1
|
Sousa ÉML, Otero M, Gil MV, Pereira G, Veríssimo MIS, Ferreira P, Esteves VI, Calisto V. Surface coupling of molecularly imprinted polymers as strategy to improve sulfamethoxazole removal from water by carbons produced from spent brewery grain. CHEMOSPHERE 2024; 364:143102. [PMID: 39151585 DOI: 10.1016/j.chemosphere.2024.143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
This work aims to assess the surface coupling of molecularly imprinted polymers (MIP) on carbon adsorbents produced from spent brewery grain, namely biochar (BC) and activated carbon (AC), as a strategy to improve selectivity and the adsorptive removal of the antibiotic sulfamethoxazole (SMX) from water. BC and AC were produced by microwave-assisted pyrolysis, and MIP was obtained by fast bulk polymerization. Two different methodologies were used for the molecular imprinting of BC and AC, the resulting materials being tested for SMX adsorption. Then, after selecting the most favourable molecular imprinting methodology, different mass ratios of MIP:BC or MIP:AC were used to produce and evaluate eight different materials. Molecular imprinting was shown to significantly improve the performance of BC for the target application, and one of the produced composites (MIP1-BC-s(1:3)) was selected for further kinetic and equilibrium studies and comparison with individual MIP and BC. The kinetic behaviour was properly described by both the pseudo-first and pseudo-second order models. Regarding equilibrium isotherms, they fitted the Freundlich and Langmuir models, with MIP1-BC-s(1:3) reaching a maximum adsorption capacity (qm) of 25 ± 1 μmol g-1, 19 % higher than BC. In comparison with other seven pharmaceuticals, the adsorption of SMX onto MIP1-BC-s(1:3) was remarkably higher, as for the specific recognition of this antibiotic by the coupled MIP. The pH study evidenced that SMX removal was higher under acidic conditions. Regeneration experiments showed that MIP1-BC-s(1:3) provided good adsorption performance, which was stable during five regeneration-reutilization cycles. Overall, this study has demonstrated that coupling with MIP may be a suitable strategy to improve the adsorption properties and performance of biochar for antibiotics removal from water, increasing its suitability for practical applications.
Collapse
Affiliation(s)
- Érika M L Sousa
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Materials and Ceramic Engineering and CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Otero
- Departamento de Química y Física Aplicadas, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - María V Gil
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - Goreti Pereira
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta I S Veríssimo
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering and CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Karrat A, Amine A. Innovative approaches to suppress non-specific adsorption in molecularly imprinted polymers for sensing applications. Biosens Bioelectron 2024; 250:116053. [PMID: 38266615 DOI: 10.1016/j.bios.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic antibodies developed to bind selectively with specific molecules. They function through a particular recognition process involving their cavities and functional groups. Nevertheless, functional groups located outside these cavities are the main cause of non-specific molecule binding, thus reducing the effectiveness of MIPs in sensing applications. This work focused on enhancing the selectivity and performance of MIPs through electrostatic modification with surfactants. The study investigates the use of two surfactants, namely sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB), to eliminate non-specific adsorption in MIPs. The binding isotherms of the target molecule sulfamethoxazole (SMX) on MIPs and non-imprinted polymers (NIPs) were analyzed, showing higher adsorption capacity of MIPs due to the specific cavities. The modification with SDS or CTAB effectively eliminated non-specific adsorption in MIPs. The kinetic adsorption behavior further demonstrated the efficacy of MIP+--SDS/CTAB in the selective adsorption of SMX. Calibration curves showcase the methodology's analytical capabilities, achieving low limit of detection for SMX 6 ng mL-1 using MIP +-SDS. The stability study confirmed that the developed MIP +/--SDS/CTAB remains stable even at high temperatures, demonstrating its suitability for on-site applications. The methodology was successfully applied to detect SMX in milk and water samples, achieving promising recoveries. Overall, the electrostatic modification of MIPs with surfactants emerges as a valuable strategy for enhancing selectivity and performance in target molecule recognition and detection.
