1
|
Konappa N, Patil RH, Kariyappa AS, Krishnamurthy S, Ramachandrappa NS, Krishnappa R, Chowdappa S. Green synthesis of silver nanoparticles using Amomum nilgiricum leaf extracts: preparation, physicochemical characterization and ameliorative effect against human cancer cell lines. Cytotechnology 2025; 77:16. [PMID: 39669689 PMCID: PMC11631834 DOI: 10.1007/s10616-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
The present study to production of silver nanoparticles (AgNPs) by leaf extracts of A. nilgiricum and to evaluate the activity of anticancer by using AgNPs against cancer cell lines such as MCF-7, HEPG2, H9C2, HEK293 and H1975. The synthesized AgNPs were characterized by using UV-Vis spectroscopy, EDS, FT-IR, XRD, DLS, SEM and HRTEM with SAED patterns. The surface plasmon resonance (SPR) of AgNPs formed a peak centered at 427 nm by UV-Vis analysis. FTIR analysis reveals that existence of functional groups subjected to silver ions reduction to metallic silver. Crystalline form of the AgNPs was assessed by XRD analysis, four spectral peaks at 111, 200, 220, and 311 were formed and zeta potential peak was found at 28.5 mV indicating the higher stability. The size average diameter of the AgNPs was between 27 and 30 nm by TEM and SEM analysis was reveals the morphology of AgNPs as elongated, irregular and aggregated and some particles are spherical. EDX analysis confirmed the elemental composition of AgNPs with 81.43% Ag. The average diameter of AgNPs was found 21.49 nm in diameter and width was about 12.01 nm by DLS analysis. Cytotoxicity of AgNPs was investigated by using MTT, SRB assay and comet assay was performed as a genotoxicity. The results revealed that AgNPs decreased the viability of cancer cells in a concentration dependent pattern (50 to 350 µg/ml). The influence of AgNPs on cell cycle stop was studied on H1975, HEP-G2 and MCF-7 cells and found that AgNPs could induce sub G0 cell cycle arrest. The AgNPs was also induced DNA fragmentation confirms the DNA damage in nanoparticles treated cell lines. The anticancer action of nanoparticles was analyzed using proapoptotic and antiapoptotic caspase 8 and caspase 3 mRNA expression levels. Finally the results suggested that AgNPs is an effective anticancer agent which induces apoptosis in H1975, HEP-G2 and MCF-7 cells. Based on our studies, further identification of the major compounds of leaf extracts is acceptable. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00674-7.
Collapse
Affiliation(s)
- Narasimhamurthy Konappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| | - Rajeshwari H. Patil
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| | - Anupama S. Kariyappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| | - Soumya Krishnamurthy
- Department of Microbiology, Field Marshal K. M. Cariappa College, A Constituent College of Mangalore University, Madikeri, Karnataka 571201 India
| | | | - Rahul Krishnappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Jnanabharathi Campus, Bangalore University, Bengaluru, Karnataka 560 056 India
| |
Collapse
|
2
|
Wang D, Ke H, Wang H, Shen J, Jin Y, Lu B, Wang B, Li S, Li Y, Im WT, Siddiqi MZ, Zhu H. Green Synthesis of Silver Nanoparticles (CM-AgNPs) from the Root of Chuanminshen for Improving the Cytotoxicity Effect in Cancer Cells with Antibacterial and Antioxidant Activities. Molecules 2024; 29:5682. [PMID: 39683843 DOI: 10.3390/molecules29235682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The unique properties of silver nanoparticles (AgNPs), such as size, surface charge, and the ability to release silver ions, contribute to DNA damage, inducing of oxidative stress, and apoptosis in cancer cells. Thus, the potential application of AgNPs in the field of biomedicine, and cancer therapy are rapidly increasing day by day. Therefore, in this study, AgNPs were synthesized by extract of Chuanminshen violaceum, and then the synthesized CM-AgNPs were fully characterized. The biological activity of CM-AgNPs was investigated for antibacterial, antioxidant, and anticancer activities. The cytotoxic activity of CM-AgNPs was tested for various kinds of cancer cells including MKN45 gastric cancer cells, HCT116 human colon cancer cells, A549 human lung cancer cells, and HepG2 liver cancer cells. Among these cancer cells, the induced apoptosis activity of CM-AgNPs on HCT116 cancer cells was better and was used for further investigation. Besides, the CM-AgNPs exhibited great antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) with 50% free radical scavenging activity, and CM-AgNPs also showed a significant antibacterial activity against Escherichia coli and Staphylococcus aureus. Thus, our pilot data demonstrated that the green synthesis of CM-AgNPs would be considered a good candidate for the treatment of HCT116 cancer cells, with its strong antioxidant activity and antibacterial effects.
