1
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
2
|
Wang Y, Song L, Guo C, Ji R. Proteomic Identification and Characterization of Collagen from Bactrian Camel ( Camelus bactrianus) Hoof. Foods 2023; 12:3303. [PMID: 37685234 PMCID: PMC10486769 DOI: 10.3390/foods12173303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
With the development of camel-derived food and pharmaceutical cosmetics, camel hoof, as a unique by-product of the camel industry, has gradually attracted the attention of scientific researchers in the fields of nutrition, health care, and biomaterial development. In this study, the protein composition and collagen type of Bactrian camel hoof collagen extract (CHC) were analyzed by LC-MS/MS, and the functional properties of CHC were further investigated, including its rheological characteristics, emulsification and emulsion stability, and hygroscopicity and humectancy. Proteomic identification confirmed that CHC had 13 collagen subunits, dominated by type I collagen (α1, α2), with molecular weights mainly in the 100-200 KDa range and a pI of 7.48. An amino acid study of CHC revealed that it carried the standard amino acid profile of type I collagen and was abundant in Gly, Pro, Glu, Ala, and Arg. Additionally, studies using circular dichroism spectroscopy and Fourier transform infrared spectroscopy revealed that CHC contains a collagen-like triple helix structure that is stable and intact. Different concentrations of CHC solutions showed shear-thinning flow behavior. Its tan δ did not differ much with increasing concentration. The CHC has good emulsifying ability and stability, humectancy, and hygroscopicity. This study provides a basis for utilizing and developing Bactrian camel hoof collagen as a functional ingredient.
Collapse
Affiliation(s)
- Yingli Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Le Song
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Chengcheng Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
- Inner Mongolia Institute of Camel Research, Alxa 737300, China
| |
Collapse
|
3
|
Zhao Y, Liu W, Bai X, Huang W, Gu Y, Chen S, Lan J. Highly water dispersible collagen/polyaniline nanocomposites with strong adhesion for electrochromic films with enhanced cycling stability. Int J Biol Macromol 2023; 241:124657. [PMID: 37119893 DOI: 10.1016/j.ijbiomac.2023.124657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Electrochromic materials have attracted extensive attention recently due to their versatile applications in smart windows, displays, antiglare rearview mirrors, and so on. Herein we report a new electrochromic composite prepared from collagen and polyaniline (PANI) through a self-assembly assisted co-precipitation method. The introduction of hydrophilic collagen macromolecules into PANI nanoparticles makes the collagen/PANI (C/PANI) nanocomposite obtain excellent dispersibility in water, which provides good environmental-friendly solution processability. Furthermore, the C/PANI nanocomposite exhibits excellent film-forming properties and adhesion to the ITO glass matrix. The resulting electrochromic film of the C/PANI nanocomposite displays significantly improved cycling stability compared with the pure PANI film after 500 coloring-bleaching cycles. On the other hand, the composite films also exhibit yellow, green and blue polychromatic properties at different applied voltages and high average transmittance at the bleaching state. The C/PANI electrochromic material illustrates scaling potential for the application of electrochromic devices.
Collapse
Affiliation(s)
- Yinghui Zhao
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wentao Liu
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xue Bai
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wenhuan Huang
- Chunliang Oil Production Plant of Shengli Oilfield, Sinopec, BinZhou City 256504, Shandong, China
| | - Yingchun Gu
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianwu Lan
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Biochemical and Microstructural Characteristics of Collagen Biopolymer from Unicornfish ( Naso reticulatus Randall, 2001) Bone Prepared with Various Acid Types. Polymers (Basel) 2023; 15:polym15041054. [PMID: 36850337 PMCID: PMC9964761 DOI: 10.3390/polym15041054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Biopolymer-like collagen has great industrial potential in terms of its excellent properties, such as strong biocompatibility, high degradability, and low antigenicity. Collagen derived from fish by-products is preferable as it is safer (free from transmittable diseases) and acceptable to most religious beliefs. This study aimed to characterize the unicornfish (Naso reticulatus Randall, 2001) bone collagens prepared with different type of acids, i.e., acetic acid, lactic acid, and citric acid. A higher yield (Y) (p < 0.05) was obtained in the citric-acid-soluble collagen (CASC) (Y = 1.36%), followed by the lactic-acid-soluble collagen (LASC) (Y = 1.08%) and acetic-acid-soluble collagen (AASC) (Y = 0.40%). All extracted collagens were classified as type I due to the presence of 2-alpha chains (α1 and α2). Their prominent absorption spectra were located at the wavelengths of 229.83 nm to 231.17 nm. This is similar to wavelengths reported for other fish collagens. The X-ray diffraction (XRD) and infrared (IR) data demonstrated that the triple-helical structure of type I collagens was still preserved after the acid-extraction process. In terms of thermal stability, all samples had similar maximum transition temperatures (Tmax = 33.34-33.51 °C). A higher relative solubility (RS) of the unicornfish bone collagens was observed at low salt concentration (0-10 g/L) (RS > 80%) and at acidic condition (pH 1.0 to pH 3.0) (RS > 75%). The extracted collagen samples had an irregular and dense flake structure with random coiled filaments. Overall, bones of unicornfish may be used as a substitute source of collagen.