Collapse
Affiliation(s)
- Abdelhafid Karrat
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, B.P. 146 Mohammedia, Morocco.
| |
Collapse
|
3
|
Li H, Yin Z, Zhang Y, Yang J, Ding Y, Wang S, Pan M. Computational simulation-assisted design and experimental verification of molecularly imprinted polymers for selective extraction of chlorogenic acid. J Chromatogr A 2024; 1714:464556. [PMID: 38056394 DOI: 10.1016/j.chroma.2023.464556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Chlorogenic acid (CGA) is an active ingredient in honeysuckle with a broad-spectrum of antibacterial activity, suppressing tumor growth and other pharmacological effects. However, it is susceptible to damage during traditional extraction and separation processes. Therefore, developing selective and efficient extraction methods of CGA is essential. Based on computational molecular simulations, a reliable and efficient molecularly imprinted polymers (MIPs) were successfully developed for selective extraction of CGA. MIPs and non-molecularly imprinted polymers (NIPs) were synthesized using a precipitation polymerization method, employing three different functional monomers: [methacrylic acid (MAA), 4-vinylpyridine (4-VP), and methyl methacrylate (MMA)], with CGA serving as the template molecule. To simulate the polymers and predict the optimal ratio between the template and functional monomer, the computational studies and adsorption performance experiments were carried out. The adsorption characteristics and thermal stability of polymers were evaluated by isothermal adsorption, adsorption kinetics, selective adsorption and thermogravimetric analysis, aiming to obtain the MIPs with specific recognition and selectivity for CGA. When the molar ratio of template CGA to functional monomer 4-VP was 1:8, the prepared MIPs was found to have the maximum adsorption capacity (14.85 mg g-1) and the highest imprinting factor (1.74) at the CGA concentration of 100 mg L-1. These results were consistent with those obtained by computational molecular simulation. This study not only provides good guidance for developing separation materials for extracting CGA from natural plants but also inspires the application of computer simulation and molecular docking techniques in the preparation of specific MIPs materials.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yumei Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| |
Collapse
|
4
|
Erdem Ö, Eş I, Saylan Y, Atabay M, Gungen MA, Ölmez K, Denizli A, Inci F. In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system. Nat Commun 2023; 14:4840. [PMID: 37563147 PMCID: PMC10415298 DOI: 10.1038/s41467-023-40413-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Current practices in synthesizing molecularly imprinted polymers face challenges-lengthy process, low-productivity, the need for expensive and sophisticated equipment, and they cannot be controlled in situ synthesis. Herein, we present a micro-reactor for in situ and continuously synthesizing trillions of molecularly imprinted polymeric nanoparticles that contain molecular fingerprints of bovine serum albumin in a short period of time (5-30 min). Initially, we performed COMSOL simulation to analyze mixing efficiency with altering flow rates, and experimentally validated the platform for synthesizing nanoparticles with sizes ranging from 52-106 nm. Molecular interactions between monomers and protein were also examined by molecular docking and dynamics simulations. Afterwards, we benchmarked the micro-reactor parameters through dispersity and concentration of molecularly imprinted polymers using principal component analysis. Sensing assets of molecularly imprinted polymers were examined on a metamaterial sensor, resulting in 81% of precision with high selectivity (4.5 times), and three cycles of consecutive use. Overall, our micro-reactor stood out for its high productivity (48-288 times improvement in assay-time and 2 times improvement in reagent volume), enabling to produce 1.4-1.5 times more MIPs at one-single step, and continuous production compared to conventional strategy.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Murat Alp Gungen