Collapse
Affiliation(s)
- Dandan Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Haijing Ke
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongtao Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jingyu Shen
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yan Jin
- School of Life Science, Nantong University, Nantong 226019, China
| | - Bo Lu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bingju Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shuang Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yao Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Wan Taek Im
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si 17579, Gyeonggi-do, Republic of Korea
| | - Muhammad Zubair Siddiqi
- Department of Biotechnology, Hankyong National University, 327 Jungang-ro, Anseong-si 17579, Gyeonggi-do, Republic of Korea
| | - Haibo Zhu
- School of Public Health and Management, Binzhou Medical University, Yantai 264005, China
| |
Collapse
|
3
|
Das P, Ashraf GJ, Baishya T, Dua TK, Paul P, Nandi G, Dutta A, Limbu D, Kumar A, Adhikari MD, Dewanjee S, Sahu R. Formulation of silver nanoparticles using Duabanga grandiflora leaf extract and evaluation of their versatile therapeutic applications. Bioprocess Biosyst Eng 2024; 47:1139-1150. [PMID: 38421395 DOI: 10.1007/s00449-024-02975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
The current research focused on the green synthesis of silver nanoparticles (AgNPs) using Duabanga grandiflora leaf extract. The green synthesis of AgNPs was confirmed by the surface plasmon resonance band at 453 nm in a UV-Visible analysis. The formulated AgNPs had a diameter of around 99.72 nm with a spherical shape. Fourier transform infrared (FTIR) spectrum revealed the bio-reducing potential of phytochemicals present in D. grandiflora, which fundamentally influenced the synthesis of AgNPs. Zeta potential, dynamic light scattering (DLS), scanning electron microscopic (SEM), energy-dispersive X-ray spectroscopic (EDX), X-ray diffraction (XRD), and transmission electron microscopic (TEM) analyses were executed to reveal the physicochemical attributes of the AgNPs. The AgNPs were further investigated for their antioxidant, antidiabetic, anticancer, and antibacterial potential. The DPPH free radical assay revealed the potential radical scavenging capacity (IC50 = 76.73 μg/ml) of green synthesized AgNPs. α-Amylase inhibitory assay displayed significant inhibitory potential (IC50 = 162.11 μg/ml) of this starch-breaking enzyme by AgNPs, revealing the antidiabetic potential of AgNPs. AgNPs exhibited potential cytotoxic activity (IC50 = 244.57 µg/ml) against malignant human kidney cells. In addition, AgNPs showed outstanding antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. Interestingly, AgNPs showed cytotoxic and antimicrobial activities at much higher concentrations than radical scavenging and α-amylase inhibitory concentrations. Thus, our finding elaborated the scope of green synthesized AgNPs for diverse therapeutic applications (dose-dependent) for further clinical translation.
Collapse
Affiliation(s)
- Priya Das
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Gouhar Jahan Ashraf
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Tania Baishya
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, 734013, India
- Department of Tea Science, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Ankita Dutta
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Divya Limbu
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
4
|
Eshaghi Ghalibaf MH, Taghavi zadeh Yazdi ME, Mansourian M, Mohammadian Roshan N, Boskabady MH. Evaluation of the protective effect of Curcuma longa and PPARγ agonist, pioglitazone on paraquat-induced lung injury in rats. Immun Inflamm Dis 2024; 12:e70001. [PMID: 39172009 PMCID: PMC11340013 DOI: 10.1002/iid3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The inhalation of paraquat (PQ), one of the most widely used herbicides in the world, can result in lung injury. Curcuma longa (Cl) has long history in traditional and folk medicine for the treatment of a wide range of disorders including respiratory diseases. AIM The aim of the present work was to evaluate the preventive effect of Cl on inhaled PQ-induced lung injury in rats. METHODS Male Wistar rats were divided into 8 groups (n = 7), one group exposed to saline (control) and other groups exposed to PQ aerosol. Saline (PQ), Cl extract, (two doses), curcumin (Cu), pioglitazone (Pio), and the combination of Cl-L + Pio and dexamethasone (Dex) were administered during the exposure period to PQ. Total and differential white blood cell (WBC) counts, oxidant and antioxidant indicators in the bronchoalveolar lavage (BALF), interleukin (IL)-10, and tumor necrosis alpha (TNF-α) levels in the lung tissues, lung histologic lesions score, and air way responsiveness to methacholine were evaluated. RESULTS WBC counts (Total and differential), malondialdehyde level, tracheal responsiveness (TR), IL-10, TNF-α and histopathological changes of the lung were markedly elevated but total thiol content and the activities of catalase and superoxide dismutase were decreased in the BALF in the PQ group. Both doses of Cl, Cu, Pio, Cl-L + Pio, and Dex markedly improved all measured variables in comparison with the PQ group. CONCLUSION CI, Pio, and Cl-L + Pio improved PQ-induced lung inflammation and oxidative damage comparable with the effects of Dex.
