1
|
Feng X, Zhu Y, Cui Z, Li X, Hua Y, Liu Y. A β-Primeverosidase-like Enzyme in Soybean [ Glycine max (L.) Merr] Hypocotyls: Specificity toward 1-Octen-3-yl and 3-Octanyl β-Primeverosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8126-8139. [PMID: 38551387 DOI: 10.1021/acs.jafc.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A novel β-primeverosidase-like enzyme, originating from the hypocotyl of soybeans, was isolated and characterized. This enzyme, with an estimated molecular weight of 44 kDa, was identified as a monomer and exhibited peak activity at 55 °C and pH 5.5. It demonstrated a specific and efficient hydrolysis of 1-octen-3-yl β-primeveroside (1-octen-3-yl prim) and 3-octanyl β-primeveroside (3-octanyl prim) but did not act on glucopyranosides. Mn2+ significantly enhanced its activity, while Zn2+, Cu2+, and Hg2+ exerted inhibitory effects. Kinetic analysis revealed a higher hydrolytic capacity toward 1-octen-3-yl prim. Partial amino acid sequences were determined and the N-terminal amino acid sequence was determined to be AIVAYAL ALSKRAIAAQ. The binding energy and binding free energy between the β-primeverosidase enzyme and its substrates were observed to be higher than that of β-glucosidase, thus validating its superior hydrolysis efficiency. Hydrogen bonds and hydrophobic interactions were the main types of interactions between β-primeverosidase enzyme and 1-octen-3-yl prim and 3-octanyl prim, involving amino acid residues such as GLU-470, TRP-463, GLU-416, TRP-471, GLN-53, and GLN-477 (hydrogen bonds) and PHE-389, TYR-345, LEU-216, and TYR-275 (hydrophobic interactions). This study contributes to the application of a β-primeverosidase-like enzyme in improving the release efficiency of glycosidically conjugated flavor substances.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingfei Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufei Hua
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Ji B, Xuan L, Zhang Y, Zhang G, Meng J, Mu W, Liu J, Paek KY, Park SY, Wang J, Gao W. Advances in Biotechnological Production and Metabolic Regulation of Astragalus membranaceus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091858. [PMID: 37176916 PMCID: PMC10180874 DOI: 10.3390/plants12091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Legume medicinal plants Astragalus membranaceus are widely used in the world and have very important economic value, ecological value, medicinal value, and ornamental value. The bioengineering technology of medicinal plants is used in the protection of endangered species, the rapid propagation of important resources, detoxification, and the improvement of degraded germplasm. Using bioengineering technology can effectively increase the content of secondary metabolites in A. membranaceus and improve the probability of solving the problem of medicinal plant resource shortage. In this review, we focused on biotechnological research into A. membranaceus, such as the latest advances in tissue culture, including callus, adventitious roots, hairy roots, suspension cells, etc., the metabolic regulation of chemical compounds in A. membranaceus, and the research progress on the synthetic biology of astragalosides, including the biosynthesis pathway of astragalosides, microbial transformation of astragalosides, and metabolic engineering of astragalosides. The review also looks forward to the new development trend of medicinal plant biotechnology, hoping to provide a broader development prospect for the in-depth study of medicinal plants.
Collapse
Affiliation(s)
- Baoyu Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liangshuang Xuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunxiang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrong Mu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jingjing Liu
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kee-Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Wei B, Xu H, Cheng L, Yuan Q, Liu C, Gao H, Liang H. Highly Selective Entrapment of His-Tagged Enzymes on Superparamagnetic Zirconium-Based MOFs with Robust Renewability to Enhance pH and Thermal Stability. ACS Biomater Sci Eng 2021; 7:3727-3736. [PMID: 34291917 DOI: 10.1021/acsbiomaterials.1c00780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-organic frameworks (MOFs), as a kind of poriferous nanoparticle, are promising candidates for enzyme immobilization to enhance their stability and reusability. However, most MOFs could not specifically immobilize enzymes and regenerate easily, which inevitably leads to serious high consumption and environmental pollution. In this study, renewable and magnetic MOFs were first constructed to specially immobilize His-tagged enzymes from the cell lysates without purification. The immobilized β-glucuronidase exhibited wider pH adaptability and temperature stability. The relative activity of immobilized β-glucuronidase was still maintained at ∼80% after eight cycles. Importantly, after simple treatment, the immobilization capacity of regenerated MOFs after simple treatment was restored to more than 90% in the first three times. The specific magnetic MOFs were proven to be an efficient and renewable platform for one-step immobilization and purification of His-tagged enzymes, showing great potential in industrial applications of nanotechnology and biocatalysis.
Collapse
Affiliation(s)
- Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haichang Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Leiyu Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Changxia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huiling Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Efficient production of the anti-aging drug Cycloastragenol: insight from two Glycosidases by enzyme mining. Appl Microbiol Biotechnol 2020; 104:9991-10004. [PMID: 33119795 DOI: 10.1007/s00253-020-10966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The telomerase activator cycloastragenol (CA) is regarded as a potential anti-aging drug with promising applications in the food and medical industry. However, one remaining challenge is the low efficiency of CA production. Herein, we developed an enzyme-based approach by applying two enzymes (β-xylosidase: Xyl-T; β-glucosidase: Bgcm) for efficient CA production. Both key glycosidases, mined by activity tracking or homology sequence screening, were successfully over-expressed and showed prominent enzymatic activity profiles, including widely pH stability (Xyl-T: pH 3.0-8.0; Bgcm: pH 4.0-10.0), high catalytic efficiency (kcat/Km: 0.096 mM-1s-1 (Xyl-T) and 3.08 mM-1s-1 (Bgcm)), and mesophilic optimum catalytic temperature (50 °C). Besides, the putative catalytic residues (Xyl-T: Asp311/Glu 521; Bgcm: Asp311/Glu 521) and the potential substrate-binding mechanism of Xyl-T and Bgcm were predicted by comprehensive computational analysis, providing valuable insight into the hydrolysis of substrates at the molecular level. Notably, a rationally designed two-step reaction process was introduced to improve the CA yield and increased up to 96.5% in the gram-scale production, providing a potential alternative for the industrial CA bio-production. In essence, the explored enzymes, the developed enzyme-based approach, and the obtained knowledge from catalytic mechanisms empower researchers to further engineer the CA production and might be applied for other chemicals synthesis. KEY POINTS: • A β-xylosidase and a β-glucosidase were mined to hydrolyze ASI into CA. • The two recombinant glycosidases showed prominent catalytic profiles. • Two-step enzymatic catalysis for CA production from ASI was developed. Graphical abstract.
Collapse
|