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
5
|
Babaeipour V, Jabbari F. Pre-polymerization process simulation, synthesis and investigation the properties of dipicolinic acid molecularly imprinted polymers. Polym Bull (Berl) 2023:1-18. [PMID: 37362956 PMCID: PMC10081820 DOI: 10.1007/s00289-023-04774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/17/2023] [Accepted: 03/25/2023] [Indexed: 06/28/2023]
Abstract
Molecularly imprinted polymers (MIPs) have attracted much attention in recent years due to their structure predictability, recognition specificity, and universal application, as well as robustness, simplicity, and cheapness. In this study, firstly, the pre-polymerization process of molecularly imprinted polymer of dipicolinic acid (DPA) was simulated by molecular dynamics. Then, the appropriate functional monomer molecule for printing was selected and its intermolecular bond with the DPA molecule was evaluated. The monomers 2-vinyl pyridine, acrylic acid (AA), and methacrylic acid (MAA) were selected with potential energies of 3.93 kcal/mol, 3.15 kcal/mol, and 2.78 kcal/mol, respectively. Finally, the ability of functional groups to form hydrogen bonds was estimated, and molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs) were synthesized by bulk polymerization. MAA and AA were used as functional monomers to identify DPA molecules. The morphology of MIP and NIP was investigated using a scanning electron microscope (SEM). Their performance was evaluated in the absorption of DPA molecules and picolinic acid (PA) molecules and the printing factor of synthesis polymers. The results showed that fabricated MIPs can be used in the structure of sensors, and the synthesis process is a key factor that significantly affects the polymer properties. The MIP based on the AA monomer showed a higher adsorption rate/capacity and maximum printing factor than MAA monomer-based MIP.
Collapse
Affiliation(s)
- Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316, Tehran, Iran
| |
Collapse
|
6
|
Beheshti S, Panahi HA, Feizbakhsh A. Development of Thermo‐Sensitive and Magnetic Molecularly Imprinted Polymer for Extraction of Omeprazole in Biological and Pharmaceutical Samples Coupled by High Performance Liquid Chromatography. ChemistrySelect 2023. [DOI: 10.1002/slct.202203237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Sajjad Beheshti
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | - Alireza Feizbakhsh
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
7
|
Application of Molecularly Imprinted Electrochemical Biomimetic Sensors for Detecting Small Molecule Food Contaminants. Polymers (Basel) 2022; 15:polym15010187. [PMID: 36616536 PMCID: PMC9824611 DOI: 10.3390/polym15010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Environmental chemical contaminants in food seriously impact human health and food safety. Successful detection methods can effectively monitor the potential risk of emerging chemical contaminants. Among them, molecularly imprinted polymers (MIPs) based on electrochemical biomimetic sensors overcome many drawbacks of conventional detection methods and offer opportunities to detect contaminants with simple equipment in an efficient, sensitive, and low-cost manner. We searched eligible papers through the Web of Science (2000-2022) and PubMed databases. Then, we introduced the sensing mechanism of MIPs, outlined the sample preparation methods, and summarized the MIP characterization and performance. The classification of electrochemistry, as well as its advantages and disadvantages, are also discussed. Furthermore, the representative application of MIP-based electrochemical biomimetic sensors for detecting small molecular chemical contaminants, such as antibiotics, pesticides, toxins, food additives, illegal additions, organic pollutants, and heavy metal ions in food, is demonstrated. Finally, the conclusions and future perspectives are summarized and discussed.