Collapse
Affiliation(s)
- Mohammad Hossein Eshaghi Ghalibaf
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Mona Mansourian
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Nema Mohammadian Roshan
- Department of Pathology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
5
|
Khan S, Rauf A, Aljohani ASM, Al-Awthan YS, Ahmad Z, Bahattab OS, Khan S, Saadiq M, Khan SA, Thiruvengadam R, Thiruvengadam M. Green synthesis of silver and gold nanoparticles in Callistemon viminalis extracts and their antimicrobial activities. Bioprocess Biosyst Eng 2024; 47:1197-1211. [PMID: 38512495 DOI: 10.1007/s00449-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Omar S Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Shehla Khan
- Department, of Biotechnology, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Muhammad Saadiq
- Department of Chemistry, Bacha Khan University, Charsadda, KP, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
6
|
Es-Haghi A, Amiri MS, Taghavizadeh Yazdi ME. Ferula latisecta gels for synthesis of zinc/silver binary nanoparticles: antibacterial effects against gram-negative and gram-positive bacteria and physicochemical characteristics. BMC Biotechnol 2024; 24:51. [PMID: 39090578 PMCID: PMC11292920 DOI: 10.1186/s12896-024-00878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | | |
Collapse
|
7
|
Es-Haghi A, Soltani M, Tabrizi MH, Noghondar MK, Khatamian N, Naeeni NB, Kharaghani M. The effect of EGCG/tyrosol-loaded chitosan/lecithin nanoparticles on hyperglycemia and hepatic function in streptozotocin-induced diabetic mice. Int J Biol Macromol 2024; 267:131496. [PMID: 38626839 DOI: 10.1016/j.ijbiomac.2024.131496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
We aimed to study the potential of epigallocatechin-3-gallate/tyrosol-loaded chitosan/lecithin nanoparticles (EGCG/tyrosol-loaded C/L NPs) in streptozotocin-induced type 2 diabetes mellitus (T2DM) mice. The EGCG/tyrosol-loaded C/L NPs were created using the self-assembly method. Dynamic light scattering, Field Emission Scanning Electron Microscopy, and Fourier transform infrared spectroscopy were utilized to characterize the nanoparticle. Furthermore, in streptozotocin-induced T2DM mice, treatment with EGCG/tyrosol-loaded C/L NPs on fasting blood sugar levels, the expression of PCK1 and G6Pase, and IL-1β in the liver, liver glutathione content, nanoparticle toxicity on liver cells, and liver reactive oxygen species were measured. Our findings showed that EGCG/tyrosol-loaded C/L NPs had a uniform size distribution, and encapsulation efficiencies of 84 % and 89.1 % for tyrosol and EGCG, respectively. The nanoparticles inhibited PANC-1 cells without affecting normal HFF cells. Furthermore, EGCG/tyrosol-loaded C/L NP treatment reduced fasting blood sugar levels, elevated hepatic glutathione levels, enhanced liver cell viability, and decreased reactive oxygen species levels in diabetic mice. The expression of gluconeogenesis-related genes (PCK1 and G6 Pase) and the inflammatory gene IL-1β was downregulated by EGCG/tyrosol-loaded C/L NPs. In conclusion, the EGCG/tyrosol-loaded C/L NPs reduced hyperglycemia, oxidative stress, and inflammation in diabetic mice. These findings suggest that EGCG/tyrosol-loaded C/L NPs could be a promising therapeutic option for type 2 diabetes management.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Maryam Karimi Noghondar
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Niloufar Khatamian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Matin Kharaghani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
8
|
