1
|
Yu H, Feng L, Abbas M, Liang X, Zhang T, Yang G, Liu Y, Xu M, An Y, Yang W. Enhancing enzymatic catalysis efficiency: Immobilizing laccase on HHSS for synergistic bisphenol A adsorption and biodegradation through optimized external surface utilization. Int J Biol Macromol 2024; 278:134586. [PMID: 39122072 DOI: 10.1016/j.ijbiomac.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Laccase, a prominent enzyme biomacromolecule, exhibits promising catalytic efficiency in degrading phenolic compounds like bisphenol A (BPA). The laccase immobilized on conventional materials frequently demonstrates restricted loading and suboptimal catalytic performance. Hence, there is a pressing need to optimized external surface utilization to enhance catalytic performance. Herein, we synthesized amino-functionalized modified silica particles with a hierarchical hollow silica spherical (HHSS) structure for laccase immobilization via crosslinking, resulting in HHSS-LE biocatalysts. Through Box-Behnken design (BBD) and response surface methodology (RSM), we achieved a remarkably high enzyme loading of up to 213.102 mg/g. The synergistic effect of adsorption by HHSS and degradation by laccase facilitated efficient removal of BPA. The HHSS-LE demonstrated superior BPA removal capabilities, with efficiencies exceeding 100 % in the 50-200 mg/L BPA concentration range. Compared to MCM-41 and solid silica spheres (SSS), HHSS showed the highest enzyme loading capacity and catalytic activity, underscoring its superior external surface utilization rate per unit mass. Remarkably, the HHSS-LE biocatalyst exhibited remarkable recyclability even after 11 successive cycles of reuse. By preparing high immobilization rate with efficient external surface utilization, this study lays the foundation for the design of universally applicable and efficient enzyme immobilization catalysts.
Collapse
Affiliation(s)
- Hongxia Yu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Lijun Feng
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Mohamed Abbas
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore; Refractories, Ceramics and Building Materials Department, National Research Centre, El-Behouth Str., 12622 Cairo, Egypt
| | - Xue Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Tianjing Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Guiping Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yong Liu
- Guizhou Juneng Chemical Co, Ltd, Huishui County of Guizhou Province, Huishui 550601, PR China
| | - Meisong Xu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yan An
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China.
| | - Wanliang Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore; Guizhou Provincial Double Carbon and Renewable Energy Technology Innovation Research Institute, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Chen Z, Oh WD, Yap PS. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. CHEMOSPHERE 2022; 307:135824. [PMID: 35944673 DOI: 10.1016/j.chemosphere.2022.135824] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
3
|
A system of co-immobilized dual-enzyme and coenzyme for in-situ coenzyme regeneration. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Chen N, Chang B, Shi N, Yan W, Lu F, Liu F. Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Crit Rev Biotechnol 2022; 43:369-383. [PMID: 35430938 DOI: 10.1080/07388551.2022.2038073] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are commonly used as biocatalysts for various biological and chemical processes. However, some major drawbacks of free enzymes (e.g. poor reusability and instability) significantly restrict their industrial practices. How to overcome these weaknesses remain considerable challenges. Enzyme immobilization is one of the most effective ways to improve the reusability and stability of enzymes. Cross-linked enzyme aggregates (CLEAs) has been known as a novel and versatile carrier-free immobilization method. CLEAs is attractive due to its simplicity and robustness, without purification. It generally shows: high catalytic specificity and selectivity, good operational and storage stabilities, and good reusability. Moreover, co-immobilization of different kinds of enzymes can be acquired. These CLEAs advantages provide opportunities for further industrial applications. Herein, the preparation parameters of CLEAs were first summarized. Next, characterization of structural and catalytic properties, stability and reusability are also proposed. Finally, some important applications of this technique in: environmental protection, industrial chemistry, food industry, and pharmaceutical synthesis and delivery are introduced. Potential challenges and future research directions, such as improving cross-linking efficiency and internal mass transfer efficiency, are also presented. This implies that CLEAs provide an efficient and feasible technique to improve the properties of enzymes for use in the industry.
Collapse
Affiliation(s)
- Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Baogen Chang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Nian Shi
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Wenxing Yan
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
5
|
Wang Z, Fan C, Zheng X, Jin Z, Bei K, Zhao M, Kong H. Roles of Surfactants in Oriented Immobilization of Cellulase on Nanocarriers and Multiphase Hydrolysis System. Front Chem 2022; 10:884398. [PMID: 35402378 PMCID: PMC8983819 DOI: 10.3389/fchem.2022.884398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Surfactants, especially non-ionic surfactants, play an important role in the preparation of nanocarriers and can also promote the enzymatic hydrolysis of lignocellulose. A broad overview of the current status of surfactants on the immobilization of cellulase is provided in this review. In addition, the restricting factors in cellulase immobilization in the complex multiphase hydrolysis system are discussed, including the carrier structure characteristics, solid-solid contact obstacles, external diffusion resistance, limited recycling frequency, and nonproductive combination of enzyme active centers. Furthermore, promising prospects of cellulase-oriented immobilization are proposed, including the hydrophilic-hydrophobic interaction of surfactants and cellulase in the oil-water reaction system, the reversed micelle system of surfactants, and the possible oriented immobilization mechanism.