Collapse
|
8
|
Alikahi N, Daraei B, Torkian L, Shekarchi M. Application of the Quetiapine Templated Molecular Imprinted Polymer in Its Extraction from Human Blood Plasma; an Experimental and Density Functional Theory Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202203741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Naghmeh Alikahi
- Department of applied Chemistry South Tehran Branch Islamic Azad University Tehran Iran
| | - Bahram Daraei
- Department of Toxicology and pharmacology School of pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Leila Torkian
- Department of applied Chemistry South Tehran Branch Islamic Azad University Tehran Iran
- Research Center of Modeling and Optimization in Science and Engineering Islamic Azad University, South Tehran Branch Tehran Iran
| | - Maryam Shekarchi
- Food and Drug Laboratory Research Centre Food and Drug Organization MOH&ME Tehran, Postal code 1113615911 Iran
| |
Collapse
|
9
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
10
|
Yang W, Huang C, Shen X. Water-compatible Janus molecularly imprinted particles with mouth-like opening: Rapid removal of pharmaceuticals from hospital effluents. CHEMOSPHERE 2022; 304:135350. [PMID: 35714963 DOI: 10.1016/j.chemosphere.2022.135350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals in hospital effluents, often discharged into the public sewage network without sufficient treatment, have shown negative impacts to the human health and aquatic environment. However, the conventional adsorbents used to remove these micropollutants had several deficiencies, including slow uptake kinetics and poor selectivity. To overcome these challenges, water-compatible Janus MIP particles (J-MIPs) with mouth-like openings were synthesized using seeded interfacial polymerization in this work. Among the series of J-MIPs, the selected J-MIP3 showed fast binding kinetics (∼40 s) towards the target pollutant. The theoretical and instrumental analysis suggested that the electrostatic interaction, hydrogen bond and hydrophobic reaction constituted the dominant mechanism for J-MIP3's recognition of target pharmaceutical. Selectivity and robustness tests indicated that the synthetic method was promising in practical application. Finally, the feasibility of the J-MIP3 fixed-bed column in the rapid removal of propranolol (PRO) from hospital effluents was successfully demonstrated. Compared to the activated carbon fixed-bed column, the J-MIP3 fixed-bed column showed at least 7-fold enhancement in its treatment efficiency. To the best of our knowledge, this is the first time that the accelerated mass transfer and fast removal of the pharmaceutical from wastewater have been achieved by the synthetic receptor with asymmetric structure. We believe the present study will open new avenues for the development of multi-functional molecularly imprinted polymers as well as Janus materials in environmental science.
Collapse
Affiliation(s)
- Weiyingxue Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
|
12
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
13
|
Yu X, Liao J, Zeng H, Wan J, Cao X. Synthesis of water-compatible noncovalent imprinted microspheres for acidic or basic biomolecules designed based on molecular dynamics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Al-Maswari BM, Al-Zaqri N, Ahmed J, Ahamad T, Boshaala A, Ananda S, Venkatesha B. Nanomagnetic strontium ferrite nitrogen doped carbon (SrFe2O4-NC): Synthesis, characterization and excellent supercapacitor performance. JOURNAL OF ENERGY STORAGE 2022; 52:104821. [DOI: 10.1016/j.est.2022.104821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
|
15
|
Monsalve-Atencio R, Montaño DF, Contreras-Calderón J. Molecular imprinting technology and poly (ionic liquid)s: Promising tools with industrial application for the removal of acrylamide and furanic compounds from coffee and other foods. Crit Rev Food Sci Nutr 2022; 63:6820-6839. [PMID: 35170386 DOI: 10.1080/10408398.2022.2038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is one of the most consumed beverages in the world. Coffee provides to the consumer special sensorial characteristics, can help to prevent diseases, improves physical performance and increases focus. In contrast, coffee consumption supplies a significant source of substances with carcinogenic and genotoxic potential such as furan, hydroxymethylfurfural (HMF), furfural (F), and acrylamide (AA). The present review addresses the issues around the presence of such toxic substances formed in Maillard reaction (MR) during thermal treatments in food processing, from chemical and, toxicological perspectives, occurrences in coffee and other foods processed by heating. In addition, current strategies advantages and disadvantages are presented along with application of molecular imprinting technology (MIT) and poly (ionic liquid) s (PIL) as an alternative to reduce the furan, HMF, F and AA content in coffee and other foods.