Collapse
|
5
|
Matarsim NN, Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Type I Collagen from the Skin of Barracuda ( Sphyraena sp.) Prepared with Different Organic Acids: Biochemical, Microstructural and Functional Properties. J Funct Biomater 2023; 14:jfb14020087. [PMID: 36826886 PMCID: PMC9958788 DOI: 10.3390/jfb14020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
This study was carried out to compare the extractability and characteristics of barracuda (Sphyraena sp.) skin collagen using various organic acids. Acetic-solubilized collagen (ASBS), lactic-solubilized collagen (LSBS) and citric-solubilized collagen (CSBS) yielded 6.77 g/100 g, 10.06 g/100 g and 8.35 g/100 g, respectively, and those yields were significantly different (p < 0.05). All acid-solubilized collagens were considered as type I because of their two alpha chains (α1 and α2) detected in acrylamide gel after electrophoresis. Ultraviolet-visible (UV-vis) analysis confirmed that ASBS, LSBS and CSBS had similar absorption peaks (230.5 nm) and the results were in accordance with other fish collagens. Under infrared (IR) and X-ray diffraction (XRD) analysis, the triple helical structure of type I collagens extracted from barracuda skin was maintained. From a thermostability study, all type I collagens showed a higher maximum transition temperature (Tmax = 40.16 to 41.29 °C) compared to other fish skin collagens. In addition, the functional properties of the extracted collagens revealed the ASBS had higher water and oil absorption capacities than the CSBS and LSBS samples. The highest level of the emulsion ability index (EAI) (>200 m2/g) was detected under acidic conditions (pH 4), while lower EAIs were recorded under the alkaline (pH 10) and neutral treatments (pH 7). All type I collagens had a higher relative solubility (>60%) at a low pH test but the solubility level sharply decreased at a neutral pH. In addition to this, a lower concentration of NaCl (0-20 g/L) showed the higher percentage of solubility (>60%) while adding over 30 g/L of NaCl decreased solubility (>40%). From a microstructural test, all type I samples had an irregular and dense flake structure with random coiled filaments. Overall, collagen extracted from the barracuda skin may be applied as an alternative collagen from an industry perspective.
Collapse
Affiliation(s)
- Nur Nadiah Matarsim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | | | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan 90509, Malaysia
- Correspondence:
| |
Collapse
|
6
|
Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Extraction and Characterization of Type I Collagen from Parrotfish ( Scarus sordidus Forsskål, 1775) Scale solubilized with the Aid of Acetic Acid and Pepsin. Int J Biomater 2023; 2023:7312447. [PMID: 37151379 PMCID: PMC10156459 DOI: 10.1155/2023/7312447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
Waste from marine fish processing is an important source of valuable products. Fish collagen is considered a alternative biomaterial due to its excellent properties, and it is widely used for industrial purposes. Thus, this present study aimed to characterize acid and pepsin-soluble collagens from the waste of parrotfish (Scarus sordidus Forsskål, 1775) scales. The yields (p > 0.05) of acid-soluble collagen (ASC-PFS) and pepsin-soluble collagen (PSC-PFS) were 1.17 g/100 g and 1.00 g/100 g, respectively. Both collagen samples were categorized as type I owing to the presence of two alpha chain subunits (α1 and α1) after being confirmed by a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Under the fourier transform infrared (FTIR) test, the triple helical structure of type I collagens from the ASC-PFS and PSC-PFS was maintained. Moreover, the study of UV visible spectra and X-ray diffraction (XRD) showed the similarity of collagens derived from different fish species, and the thermostability (T max) evaluation of all extracted collagens was in the range of 36.22-37.78°C, and their values were comparable to previous research on the fish scale collagens. The effect of various pH and sodium chloride (NaCl) treatments on solubility exhibited that the ASC-PFS and PSC-PFS were highly soluble in an acidic condition (pH < 5.0) and low concentration of sodium chloride (<30 g/L). Taken together, collagens extracted from parrotfish scale waste can be an alternative source for industries.
