1
|
Zhang C, Hao L, Zhu Y, Zhang X, Zhao H, Zhang B. In vitro fermentation characteristics and modulation effects of polysaccharide fractions from Schisandra sphenanthera on intestinal microflora. Int J Biol Macromol 2025; 289:138771. [PMID: 39701254 DOI: 10.1016/j.ijbiomac.2024.138771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Schisandra Sphenanthera polysaccharides fractions (SSPs), namely SSP40, SSP60, and SSP80, were obtained by gradient precipitation with 40 %, 60 %, and 80 % (v/v) ethanol, respectively. It was found that gradient ethanol precipitation (GEP) significantly affected the physicochemical and structural characteristics of SSPs, including molecular weight, monosaccharide composition, and surface morphology. Compared to fractions SSP40 and SSP60, SSP80 was observed to have a lower molecular weight (22.58 kDa) and certain specific monosaccharide composition, such as lower glucose content and higher galactose, arabinose, rhamnose, and galacturonic acid content. Furthermore, the apparent porosity of the SSPs increased with increasing ethanol concentration in GEP. After fermentation at 37 °C for 48 h, fraction SSP80 prominently promoted the production of more short-chain fatty acids (SCFAs), increasing from an initial 1.39 ± 0.08 to 26.75 ± 0.54 mmol/L. The SSP fraction types extracted by GEP greatly affected the modulation of the intestinal microflora at different levels. The SSP80 fraction with excellent structure demonstrated the best ability to modulate the intestinal microflora by increasing the relative abundance of Bacteroides, Faecalibacterium and Dialister and decreasing the relative abundance of Escherichia-Shigella. The remarkable differences in modulating the intestinal microflora confirmed the importance of carefully selecting GEP to fraction SSPs that promote health.
Collapse
Affiliation(s)
- Chen Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lei Hao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadong Zhu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojia Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang Y, Lin X, Xia L, Xiong S, Xia B, Xie J, Lin Y, Lin L, Wu P. Progress on the Anti-Inflammatory Activity and Structure-Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024; 29:3852. [PMID: 39202931 PMCID: PMC11356930 DOI: 10.3390/molecules29163852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system's first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines' polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure-efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure-efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiulian Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
3
|
Han Y, Li L, Wei F, Zhang F, Pan Z, Wei Y, Wang L. Dandelion polysaccharides improve the emulsifying properties and antioxidant capacities of emulsions stabilized by whey protein isolate. Food Chem X 2024; 21:101218. [PMID: 38384685 PMCID: PMC10878858 DOI: 10.1016/j.fochx.2024.101218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
In this study, the effects of dandelion polysaccharide (DP) and its carboxymethylated derivative (CMDP) on the emulsifying characteristics and antioxidant capacities of emulsions stabilized by whey protein isolate (WPI) were determined. The addition of both DP and CMDP reduced the particle size and zeta potential of the emulsions. Using 1.0 % WPI and 1.0 % CMDP as emulsifier, the emulsifying activity index (EAI) and emulsifying stability index (ESI) were 32.61 ± 0.11 m2/g and 42.58 ± 0.13 min, respectively, which were higher than the corresponding values of 27.19 ± 0.18 m2/g and 36.17 ± 0.15 min with 1.0 % WPI and 1.0 % DP. Fourier-transform infrared spectroscopy (FT-IR), far-ultraviolet circular dichroism (Far-UV CD), and fluorescence (FS) spectra analyses confirmed that the α-helix and β-sheet structures in WPI-polysaccharide complexes were reduced compared with those in pure WPI, whereas the random-coil content was enhanced by the addition of polysaccharides. Moreover, DP and CMDP effectively improved the antioxidant capacity and inhibited oxidation of the emulsions during storage. Therefore, DP and its carboxymethylated derivative exhibit great potential to be applied in the emulsion-based delivery system.
Collapse
Affiliation(s)
- Yujun Han
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lianyu Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fangming Wei
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fengjie Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhaoyang Pan
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yanhui Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Libo Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Chen S, Qin F, Yang Y, Zhao Y, Xiao S, Li W, Akihisa T, Jantrawut P, Ji J, Zhang J. Extraction, purification, structural characterization, and bioactivities of the genus Schisandra polysaccharides: A review. Int J Biol Macromol 2024; 262:130257. [PMID: 38423904 DOI: 10.1016/j.ijbiomac.2024.130257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The genus Schisandra, a member of the Magnoliaceae family, is a well-known tonic traditional Chinese medicine with a long history of traditional medicinal and functional food used in China. Polysaccharides are one of its main active constituents, which have a wide range of bioactivities, such as anti-inflammatory, anti-tumor, neuroprotection, anti-diabetes, hepatoprotection, immunomodulation, and anti-fatigue. In this paper, we review the extraction, isolation, purification, structural characterization, bioactivities, as well as structure-activity relationship of polysaccharides from the genus Schisandra. In conclusion, we hope that this review could provide reference for the subsequent research on structural, bioactivities, development and application of the genus Schisandra polysaccharides.