Bagherian MS, Zargham P, Zarharan H, Bakhtiari M, Mortezaee Ghariyeh Ali N, Yousefi E, Es-Haghi A, Taghavizadeh Yazdi ME. Antimicrobial and antibiofilm properties of selenium-chitosan-loaded salicylic acid nanoparticles for the removal of emerging contaminants from bacterial pathogens. World J Microbiol Biotechnol 2024; 40:86. [PMID: 38319399 DOI: 10.1007/s11274-024-03917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In this study salicylic acid loaded containing selenium nanoparticles was synthesized and called SA@CS-Se NPs. the chitosan was used as a natural stabilizer during the synthesis process. Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (XRD), field emission electron microscopy (FESEM), and transmission electron microscopy (TEM) were used to describe the physicochemical characteristics of the SA@CS-Se NPs. The PXRD examination revealed that the grain size was around 31.9 nm. TEM and FESEM techniques showed the spherical shape of SA@CS-Se NPs. Additionally, the analysis of experiments showed that SA@CS-Se NPs have antibacterial properties against 4 ATCC bacteria; So that with concentrations of 75, 125, 150, and 100 µg/ml, it inhibited the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus respectively. Also, at the concentration of 300 µg/ml, it removed 22.76, 23.2, 10.62, and 18.08% biofilm caused by E. coli, P. aeruginosa, B. subtilis, and S. aureus respectively. The synthesized SA@CS-Se NPs may find an application to reduce the unsafe influence of pathogenic microbes and, hence, eliminate microbial contamination.
Collapse
Affiliation(s)
| | - Parisa Zargham
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hoda Zarharan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maleknaz Bakhtiari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Yousefi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Department of Pharmacology, Medicinal Plants Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Abdel-Aty AM, Barakat AZ, Bassuiny RI, Mohamed SA. Statistical optimization, characterization, antioxidant and antibacterial properties of silver nanoparticle biosynthesized by saw palmetto seed phenolic extract. Sci Rep 2023; 13:15605. [PMID: 37731031 PMCID: PMC10511706 DOI: 10.1038/s41598-023-42675-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
On the global market, silver nanoparticles (Ag-NPs) are in high demand for their various applications in biomedicine, material engineering, and consumer products. This study highlighted the biosynthesis of the Ag-NPs using saw palmetto seed phenolic extract (SPS-phenolic extract), which contained vital antioxidant-phenolic compounds. Herein, central composite statistical design, response surface methodology, and sixteen runs were conducted to optimize Ag-NPs biosynthesis conditions for maximizing the production of Ag-NPs and their phenolic content. The best-produced SPS-Ag-NPs showed a surface plasmon resonance peak at 460 nm and nano-spherical sizes ranging from 11.17 to 38.32 nm using the UV spectrum analysis and TEM images, respectively. The produced SPS-Ag-NPs displayed a high negative zeta-potential value (- 32.8 mV) demonstrating their high stability. The FTIR analysis demonstrated that SPS-phenolic compounds were involved in sliver bio-reduction and in stabilizing, capping, and preventing Ag-NP aggregation. The thermogravimetric investigation revealed that the produced SPS-Ag-NPs have remarkable thermal stability. The produced SPS-Ag-NP exceeded total antioxidant activity (13.8 µmol Trolox equivalent) more than the SPS-phenolic extract (12.0 µmol Trolox equivalent). The biosynthesized SPS-Ag-NPs exhibited noticeably better antibacterial activity against multidrug-resistant Gram-negative E. coli and Gram-positive S. aureus compared to SPS-phenolic extract. Hence, the bio-synthesized SPS-Ag-NPs demonstrated great potential for use in biomedical and antimicrobial applications.