Collapse
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | | | | | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
7
|
Characterization of Acid- and Pepsin-Soluble Collagen Extracted from the Skin of Purple-Spotted Bigeye Snapper. Gels 2022; 8:gels8100665. [PMID: 36286166 PMCID: PMC9602141 DOI: 10.3390/gels8100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fish processing waste is a prospective source of collagen and a cost-effective environmental pollutant. The skin of the purple-spotted bigeye snapper (Priacanthus tayenus) was extracted utilising various acid soluble collagens (ASC) including acetic acid (AAC), lactic acid (LAC), citric acid (CAC) and pepsin soluble collagens (PSC). In this study, PSC (6.65%) had the highest collagen yield, followed by AAC (5.79%), CAC (4.15%), and LAC (3.19%). The maximum temperatures (Tmax) denaturation of AAC, LAC, CAC, and PSC were 31.4, 31.7, 31.5, and 33.2 °C, respectively. UV-VIS absorption spectra showed all extracted collagens had a range of absorbance at 230 nm, due to the presence of glycine, proline, hydroxyproline, and triple-helical collagen. Additionally, they exhibited amide A, B, amide I, II, and III peaks. SDS−PAGE identified all extracted collagens as type I. The PSC had a significantly higher (p < 0.05) hydroxyproline content than acidic extraction 66.3 ± 1.03 (mg/g sample). Furthermore, all samples were extremely soluble in acetic conditions at pH 5, and all collagen was soluble in NaCl up to 3% (w/v). Therefore, PSC was the best treatment since it did not impact collagen triple helical and acetic acid yielded the most collagen in ASC extraction. Overall, the analysis revealed that fish skin waste might be used as an alternate source of collagen in diverse applications, particularly in food applications.
Collapse
|
8
|
Cui Z, Zhu X, Zhao F, Li D, Deng Y, Tan A, Lai Y, Huang Z, Gong H. Molecular identification and functional exploration of interleukin-20 in snakehead (Channa argus) involved in bacterial invasion and the proliferation of head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 127:623-632. [PMID: 35810964 DOI: 10.1016/j.fsi.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
As an inflammatory cytokine of the interleukin-20 (IL-20) subfamily, IL-20 has various functions in immune defenses, inflammatory diseases, tissue regeneration, cancer, and metabolism. Although the characteristics and functions of mammalian IL-20 have been clarified, those of fish IL-20 remain unclear. In this study, the IL-20 gene from the snakehead Channa argus (shIL-20) was cloned and functionally characterized. Similar to the IL-20 homologues of other species, the shIL-20 has a five exon/four intron structure in the coding region. The open reading frame of shIL-20 consists of 528 base pairs and encodes 175 amino acids (aa), including a signal peptide (aa 1-24) and a mature peptide (aa 25-175). The mature shIL-20 protein has six conserved cysteine residues, which occur in the IL-20 proteins of all species analyzed, and an additional cysteine residue (Cys-82) found only in the IL-20 proteins of several teleosts. The modeled tertiary structure of shIL-20 is similar with that of Homo sapiens IL-20. The shIL-20 was expressed constitutively in all the tissues analyzed, and its transcription was induced in the spleen and head kidney by Aeromonas schubertii and Nocardia seriolae in vivo and in head kidney leukocytes (HKLs) by lipoteichoic acid, lipopolysaccharide, and polyinosinic-polycytidylic acid in vitro. The recombinant shIL-20 protein induced the transcription of tumor necrosis factor α1 (TNF-α1), TNF-α2, IL-1β, and endogenous shIL-20, and promoted the proliferation of HKLs. In conclusion, these findings demonstrate that shIL-20 participates in the immune response to bacterial invasion and promotes leukocyte proliferation, offering new insights into the functions of fish IL-20 during pathogen invasion.
