escape to compensate the redox imbalance at the level of cyanide-resistant respiration (CRR) and glycerol 3P shuttle. This work is critical for understanding the utilization of glycerol by non-Saccharomyces yeasts being indispensable to consider their industrial application feeding on biodiesel residue.
Collapse
|
15
|
Hernández MA, Alvarez HM. Increasing lipid production using an NADP +-dependent malic enzyme from Rhodococcus jostii. MICROBIOLOGY-SGM 2018; 165:4-14. [PMID: 30372408 DOI: 10.1099/mic.0.000736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The occurrence of NADP+-dependent malic enzymes (NADP+-MEs) in several Rhodococcus strains was analysed. The NADP+-ME number in Rhodococcus genomes seemed to be a strain-dependent property. Total NADP+-ME activity increased by 1.8- and 2.6-fold in the oleaginous Rhodococcus jostii RHA1 and Rhodococcus opacus PD630 strains during cultivation under nitrogen-limiting conditions. Total NADP+-ME activity inhibition by sesamol resulted in a significant decrease of the cellular biomass and lipid production in oleaginous rhodococci. A non-redundant ME coded by the RHA1_RS44255 gene located in a megaplasmid (pRHL3) of R. jostii RHA1 was characterized and its heterologous expression in Escherichia coli resulted in a twofold increase in ME activity in an NADP+-dependent manner. The overexpression of RHA1_RS44255 in RHA1 and PD630 strains grown on glucose promoted an increase in total NADP+-ME activity and an up to 1.9-foldincrease in total fatty acid production without sacrificing cellular biomass. On the other hand, its expression in Rhodococcus fascians F7 grown on glycerol resulted in a 1.3-1.4-foldincrease in total fatty acid content. The results of this study confirmed the contribution of NADP+-MEs to TAG accumulation in oleaginous rhodococci and the utility of these enzymes as an alternative approach to increase bacterial oil production from different carbon sources.
Collapse
Affiliation(s)
- Martín A Hernández
- Facultad de Ciencias Naturales, Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial no. 1, Km 4-Ciudad Universitaria, 9000 Comodoro Rivadavia, Chubut, Argentina
| | - Héctor M Alvarez
- Facultad de Ciencias Naturales, Instituto de Biociencias de la Patagonia, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial no. 1, Km 4-Ciudad Universitaria, 9000 Comodoro Rivadavia, Chubut, Argentina
| |
Collapse
|
16
|
Maruyama Y, Toya Y, Kurokawa H, Fukano Y, Sato A, Umemura H, Yamada K, Iwasaki H, Tobori N, Shimizu H. Characterization of oil-producing yeast Lipomyces starkeyi on glycerol carbon source based on metabolomics and 13C-labeling. Appl Microbiol Biotechnol 2018; 102:8909-8920. [PMID: 30097695 DOI: 10.1007/s00253-018-9261-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/30/2018] [Accepted: 07/19/2018] [Indexed: 11/27/2022]
Abstract
Lipomyces starkeyi is an oil-producing yeast that can produce triacylglycerol (TAG) from glycerol as a carbon source. The TAG was mainly produced after nitrogen depletion alongside reduced cell proliferation. To obtain clues for enhancing the TAG production, cell metabolism during the TAG-producing phase was characterized by metabolomics with 13C labeling. The turnover analysis showed that the time constants of intermediates from glycerol to pyruvate (Pyr) were large, whereas those of tricarboxylic acid (TCA) cycle intermediates were much smaller than that of Pyr. Surprisingly, the time constants of intermediates in gluconeogenesis and the pentose phosphate (PP) pathway were large, suggesting that a large amount of the uptaken glycerol was metabolized via the PP pathway. To synthesize fatty acids that make up TAG from acetyl-CoA (AcCoA), 14 molecules of nicotinamide adenine dinucleotide phosphate (NADPH) per C16 fatty acid molecule are required. Because the oxidative PP pathway generates NADPH, this pathway would contribute to supply NADPH for fatty acid synthesis. To confirm that the oxidative PP pathway can supply the NADPH required for TAG production, flux analysis was conducted based on the measured specific rates and mass balances. Flux analysis revealed that the NADPH necessary for TAG production was supplied by metabolizing 48.2% of the uptaken glycerol through gluconeogenesis and the PP pathway. This result was consistent with the result of the 13C-labeling experiment. Furthermore, comparison of the actual flux distribution with the ideal flux distribution for TAG production suggested that it is necessary to flow more dihydroxyacetonephosphate (DHAP) through gluconeogenesis to improve TAG yield.
Collapse
Affiliation(s)
- Yuki Maruyama
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan.
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kurokawa
- Functional Materials Science Research Laboratories, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Yuka Fukano
- Functional Materials Science Research Laboratories, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Atsushi Sato
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Hiroyasu Umemura
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Kaoru Yamada
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Hideaki Iwasaki
- Analytical Technology Research Center, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Norio Tobori
- Functional Materials Science Research Laboratories, Research and Development Headquarters, Lion Corporation, 7-2-1 Hirai, Edogawa-ku, Tokyo, 132-0035, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Chen J, Zhang X, Tyagi RD, Drogui P. Utilization of methanol in crude glycerol to assist lipid production in non-sterilized fermentation from Trichosporon oleaginosus. BIORESOURCE TECHNOLOGY 2018; 253:8-15. [PMID: 29328937 DOI: 10.1016/j.biortech.2018.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
In this work, methanol in crude glycerol solution was used to assist the lipid production with oleaginous yeast Trichosporon oleaginosus cultivated under non-sterilized conditions. The investigated methanol concentration was 0%, 1.4%, 2.2%, 3.3% and 4.4% (w/v). The results showed that methanol played a significant role in the non-sterilized fermentation for lipid production. The optimal methanol concentration was around 1.4% (w/v) in which the growth of T. oleaginosus was promoted and overcame that of the contaminants. The non-sterilized fed-batch fermentation with initial methanol concentration of 1.4% (w/v) was then performed and high biomass production (43.39 g/L) and lipid production (20.42 g/L) were achieved.
Collapse
Affiliation(s)
- Jiaxin Chen
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | | | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|