Collapse
Affiliation(s)
- Azza M Abdel-Aty
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amal Z Barakat
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
10
|
Doghish AS, Moustafa HAM, Elballal MS, Sallam AAM, El-Dakroury WA, Abdel Mageed SS, Elesawy AE, Abdelmaksoud NM, Shahin RK, Midan HM, Elrebehy MA, Elazazy O, Nassar YA, Elazab IM, Elballal AS, Elballal MS, Abulsoud AI. The potential role of miRNAs in the pathogenesis of testicular germ cell tumors - A Focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154611. [PMID: 37315401 DOI: 10.1016/j.prp.2023.154611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Testicular germ cell tumors (TGCTs) are the most common testicular neoplasms in adolescents and young males. Understanding the genetic basis of TGCTs represents a growing need to cope with the increased incidence of these neoplasms. Although the cure rates have been comparatively increased, investigation of mechanisms underlying the incidence, progression, metastasis, recurrence, and therapy resistance is still necessary. Early diagnosis and non-compulsory clinical therapeutic agents without long-term side effects are now required to reduce the cancer burden, especially in the younger age groups. MicroRNAs (miRNAs) control an extensive range of cellular functions and exhibit a pivotal action in the development and spreading of TGCTs. Because of their dysregulation and disruption in function, miRNAs have been linked to the malignant pathophysiology of TGCTs by influencing many cellular functions involved in the disease. These biological processes include increased invasive and proliferative perspective, cell cycle dysregulation, apoptosis disruption, stimulation of angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and resistance to certain treatments. Herein, we present an up-to-date review of the biogenesis of miRNAs, miRNA regulatory mechanisms, clinical challenges, and therapeutic interventions of TGCTs, and role of nanoparticles in the treatment of TGCTs.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ibrahim M Elazab
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Ahmed S Elballal
- Department of Dentistry, Medical Administration, University of Sadat, City Menoufia 32897, Egypt
| | | | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
11
|
Zarharan H, Bagherian M, Shah Rokhi A, Ramezani Bajgiran R, Yousefi E, Heravian P, Niazi Khazrabig M, Es-haghi A, Taghavizadeh Yazdi ME. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
12
|
Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Hashemzadeh A, Mohammadzadeh V, Alavi F, Mottaghipisheh J, Sarafraz Ardakani MR, Taghavizadeh Yazdi ME. Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines. J Funct Biomater 2023; 14:332. [PMID: 37504827 PMCID: PMC10381807 DOI: 10.3390/jfb14070332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, a novel method using Ferula gummosa gums as a capping agent was used to synthesize the nanoceria for the first time. The method was economical and performed at room temperature. Furthermore, it was coated with gold (Au/nanoceria) and fully characterized using X-ray powder diffraction (XRD), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential (ζ potential). The crystallite size obtained from the results was 28.09 nm for Au/nanoceria. The energy-dispersive X-ray spectroscopy (EDX) analysis of Au/nanoceria revealed the compositional constituents of the product, which display the purity of the Au/nanoceria. The cell toxicity properties of the non-doped and Au-coated nanoceria were identified by a MTT analysis on a breast cancer cell line (MCF7). Additionally, human foreskin fibroblast cells (HFF) were used as a normal cell line. The cytotoxicity results indicated that the toxicological effect of Au/nanoceria on cancer cells was significant while having little toxic effect on normal cells. The toxicity effect of nanoceria clearly shows the dependence on dose and time, so, with increasing the dose of Au/nanoceria, the death of cancer cells also increases.
Collapse
Affiliation(s)
| | | | | | - Mohammad Mashreghi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91778, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Alireza Hashemzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Fariba Alavi
- Department of Biology, Payame Noor University, Tehran 19395-4697, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
13
|
Khalil Abad MH, Nadaf M, Taghavizadeh Yazdi ME. Biosynthesis of ZnO.Ag 2O 3 using aqueous extract of Haplophyllum obtusifolium: Characterization and cell toxicity activity against liver carcinoma cells. MICRO & NANO LETTERS 2023; 18. [DOI: 10.1049/mna2.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe zinc oxide‐silver oxide nanocomposite (ZnO.Ag2O3 particles) was prepared by using an aqueous plant extract of Haplophyllum obtusifolium for the first time. Powder X‐ray diffraction (PXRD), Fourier transforms spectroscopy (FTIR), field emission microscopy (FESEM), energy dispersive X‐ray analysis (EDX), and transmission electron microscopy (TEM) were applied to analyze the structure, functional groups, morphology, and purity of the prepared nanocomposite. PXRD revealed the formulation of ZnO.Ag2O3 for the particles. The investigation of functional groups has demonstrated the presence of some carbonated impurities along with absorbed water in the composition of the ZnO.Ag2O3 nanocomposite. Morphologically, particles have formed a petal‐like shape with different sizes. The EDX analysis also confirmed the composition of the prepared sample and the presence of 4.78% silver in the formula. Additionally, the TEM analysis revealed spherical and rectangular shapes with a particle size of 80.43 ± 46.73 nm. Moreover, the ZnO.Ag2O3 particles were used against cancer cells, which has shown synthesized NCs have a toxic effect against liver cancer cells in a concentration and time‐dependent manner.