Collapse
Affiliation(s)
- Zhengwei Cui
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueqing Zhu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Hua Gong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
9
|
Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish ( Saurida tumbil Bloch, 1795) Skin, Bone and Scales. Gels 2022; 8:gels8080471. [PMID: 36005071 PMCID: PMC9407154 DOI: 10.3390/gels8080471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Reducing food waste is critical for sustainability. In the case of fish processing, more than sixty percent of by-products are generated as waste. Lizardfish (Saurida tumbil Bloch, 1795) is an economically important species for surimi production. To address waste disposal and maximize income, an effective utilization of fish by-products is essential. This study aims to isolate and characterize pepsin-soluble collagens from the skin, bone and scales of lizardfish. Significant differences (p < 0.05) in the yields of collagen were noted with the highest yield recorded in pepsin-soluble skin collagen (PSSC) (3.50 ± 0.11%), followed by pepsin-soluble bone collagen (PSBC) (3.26 ± 0.10%) and pepsin-soluble scales collagen (PSCC) (0.60 ± 0.65%). Through SDS−polyacrylamide gel electrophoresis, the presence of two alpha chains were noted and classified as type I. From Fourier transform infrared spectroscopy (FTIR) analysis, the triple-helix structure of the collagen was maintained. The X-ray diffraction and UV visible spectra characteristics of the lizardfish collagens in this study are similar to the previously reported fish collagens. In terms of thermostability, PSSC (Tmax = 43.89 °C) had higher thermostability in comparison to PSBC (Tmax = 31.75 °C) and PSCC (Tmax = 30.54 °C). All pepsin-soluble collagens were highly soluble (>70%) in acidic conditions (particularly at pH 4.0) and at low sodium chloride concentrations (0−30 g/L). Microstructural analysis depicted that all extracted collagens were multi-layered, irregular, dense, sheet-like films linked by random coiled filaments. Overall, pepsin-soluble collagens from lizardfish skin, bone and scales could serve as potential alternative sources of collagens.
Collapse
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | | | | | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
- Correspondence: ; Tel.: +60-12-4843-144
| |
Collapse
|
10
|
Production of Collagens and Protein Hydrolysates with Antimicrobial and Antioxidant Activity from Sheep Slaughter By-Products. Antioxidants (Basel) 2022; 11:antiox11061173. [PMID: 35740070 PMCID: PMC9219988 DOI: 10.3390/antiox11061173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022] Open
Abstract
This work aimed to produce collagens and hydrolysates with antimicrobial and antioxidant activity from sheep slaughter by-products. The by-products (sheep and lamb) were treated and extracted. The collagens were hydrolyzed with the enzyme Alcalase®. The spectra of collagens and hydrolysates were similar (amide bands I, II, III, A, B). The bands presented by the collagens (α1, α2, β) were characteristic of type I collagen. The hydrolysates showed molecular weight peptides equal to/lower than 15 kDa. Collagens had a denaturation temperature of 39.32 (lamb) and 36.38 °C (sheep), whereas the hydrolysates did not undergo thermal transition. Hydrolysates showed lower values of antioxidant activity (AA) than the collagens. The collagens from lamb and from sheep displayed an AA of 13.4% (concentration of 0.0002%) and 13.1% (concentration of 0.0005%), respectively. At the concentration of 0.0020%, the lamb hydrolysates displayed an AA of 10.2%, whereas the sheep hydrolysates had an AA of only 1.98%. Collagen also showed higher antimicrobial activity compared to hydrolysates, requiring a lower concentration to inhibit the microorganisms tested. Sheep slaughter by-products proved to be a viable source for obtaining protein hydrolysates and collagens with antimicrobial and antioxidant activity, which can be applied in the development of nutraceuticals beneficial to human health.