Collapse
Affiliation(s)
- Robinson Monsalve-Atencio
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Diego F Montaño
- Department of Chemistry, Faculty of Basic Sciences, University of Pamplona, Pamplona, Norte de Santander, Colombia
| | - José Contreras-Calderón
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
16
|
Wang H, Huang C, Ma S, Bo C, Ou J, Gong B. Recent advances of restricted access molecularly imprinted materials and their applications in food and biological samples analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Zhang Y, Wu Z, Shi H, Xie Y, Wu MY, Zhang C, Feng S. Copper Mediated Molecularly Imprinted Polymers for Fast Recognizing Tylosin. J Pharm Biomed Anal 2022; 213:114674. [DOI: 10.1016/j.jpba.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
18
|
Wan Q, Liu H, Deng Z, Bu J, Li T, Yang Y, Zhong S. A critical review of molecularly imprinted solid phase extraction technology. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02744-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Chen H, Wu F, Xu Y, Liu Y, Song L, Chen X, He Q, Liu W, Han Q, Zhang Z, Zou Y, Liu W. Synthesis, characterization, and evaluation of selective molecularly imprinted polymers for the fast determination of synthetic cathinones. RSC Adv 2021; 11:29752-29761. [PMID: 35492065 PMCID: PMC9044941 DOI: 10.1039/d1ra01330k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/17/2021] [Indexed: 01/24/2023] Open
Abstract
As a kind of new psychoactive substance (NPS), synthetic cathinones have drawn great worldwide attention. In this study, molecularly imprinted polymers (MIPs), as adsorbents for the extraction and determination of 4-methyldimethcathinone (4-MDMC), were first synthesized by coprecipitation polymerization. The physicochemical analyses of MIPs were successfully performed by XRD, FTIR, FESEM and TGA techniques. Furthermore, rebinding properties of temperature and pH dependence, and selectivity and reusability tests for MIPs and non-imprinted polymers (NIPs) were performed using an ultraviolet-visible spectrometer (UV-vis). The obtained results indicate that the imprinting efficiency has strong dependence on temperature and pH, and the optimal adsorption for targets is achieved under the condition of 318 K and pH = 6.0. This means that the combination between the polymers and 4-MDMC is a strong spontaneous and endothermic process. Compared with NIPs, MIPs exhibit prominent adsorption capacity (Qe = 9.77 mg g−1, 318 K). The selectivity coefficients (k) of MIPs for 4-MDMC, methylenedioxypentedrone (βk-MBDP), 4-ethylmethcathinone (4-EMC), methoxetamine (MXE) and tetrahydrofuranylfentanyl (THF-F) were found to be 1.70, 3.49, 7.14 and 5.82, respectively. Moreover, it was found that the adsorption equilibrium was achieved within 30 min. The aim of this work is the simple synthesis of MIPs and the optimal performance of the molecular recognition of 4-MDMC. Moreover, the synthesized MIPs can be easily regenerated and repeatedly used with negligible loss of efficiency (only 9.94% loss after six times adsorption–desorption tests). Satisfying recoveries in the range of 69.3–78.9% indicate that MIPs have good applicability for analyte removal from urine samples. Ultimately, this material shows great promise for the rapid extraction and separation of synthetic cathinones, which are dissolved in the liquid for the field of criminal sciences. Molecularly imprinted polymers, as an adsorbent for extraction and selective recognition of 4-methyldimethcathinone, were firstly synthesized through coprecipitation polymerization.![]()
Collapse
Affiliation(s)
- Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Fangsheng Wu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Yibing Xu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Yuan Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Lun Song
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Xiujuan Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Qun He
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Wei Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Qiaoying Han
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Zihua Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Yun Zou
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology 803 Zhongshan North 1st Road Shanghai 200083 P. R. China +86-21-22028361 +86-21-22028361.,Shanghai Yuansi Standard Science and Technology Co., Ltd. 196 Ouyang Road Shanghai 200080 P. R. China
| |
Collapse
|
20
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
21
|
Janczura M, Luliński P, Sobiech M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. MATERIALS 2021; 14:ma14081850. [PMID: 33917896 PMCID: PMC8068262 DOI: 10.3390/ma14081850] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