Collapse
Affiliation(s)
| | - Mohabat Nadaf
- Department of Biology Payame Noor University Tehran Iran
| | | |
Collapse
|
14
|
Hassan Afandy H, Sabir DK, Aziz SB. Antibacterial Activity of the Green Synthesized Plasmonic Silver Nanoparticles with Crystalline Structure against Gram-Positive and Gram-Negative Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1327. [PMID: 37110913 PMCID: PMC10141010 DOI: 10.3390/nano13081327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Nanoparticles (NPs) have attracted considerable interest in numerous fields, including agriculture, medicine, the environment, and engineering. The use of green synthesis techniques that employ natural reducing agents to reduce metal ions and form NPs is of particular interest. This study investigates the use of green tea (GT) extract as a reducing agent for the synthesis of silver NPs (Ag NPs) with crystalline structure. Several analytical techniques, including UV-visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD), were used to characterize the synthesized Ag NPs. The results of UV-vis revealed that the biosynthesized Ag NPs exhibited an absorbance plasmonic resonance peak at 470 nm. According to FTIR analyses, the attachment of Ag NPs to polyphenolic compounds resulted in a decrease in intensity and band shifting. In addition, the XRD analysis confirmed the presence of sharp crystalline peaks associated with face-centered cubic Ag NPs. Moreover, HR-TEM revealed that the synthesized particles were spherical and 50 nm in size on average. The Ag NPs demonstrated promising antimicrobial activity against Gram-positive (GP) bacteria, Brevibacterium luteolum and Staphylococcus aureus, and Gram-negative (GN) bacteria, Pseudomonas aeruginosa and Escherichia coli, with a minimal inhibitory concentration (MIC) of 6.4 mg/mL for GN and 12.8 mg/mL for GP. Overall, these findings suggest that Ag NPs can be utilized as effective antimicrobial agents.
Collapse
Affiliation(s)
- Hemn Hassan Afandy
- Department of Physics, College of Science, Charmo University, Chamchamal 46023, Kurdistan Region, Iraq
| | - Dana Khdr Sabir
- Department of Biology, Charmo Center for Research, Training and Consultancy, Charmo University, Chamchamal 46023, Kurdistan Region, Iraq
- Department of Medical Laboratory Sciences, College of Science, Charmo University, Chamchamal 46023, Kurdistan Region, Iraq
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional, Iraq
- Development Center for Research and Training (DCRT), University of Human Development, Sulaymaniyah 46001, Kurdistan Regional, Iraq
| |
Collapse
|
15
|
Sumra AA, Zain M, Saleem T, Yasin G, Azhar MF, Zaman QU, Budhram-Mahadeo V, Ali HM. Biogenic Synthesis, Characterization, and In Vitro Biological Evaluation of Silver Nanoparticles Using Cleome brachycarpa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1578. [PMID: 37050205 PMCID: PMC10097212 DOI: 10.3390/plants12071578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The therapeutical attributes of silver nanoparticles (Ag-NPs) in both conditions (in vitro and in vivo) have been investigated using different plants. This study focused on the green chemistry approach that was employed to optimize the synthesis of silver nanoparticles (AgNPs) using Cleome brachycarpa aqueous extract as a reducing and stabilizing agent. The characterization of obtained CB-AgNPs was undertaken using UV-visible spectroscopy, Atomic-force microscopy (AFM), Fourier-Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis. Results suggest that CB-AgNPs synthesized via stirring produced small-sized particles with more even distribution. The synthesized silver nanoparticles were spherical with a 20 to 80 nm size range. In vitro studies were used to analyze antioxidant, antidiabetic, and cytotoxic potential under different conditions. The results also indicated that CB-AgNPs may have significant potential as an antidiabetic in low concentrations, but also exhibited potential antioxidant activity at different concentrations. Moreover, the anticancer activity against the breast cell line (MCF-7) with IC50 reached up to 18 μg/mL. These results suggest that green synthesized silver nanoparticles provide a promising phytomedicine for the management of diabetes and cancer therapeutics.