Collapse
|
11
|
Extraction and Characterization of Bioactive Fish By-Product Collagen as Promising for Potential Wound Healing Agent in Pharmaceutical Applications: Current Trend and Future Perspective. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:9437878. [PMID: 35573824 PMCID: PMC9106525 DOI: 10.1155/2022/9437878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/29/2022]
Abstract
Collagen is a structural protein naturally found in mammals. Vertebrates and other connective tissues comprise about 30% of an animal’s overall protein. Collagen is used in a variety of applications including cosmetics, biomedical, biomaterials, food, and pharmaceuticals. The use of marine-based collagen as a substitute source is rapidly increasing due to its unique properties, which include the absence of religious restrictions, a low molecular weight, no risk of disease transmission, biocompatibility, and ease of absorption by the body system. This review discusses recent research on collagen extraction from marine-based raw material, specifically fish by-products. Furthermore, pretreatment on various sources of fish materials, followed by extraction methods, was described. The extraction procedures for acid soluble collagen (ASC) and pepsin soluble collagen (PSC) for fish collagen isolation are specifically discussed and compared. As a result, the efficacy of collagen yield was also demonstrated. The recent trend of extracting fish collagen from marine biomaterials has been summarized, with the potential to be exploited as a wound healing agent in pharmaceutical applications. Furthermore, background information on collagen and characterization techniques primarily related to the composition, properties, and structure of fish collagen are discussed.
Collapse
|
12
|
Biochemical and Microstructural Properties of Lizardfish ( Saurida tumbil) Scale Collagen Extracted with Various Organic Acids. Gels 2022; 8:gels8050266. [PMID: 35621564 PMCID: PMC9141987 DOI: 10.3390/gels8050266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this research was to extract collagen from the scales of lizardfish (Saurida tumbil) using various acids. Acetic acid-extracted collagen (AScC) produced a higher yield (1.8 mg/g) than lactic acid-extracted collagen (LScC) and citric acid-extracted collagen (CScC) although not significantly different (p > 0.05). All extracted collagens were categorized as type I collagens with the presence of alpha chains (α1 and α2) based on the SDS-PAGE profiles. The triple-helical structure of the collagen was maintained in the AScC, LScC, and CScC as confirmed by the FTIR spectra. The UV-vis and X-ray diffraction spectra observed in all collagens were in agreement with previous work on fish scale and calfskin (commercial) collagens. The thermal stability of AScC (Tmax = 31.61 °C) was greater than LScC (Tmax = 30.86 °C) and CScC (Tmax = 30.88 °C). The microstructure of acid-extracted collagens was characterized as complex, fibrous, and multilayered, with irregular sheet-like structures. All samples were highly soluble in acidic pH (1.0−4.0) and in low concentrations of NaCl (0−20 g/L). In conclusion, the lizardfish scale collagen, particularly AScC, may be used as an alternative to terrestrial animal collagen.
Collapse
|
13
|
Optimized Collagen Extraction Process to Obtain High Purity and Large Quantity of Collagen from Human Perirenal Adipose Tissue. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3628543. [PMID: 35402618 PMCID: PMC8989554 DOI: 10.1155/2022/3628543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
There is growing interest in human adipose tissue-derived collagen as a replacement for animal origin or synthetic materials. Large amounts of adipose tissues around the kidney are being discarded after kidney surgery; thus, we planned to use this tissue as a potentially ideal source of human collagen. Optimization of the collagen extraction process can contribute to the quality, quantity, supply, and cost of collagen production. To extract highly purified and concentrated collagen from human perirenal adipose tissue, we developed a novel extraction process that is superior to the conventional methods in terms of extraction yield, in vitro cytocompatibility, and physicochemical aspects. The sequence of the process and optimized conditions are as follows: (1) destaining with 0.5% H2O2 for 1 h at 4°C, (2) noncollagenous proteins elimination with 1.5 M NaOH for 24 h at 4°C, (3) atelocollagen preparation with 1.0% pepsin for 48 h at 25°C, and (4) collagen hydrolysis with 1.0 M NaOH for 10 min at 60°C. The final product showed significantly increased hydroxyproline (
pg/mL) and glycine (22.752 μg/mL) content than the conventional acetic acid hydrolyzed collagen (
pg/mL and 0.947 μg/mL, respectively). The lyophilized collagen showed more specific peaks for amides A, B, I, II, and III on FT-IR analysis and showed a further native architecture of collagen fibrils in scanning electron microscope images. Therefore, the optimized process can be an effective protocol for extracting collagen from human perirenal adipose tissue.