Collapse
Affiliation(s)
- Zhiquan Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Chunzhen Fan
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Zhan Jin
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Ke Bei
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Hainan Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
The effect of Nano-calcium carbonate on β-glucosidase immobilized by alginate and chitosan. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
7
|
Deng Y, Ouyang J, Liu H, Wang J, Zhu Y, Chen Z, Yang C, Li D, Ma K. An effective immobilization of β-glucosidases by partly cross-linking enzyme aggregates. Prep Biochem Biotechnol 2022; 52:1035-1043. [PMID: 35015605 DOI: 10.1080/10826068.2021.2024848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Enzyme immobilization provides ideal operating conditions for enzymes stabilization and sustainable recycling. In this work, as a kind of clay material, montmorillonite (MTL) was chosen for immobilizing the β-glucosidase extracted from Agrocybe aegirit. The immobilized β-glucosidase via partly cross-linking enzyme aggregates (pCLEAs) formed by self-catalysis provided biocatalysts with satisfactory thermal and pH stability. Compared to the glutaraldehyde cross-linked, the immobilized β-glucosidase (β-G-pCLEAs@MTL) exhibited significantly higher immobilization efficiency (IE) and immobilization yield (IY), which were 80.6% and 76.9%, respectively. The β-G-pCLEAs@MTL also showed better stability and preferable reusability. And the activity of the β-G-pCLEAs@MTL remained 85.0% after 5 cycles and 74.7% after 10 cycles. Therefore, the method based on the pre- crosslinking to form pCLEAs and after-immobilization can effectively improve IY and IE. In addition, MTL seems to be a good alternative carrier to immobilize other enzymes for industrial application.
Collapse
Affiliation(s)
- Yuefeng Deng
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Ouyang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Hu Liu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jianjun Wang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yihui Zhu
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ziqian Chen
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chengli Yang
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Dali Li
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kefeng Ma
- Department of Bioengineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
8
|
Luo Y, Wu Y, Wang Y, Yu L(L. Active and Robust Composite Films Based on Gelatin and Gallic Acid Integrated with Microfibrillated Cellulose. Foods 2021; 10:foods10112831. [PMID: 34829113 PMCID: PMC8619323 DOI: 10.3390/foods10112831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gelatin is a renewable, biodegradable, and inexpensive food polymer. The insufficient mechanical and functional properties of gelatin-based films (GBF) restrict their commercial application in food packaging. This work proposed a facile strategy to prepare an active and robust GBF that has the potential to be used in food packaging. METHODS A strong and active GBF was prepared based on the principle of supramolecular chemistry via the incorporation of gallic acid (GA) as an active crosslinking agent and of microfibrillated cellulose (MFC) as a reinforcing agent. RESULTS Under the appropriate concentration (1.0 wt%), MFC was evenly dispersed in a gelatin matrix to endow the film with low surface roughness and compact structure. Compared with the GF, the tensile strength and elongation at break of the resultant film reached 6.09 MPa and 213.4%, respectively, representing the corresponding improvement of 12.8% and 27.6%. Besides, a significantly improved water vapor barrier (from 3.985 × 10-8 to 3.894 × 10-8 g·m-1·Pa-1·s-1) and antioxidant activity (from 54.6% to 86.4% for ABTS radical scavenging activity; from 6.0% to 89.1% for DPPH radical scavenging activity) of GBFs were also observed after introducing the aromatic structure of GA and nano-/microfibrils in MFC. Moreover, the UV blocking performance and thermal stability of GGF and GGCFs were also enhanced. CONCLUSIONS this work paves a promising way toward facile preparation of multifunctional GBFs that have great potential to be used in fabricating active and safe food packaging materials for food preservation.
Collapse
Affiliation(s)
- Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China;
| | - Yanbei Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.)
- Correspondence:
| | - Yali Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.W.)
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
9
|
Deng Y, Ouyang J, Wang H, Yang C, Zhu Y, Wang J, Li D, Ma K. Magnetic nanoparticles prepared in natural deep eutectic solvent for enzyme immobilisation. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1954168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yuefeng Deng
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Jie Ouyang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Haofan Wang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Chengli Yang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Yihui Zhu
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Jianjun Wang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Dali Li
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Kefeng Ma
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
10
|
Doğan D, Ulu A, Sel E, Köytepe S, Ateş B. α‐Amylase Immobilization on P(HEMA‐co‐PEGMA) Hydrogels: Preparation, Characterization, and Catalytic Investigation. STARCH-STARKE 2021. [DOI: 10.1002/star.202000217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Demet Doğan
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
- Faculty of Arts and Science Department of Biology İnönü University Malatya 44280 Turkey
| | - Ahmet Ulu
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
| | - Evren Sel
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
| | - Süleyman Köytepe
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
| | - Burhan Ateş
- Faculty of Arts and Science Department of Chemistry, İnönü University Malatya 44280 Turkey
| |
Collapse
|