Collapse
Affiliation(s)
- Ayesha Ahmed Sumra
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (A.A.S.); (T.S.)
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan 60000, Pakistan;
| | - Maryam Zain
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan 60000, Pakistan;
| | - Tahira Saleem
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (A.A.S.); (T.S.)
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakriya University Multan, Multan 60000, Pakistan;
| | - Muhammad Farooq Azhar
- Department of Forestry and Range Management, Bahauddin Zakriya University Multan, Multan 60000, Pakistan;
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan;
| | | | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
16
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
17
|
Abdelmoneim HM, Taha TH, Elnouby MS, AbuShady HM. Extracellular biosynthesis, OVAT/statistical optimization, and characterization of silver nanoparticles (AgNPs) using Leclercia adecarboxylata THHM and its antimicrobial activity. Microb Cell Fact 2022; 21:277. [PMID: 36581886 PMCID: PMC9801658 DOI: 10.1186/s12934-022-01998-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The biosynthesis of silver nanoparticles (AgNPs) is an area of interest for researchers due to its eco-friendly approach. The use of biological approaches provides a clean and promising alternative process for the synthesis of AgNPs. We used for the first time the supernatant of Leclercia adecarboxylata THHM under optimal conditions to produce AgNPs with an acceptable antimicrobial activity against important clinical pathogens. RESULTS In this study, soil bacteria from different locations were isolated and screened for their potential to form AgNPs. The selected isolate, which was found to have the ability to biosynthesize AgNPs, was identified by molecular methods as Leclercia adecarboxylata THHM and its 16S rRNA gene was deposited in GenBank under the accession number OK605882. Different conditions were screened for the maximum production of AgNPs by the selected bacteria. Five independent variables were investigated through optimizations using one variable at a time (OVAT) and the Plackett-Burman experimental design (PBD). The overall optimal parameters for enhancing the biosynthesis of AgNPs using the supernatant of Leclercia adecarboxylata THHM as a novel organism were at an incubation time of 72.0 h, a concentration of 1.5 mM silver nitrate, a temperature of 40.0 °C, a pH of 7.0, and a supernatant concentration of 30% (v/v) under illumination conditions. The biosynthesized AgNPs have been characterized by UV-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The biosynthesized AgNPs showed an absorption peak at 423 nm, spherical shape, and an average particle size of 17.43 nm. FTIR shows the bands at 3321.50, 2160.15, and 1636.33 cm-1 corresponding to the binding vibrations of amine, alkyne nitrile, and primary amine bands, respectively. The biosynthesized AgNPs showed antimicrobial activity against a variety of microbial pathogens of medical importance. Using resazurin-based microtiter dilution, the minimum inhibitory concentration (MIC) values for AgNPs were 500 µg/mL for all microbial pathogens except for Klebsiella pneumoniae ATCC13883, which has a higher MIC value of 1000 µg/mL. CONCLUSIONS The obtained data revealed the successful green production of AgNPs using the supernatant of Leclercia adecarboxylata THHM that can be effectively used as an antimicrobial agent against most human pathogenic microbes.