Collapse
|
14
|
Chen T, Song Z, Liu H, Zhou C, Hong P, Deng C. Physicochemical properties of gelatin produced from Nile tilapia skin using chemical and fermentation pretreatments. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Silva MKS, Silva TA, Silva JAF, Costa LDA, Leal MLE, Bezerra RS, Costa HMS, Freitas-Júnior ACV. Carangoides bartholomaei (Cuvier, 1833) stomach: a source of aspartic proteases for industrial and biotechnological applications. BRAZ J BIOL 2021; 82:e234413. [PMID: 34105658 DOI: 10.1590/1519-6984.234413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022] Open
Abstract
The viscera and other residues from fish processing are commonly discarded by the fishing industry. These by-products can be a source of digestive enzymes with industrial and biotechnological potential. In this study, we aimed at the extraction, characterization, and application of acidic proteases from the stomach of Carangoides bartholomaei (Cuvier, 1833). A crude extract from the stomachs was obtained and submitted to a partial purification process by salting-out, which obtained a Purified Extract (PE) with a specific proteolytic activity of 54.0 U⋅mg-1. A purification of 1.9 fold and a yield of 41% were obtained. The PE presents two isoforms of acidic proteases and a maximum proteolytic activity at 45 °C and pH 2.0. The PE acidic proteolytic activity was stable in the pH range of 1.5 to 7.0 and temperature from 25 °C to 50 °C. Purified Extract kept 35% of its proteolytic activity at the presence of NaCl 15% (m/v) but was totally inhibited by pepstatin A. Purified Extract aspartic proteases presented high activity in the presence of heavy metals such as Cd2+, Hg2+, Pb2+, Al3+, and Cu2+. The utilization of PE as an enzymatic addictive in the collagen extraction from Nile tilapia scales has doubled the process yield. The results indicate the potential of these aspartic proteases for industrial and biotechnological applications.
Collapse
Affiliation(s)
- M K S Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| | - T A Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| | - J A F Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| | - L D A Costa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil
| | - M L E Leal
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil
| | - R S Bezerra
- Universidade Federal de Pernambuco - UFPE, Centro de Biociências, Departamento de Bioquímica, Laboratório de Enzimologia, Recife, PE, Brasil
| | - H M S Costa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| | - A C V Freitas-Júnior
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Departamento de Biologia Molecular, Laboratório de Biomoléculas de Organismos Aquáticos, João Pessoa, PB, Brasil.,Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Biologia Celular e Molecular, João Pessoa, PB, Brasil
| |
Collapse
|
16
|
Terrell JA, Jones CG, Kabandana GKM, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B 2021; 8:6667-6685. [PMID: 32567628 DOI: 10.1039/d0tb00718h] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is an emerging research area to integrate scaffolding materials in microfluidic devices for 3D cell culture (organs-on-a-chip). The technology of organs-on-a-chip holds the potential to obviate the gaps between pre-clinical and clinical studies. As accumulating evidence shows the importance of extracellular matrix in in vitro cell culture, significant efforts have been made to integrate 3D ECM/scaffolding materials in microfluidics. There are two families of materials that are commonly used for this purpose: hydrogels and electrospun fibers. In this review, we briefly discuss the properties of the materials, and focus on the various technologies to obtain the materials (e.g. extraction of collagen from animal tissues) and to include the materials in microfluidic devices. Challenges and potential solutions of the current materials and technologies were also thoroughly discussed. At the end, we provide a perspective on future efforts to make these technologies more translational to broadly benefit pharmaceutical and pathophysiological research.
Collapse
Affiliation(s)
- John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 21250, MD, USA.
| | | | | | | |
Collapse
|
17
|
Chandika P, Oh GW, Heo SY, Kim SC, Kim TH, Kim MS, Jung WK. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111871. [PMID: 33579504 DOI: 10.1016/j.msec.2021.111871] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
The development of tissue-engineered biodegradable artificial tissue substitutes with extracellular matrix-mimicking properties that govern the interaction between the material and biological environment is of great interest in wound-healing applications. In the present study, novel bilayer nanofibrous scaffolds composed of fish collagen (FC) and poly(ε-caprolactone) (PCL) were fabricated using electrospinning, with the covalent attachment of chitooligosaccharides (COS) via carbodiimide chemistry. The architecture and fiber diameter of the non-cross-linked nanofibrous scaffolds remained consistent irrespective of the polymer ratio under different electrospinning conditions, but the fiber diameter changed after cross-linking in association with the FC content. Fourier-transform infrared spectroscopy analysis indicated that the blend of biomaterials was homogenous, with an increase in COS levels with increasing FC content in the nanofibrous scaffolds. Based on cytocompatibility analysis (i.e., the cellular response to the nanofibrous scaffolds and their interaction), the nanofibrous scaffolds with high FC content were functionally active in response to normal human dermal fibroblast‑neonatal (NHDF-neo) and HaCaT keratinocyte cells, leading to the generation of a very effective tissue-engineered implant for full-thickness wound-healing applications. In addition to these empirical results, an assessment of the hydrophilicity, swelling, and mechanical integrity of the proposed COS-containing FC-rich FC/PCL (FCP) nanofibrous scaffolds confirmed that they have significant potential for use as tissue-engineered skin implants for rapid skin regeneration.