Collapse
Affiliation(s)
- Shujun Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Fang Qin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Ying Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Yu Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Shuyun Xiao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Wei Li
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Pensak Jantrawut
- Faculty of Pharmacy, Ching Mai University, Ching Mai, 50200, Thailand
| | - Jingyu Ji
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China.
| |
Collapse
|
5
|
Liu T, Ren Q, Wang S, Gao J, Shen C, Zhang S, Wang Y, Guan F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure-Activity Relationship. Molecules 2023; 28:6073. [PMID: 37630326 PMCID: PMC10457902 DOI: 10.3390/molecules28166073] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Natural polysaccharides are macromolecular substances with great potential owing to their wide biological activity and low toxicity. However, not all polysaccharides have significant pharmacodynamic activity; hence, appropriate chemical modification methods can be selected according to the unique structural characteristics of polysaccharides to assist in enhancing and promoting the presentation of their biological activities. This review summarizes research progress on modified polysaccharides, including common chemical modification methods, the change in biological activity following modification, and the factors affecting the biological activity of chemically modified polysaccharides. At the same time, the difficulties and challenges associated with the structural modification of natural polysaccharides are also outlined in this review. Thus, research on polysaccharide structure modification is critical for improving the development and utilization of sugar products.
Collapse
Affiliation(s)
- Tianbo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Qianqian Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Jianing Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
6
|
Liu P, Zhang H, Zhu L, Qu S, Zhang Y, Zhang X, Wang X. Antioxidant and DNA protecting activity of carboxymethylated polysaccharides from Cortex periplocae. Int J Biol Macromol 2023; 242:124860. [PMID: 37187420 DOI: 10.1016/j.ijbiomac.2023.124860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
In this study, polysaccharide from Cortex periplocae (CPP) was modified and three carboxymethylation modification polysaccharides (CPPCs) were obtained, and their physicochemical characteristics and in vitro biological activities were investigated. Based on the ultraviolet-visible (UV-Vis) scan, CPPs (CPP and CPPCs) did not contain nucleic acids or proteins. However, the Fourier transform infrared (FTIR) spectrum showed a new absorption peak around 1731 cm-1. In addition, three absorption peaks near 1606, 1421, and 1326 cm-1 were enhanced after carboxymethylation modification. Based on UV-Vis scan, the maximum absorption wavelength of Congo Red + CPPs exhibited a red-shift compared to Congo Red meant CPPs had a triple helix conformation. Scanning electron microscopy (SEM) indicated that CPPCs exhibited more fragments and non-uniform-sized filiform than CPP. Thermal analysis showed that CPPCs degraded between the temperature 240 °C-350 °C and CPP in the 270 °C-350 °C. In addition, the antioxidant and DNA protecting activities of CPPCs were significantly enhanced compared to CPP. Overall, this study demonstrated the potential applications of CPPs in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Pengfei Liu
- Flavor and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Haonan Zhang
- Flavor and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Lifei Zhu
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Shuhao Qu
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yifei Zhang
- Flavor and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoping Zhang
- Flavor and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xiaoli Wang
- Flavor and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers (Basel) 2022; 14:polym14194161. [PMID: 36236108 PMCID: PMC9570684 DOI: 10.3390/polym14194161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.
Collapse
|
8
|
Xue H, Li P, Bian J, Gao Y, Sang Y, Tan J. Extraction, purification, structure, modification, and biological activity of traditional Chinese medicine polysaccharides: A review. Front Nutr 2022; 9:1005181. [PMID: 36159471 PMCID: PMC9505017 DOI: 10.3389/fnut.2022.1005181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medicines (TCM), as the unique natural resource, are rich in polysaccharides, polyphenols, proteins, amino acid, fats, vitamins, and other components. Hence, TCM have high medical and nutritional values. Polysaccharides are one of the most important active components in TCM. Growing reports have indicated that TCM polysaccharides (TCMPs) have various biological activities, such as antioxidant, anti-aging, immunomodulatory, hypoglycemic, hypolipidemic, anti-tumor, anti-inflammatory, and other activities. Hence, the research progresses and future prospects of TCMPs must be systematically reviewed to promote their better understanding. The aim of this review is to provide comprehensive and systematic recombinant information on the extraction, purification, structure, chemical modification, biological activities, and potential mechanism of TCMPs to support their therapeutic effects and health functions. The findings provide new valuable insights and theoretical basis for future research and development of TCMPs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Pengcheng Li
- College of Food Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiayue Bian
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| |
Collapse
|