Collapse
Affiliation(s)
- Hany M. Abdelmoneim
- grid.7269.a0000 0004 0621 1570Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Tarek H. Taha
- grid.420020.40000 0004 0483 2576Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934 Egypt
| | - Mohamed S. Elnouby
- grid.420020.40000 0004 0483 2576Composite and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934 Egypt
| | - Hala Mohamed AbuShady
- grid.7269.a0000 0004 0621 1570Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Abdel-Ghafar RY, Sehim AE, Hamza ZK, El-Nekeety AA, Abdel-Wahhab MA. Evaluation of the Antimicrobial, Antioxidant, and Cytotoxicity Against MCF-7 Breast Cell Lines of Biosynthesized Vanadium Nanoparticles. BIONANOSCIENCE 2022; 12:1097-1105. [DOI: 10.1007/s12668-022-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
|
19
|
Alirezaei M, Ghobeh M, Es-haghi A. Poly(lactic-co-glycolic acid)(PLGA)-based nanoparticles modified with chitosan-folic acid to delivery of Artemisia vulgaris L. essential oil to HT-29 cancer cells. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Alabyadh T, Albadri R, Es-haghi A, Yazdi MET, Ajalli N, Rahdar A, Thakur VK. ZnO/CeO 2 Nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of Cellular Toxicity toward Liver Cancer Cells. J Funct Biomater 2022; 13:jfb13030139. [PMID: 36135574 PMCID: PMC9503907 DOI: 10.3390/jfb13030139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The Zinc-doped cerium oxide nanocomposite (ZnO/CeO2 NC) was synthesized using a metal-organic framework as a precursor through the combustion method. It was characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), field emission electron microscopy (FESEM), energy dispersive analysis (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS), and ξ-potential. The PXRD demonstrated the successful synthesis of ZnO/CeO2 NC with a crystallite size of 31.9 nm. FESEM and TEM images displayed hexagonal and spherical morphologies, and the solid-phase size was 65.03 ± 30.86 nm for ZnO/CeO2 NCs. DLS, TEM, and FESEM showed that the NCs have a high tendency for agglomeration/aggregation in both aqueous media and solid phase. The anticancer attributes of ZnO/CeO2 NC were investigated against Liver cancer cells (HepG2), which showed inhibition of cancer cell growth on a concentration-dependent gradient. The cell toxicity effects of ZnO/CeO2 nanocomposites were also studied toward NIH-3T3, in which the data displayed the lower toxicity of NC compared to the HepG2 cell line.
Collapse
Affiliation(s)
- Toqa Alabyadh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran
| | - Riyadh Albadri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran
| | - Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad 91871-47578, Iran
- Correspondence: (A.E.-h.); (M.E.T.Y.); (A.R.); (V.K.T.)
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Correspondence: (A.E.-h.); (M.E.T.Y.); (A.R.); (V.K.T.)
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.E.-h.); (M.E.T.Y.); (A.R.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
- Correspondence: (A.E.-h.); (M.E.T.Y.); (A.R.); (V.K.T.)
| |
Collapse
|
21
|
An ultra-sensitive smartphone-integrated digital colorimetric and electrochemical Camellia sinensis polyphenols encapsulated CuO nanoparticles-based ammonia biosensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Timotina M, Aghajanyan A, Schubert R, Trchounian K, Gabrielyan L. Biosynthesis of silver nanoparticles using extracts of Stevia rebaudiana and evaluation of antibacterial activity. World J Microbiol Biotechnol 2022; 38:196. [PMID: 35989355 DOI: 10.1007/s11274-022-03393-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
The present study reveals a simple, non-toxic and eco-friendly method for the "green" synthesis of Ag-NPs using hydroponic and soil medicinal plant Stevia rebaudiana extracts, the characterization of biosynthesized nanoparticles, as well as the evaluation of their antibacterial activity. Transmission electronic microscopy (TEM) and Dynamic Light Scattering (DLS) analysis confirmed that biosynthesized Ag-NPs are in the nano-size range (50-100 nm) and have irregular morphology. Biogenic NPs demonstrate antibacterial activity against Escherichia coli BW 25,113, Enterococcus hirae ATCC 9790, and Staphylococcus aureus MDC 5233. The results showed a more pronounced antibacterial effect on E. coli growth rate, in comparison with Gram-positive bacteria, which is linked to the differences in the structure of bacterial cell wall. Moreover, the Ag-NPs not only suppressed the growth of bacteria but also changed the energy-dependent H+-fluxes across the bacterial membrane. The change of H+-fluxes in presence of H+-translocating systems inhibitor, N,N'-dicyclohexylcarbodiimide (DCCD), proves the effect of Ag-NPs on the structure and permeability of the bacterial membrane. Overall, our findings indicate that the Ag-NPs synthesized by medicinal plant Stevia extracts may be an excellent candidate as an alternative to antibiotics against the tested bacteria.
Collapse
Affiliation(s)
- Marina Timotina
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, 123 H. Emin Str., 0051, Yerevan, Armenia
| | - Anush Aghajanyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia.,Scientific-Research Institute of Biology, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia
| | - Robin Schubert
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia. .,Scientific-Research Institute of Biology, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia.
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025, Yerevan, Armenia.
| |
Collapse
|