Collapse
Affiliation(s)
- Pathum Chandika
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Woo Oh
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong-Yeong Heo
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Chang Kim
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Tae-Hee Kim
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Sung Kim
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
18
|
Extraction of Type I Collagen from Tilapia Scales Using Acetic Acid and Ultrafine Bubbles. Processes (Basel) 2021. [DOI: 10.3390/pr9020288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type I collagen is commonly used in medical materials and cosmetics. While it can be extracted from the skin and bones of mammals, marine collagen has attracted attention recently, since the use of mammalian collagen could result in zoonosis, and products containing mammalian collagen are avoided due to some religious beliefs. Chemical extractions using strong acids and alkalis, thermal extractions, and other nonconventional methods have been used for collagen extraction. However, there are few reports on environmentally friendly methods. Although heat extractions provide higher yields of collagen, they often cause collagen denaturation. Therefore, dilute acetic acid and ultrafine bubbles of oxygen, carbon dioxide, and ozone were used to extract type I collagen from tilapia scales. The extraction performance of the different conditions employed was qualitatively analyzed by SDS-PAGE electrophoresis, and the collagen concentration was quantified using circular dichroism spectroscopy by monitoring the peak intensity at 221 nm, which is specific to the triple helix of type I collagen. Collagen was extracted from tilapia scales with a yield of 1.58% by the aeration of ultrafine bubbles of carbon dioxide gas in a 0.1 M acetic acid solution for 5 h.
Collapse
|
19
|
Oliveira VDM, Assis CRD, Costa BDAM, Neri RCDA, Monte FTD, Freitas HMSDCV, França RCP, Santos JF, Bezerra RDS, Porto ALF. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Song Z, Liu H, Chen L, Chen L, Zhou C, Hong P, Deng C. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chem 2020; 340:128139. [PMID: 33010648 DOI: 10.1016/j.foodchem.2020.128139] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Chemical pretreatment of collagen raw materials is time-consuming and environmentally hazardous. Collagen extraction after fermentation pretreatment has not been reported. We extracted and characterized acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from Nile tilapia (Oreochromis niloticus) skin following fermentation and chemical treatments and comparatively evaluated the feasibility of fermentation. Fermentation-ASC (FASC) and fermentation-PSC (FPSC) yields (4.76 and 8.14 wt%, respectively) were slightly but not significantly higher than chemical-ASC (CASC) and chemical-PSC (CPSC) yields (4.27 and 7.60 wt%, respectively). All extracts were identified as type I collagens by SDS-PAGE and retained their triple helical structure well, as confirmed through Fourier transform infrared spectroscopy. All collagen microstructures under scanning electron microscopy were multi-layered aggregates. These collagens also had similar biochemical properties (i.e. denatured between 36.5 and 37.1 °C, high soluble at pH 1-4 and at <3% [w/v] NaCl). Therefore, fermentation method is a viable alternative for pretreating collagen extraction materials.