In the last 10 years, we have witnessed an extensive development of instrumental techniques in analytical methods for determination of various molecules and ions at very low concentrations. Nevertheless, the presence of interfering components of complex samples hampered the applicability of new analytical strategies. Thus, additional sample pre-treatment steps were proposed to overcome the problem. Solid sorbents were used for clean-up samples but insufficient selectivity of commercial materials limited their utility. Here, the application of molecularly imprinted polymers (MIPs) or ion-imprinted polymers (IIPs) in the separation processes have recently attracted attention due to their many advantages, such as high selectivity, robustness, and low costs of the fabrication process. Bulk or monoliths, microspheres and core-shell materials, magnetically susceptible and stir-bar imprinted materials are applicable to different modes of solid-phase extraction to determine target analytes and ions in a very complex environment such as blood, urine, soil, or food. The capability to perform a specific separation of enantiomers is a substantial advantage in clinical analysis. The ion-imprinted sorbents gained interest in trace analysis of pollutants in environmental samples. In this review, the current synthetic approaches for the preparation of MIPs and IIPs are comprehensively discussed together with a detailed characterization of respective materials. Furthermore, the use of sorbents in environmental, food, and biomedical analyses will be emphasized to point out current limits and highlight the future prospects for further development in the field.
Collapse
|
22
|
Suryana S, Mutakin, Rosandi Y, Hasanah AN. An Update on Molecularly Imprinted Polymer Design through a Computational Approach to Produce Molecular Recognition Material with Enhanced Analytical Performance. Molecules 2021; 26:1891. [PMID: 33810542 PMCID: PMC8036856 DOI: 10.3390/molecules26071891] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.
Collapse
Affiliation(s)
- Shendi Suryana
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
- Pharmacy Department, Faculty of Mathematics and Natural Sciences, Garut University, Jl. Jati No.42B, Tarogong, Garut 44151, Indonesia
| | - Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
| | - Yudi Rosandi
- Geophysic Department, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia;
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
- Drug Development Study Center, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
23
|
Zeng H, Yu X, Wan J, Cao X. Synthesis of molecularly imprinted polymers based on boronate affinity for diol-containing macrolide antibiotics with hydrophobicity-balanced and pH-responsive cavities. J Chromatogr A 2021; 1642:461969. [PMID: 33735645 DOI: 10.1016/j.chroma.2021.461969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 11/19/2022]
Abstract
In this research, in order to separate and purify diol-containing macrolide antibiotics, like tylosin, from complex biological samples, molecularly imprinted polymer (MIP) based on boronate affinity for tylosin was synthesized by using precipitation polymerization method with 4-vinylphenylboronic acid (VPBA) and dimethyl aminoethyl methacrylate (DMAEMA) as pH-responsive functional monomers, and N,N'-methylene bisacrylamide (MBAA)/ ethylene glycol dimethacrylate (EGDMA) as the co-crosslinkers that balance the hydrophobicity of the MIP. The synthesized tylosin-MIP had the advantages of high adsorption capacity (120 mg/g), fast pH-responsiveness responsible for the accessibility of imprinted cavities, and high selectivity coefficient towards tylosin versus its analogues (2.8 versus spiramycin, 7.3 versus desmycosin) in an aqueous environment. The mechanism of boronate affinity between tylosin and VPBA in the form of charged hydrogen bonding was analyzed via density functional theory (DFT). MIPs were used to successfully separate diol-containing macrolides through molecularly imprinted solid phase extraction (MISPE). The results show that MIPs prepared in this method have a good application prospect in the separation and purification of the diol-containing macrolide antibiotics.
Collapse
Affiliation(s)
- Hainan Zeng
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Xue Yu
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| |
Collapse
|
24
|
Pan M, Hong L, Xie X, Liu K, Yang J, Wang S. Nanomaterials‐Based Surface Protein Imprinted Polymers: Synthesis and Medical Applications. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|