Collapse
Affiliation(s)
- Zengliu Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huanming Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Liwen Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Leilei Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunxia Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Pengzhi Hong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chujin Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
21
|
Cui ZW, Kong LL, Zhao F, Tan AP, Deng YT, Jiang L. Two types of TNF-α and their receptors in snakehead (Channa argus): Functions in antibacterial innate immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 104:470-477. [PMID: 32585357 DOI: 10.1016/j.fsi.2020.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a pluripotent mediator of pro-inflammatory and antimicrobial defense mechanisms and a regulator of lymphoid organ development. Although two types of TNF-α have been identified in several teleost species, their functions in pathogen infection remain largely unexplored, especially in pathogen clearance. Herein, we cloned and characterized two types of TNF-α, termed shTNF-α1 and shTNF-α2, and their receptors, shTNFR1 and shTNFR2, from snakehead (Channa argus). These genes were constitutively expressed in all tested tissues, and were induced by Aeromonas schubertii and Nocardia seriolae in head kidney and spleen in vivo, and by lipoteichoic acid (LTA), lipopolysaccharides (LPS), and Polyinosinic-polycytidylic acid [Poly (I:C)] in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shTNF-α1 and shTNF-α2 upregulated the expression of endogenous shTNF-α1, shTNF-α2, shTNFR1, and shTNFR2, and enhanced intracellular bactericidal activity, with shTNF-α1 having a greater effect than shTNF-α2. These findings suggest important roles of fish TNFα1, TNFα2, and their receptors in bacterial infection and pathogen clearance, and provide a new insight into their function in antibacterial innate immunity.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lu-Lu Kong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| | - Ai-Ping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yu-Ting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
22
|
Luo J, Yang X, Cao Y, Li G, Meng Y, Li C. Structural characterization and in vitro immunogenicity evaluation of amphibian-derived collagen type II from the cartilage of Chinese Giant Salamander ( Andrias davidianus). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1941-1960. [PMID: 32584658 DOI: 10.1080/09205063.2020.1786882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Collagen type II (CT-II) has unique biological activities and functions, yet the knowledge on amphibian-derived CT-II is rare. Herein, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were successfully isolated and characterized from the cartilage of Chinese Giant Salamander (CGS). The in vitro immunogenicity of collagen was then evaluated and compared with that of the standard bovine CT-II (SCT-II) by T-lymphocyte cell proliferation activity. Results demonstrated that ASC and PSC were predominantly CT-II along with minor collagen type I and maintained intact triple-helical structure of nature collagen. Compared with SCT-II, higher glycine content (337.80 and 339.93 residues/1000 residues) and lower degree of proline hydroxylation (51.81% and 52.52%) were observed in ASC and PSC. Additionally, PSC showed comparable T d (63 °C) and higher T m (109 °C) than SCT-II (64 °C and 103 °C, respectively), indicating its high thermal and structural stability. SEM revealed that the lyophilized ASC and PSC had interconnected porous network structures of collagen-based materials. Moreover, different from SCT-II, both ASC and PSC presented no immunogenicity because they did not cause obvious proliferation of murine T-lymphocyte regardless of the induced concentration of collagen increased from 8 to 417 μg/mL. These data suggested that the amphibian-derived CGS cartilage collagens avoid the immunogenic risk of terrestrial animal collagen, and show high thermal stability and potential advantage in biomedical application.
Collapse
Affiliation(s)
- Jianlin Luo
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Xiaojing Yang
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yu Cao
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Guoyong Li
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yonglu Meng
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| | - Can Li
- Collaborative Innovation Center of Sustainable Utilization of Giant Salamander in Guizhou Province, Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, Guiyang University, Guiyang, China
| |
Collapse
|
23
|
Yan M, Jiang X, Wang G, Wang A, Wang X, Wang X, Zhao X, Xu H, An X, Li Y. Preparation of self-assembled collagen fibrillar gel from tilapia skin and its formation in presence of acidic polysaccharides. Carbohydr Polym 2020; 233:115831. [PMID: 32059884 DOI: 10.1016/j.carbpol.2020.115831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
Fibrillar gel of pepsin-solubilized collagen from tilapia skin was prepared by self-assembly in neutral phosphate buffer at 28 °C. Then effects of acidic polysaccharides, such as sodium alginate (SA), chondroitin sulfate (CS), and hyaluronic acid (HA), on the formation and properties of self-assembled fibrillar gel were investigated. SA and CS prolonged gelling time, whereas HA had no obvious effect. SA made fibril network denser, while CS and HA induced the presence of larger ordered structures. All the acidic polysaccharides broadened the D-periodicity of fibrils. SA and HA increased the maximum mechanical strength of gel to 39.64 and 34.49 kN/m2, respectively, significantly higher than that of pure collagen gel (14.53 kN/m2), while that only 17.20 kN/m2 after CS introduced. HA had no evident effect on enzymatic resistance, while SA and CS decreased. Therefore, tilapia skin collagen with HA has a higher potential as a biomaterial than that with CS or SA.
Collapse
Affiliation(s)
- Mingyan Yan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiujie Jiang
- State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co. Ltd., Qingdao 266071, PR China
| | - Gaochao Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ailing Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinxin Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinyu Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaochen Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hao Xu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangsheng An
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|