1
|
Pan Z, Zhang X, Xie W, Cui J, Wang Y, Zhang B, Du L, Zhai W, Sun H, Li Y, Li D. Revisited and innovative perspectives of oral ulcer: from biological specificity to local treatment. Front Bioeng Biotechnol 2024; 12:1335377. [PMID: 38456005 PMCID: PMC10917957 DOI: 10.3389/fbioe.2024.1335377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Mouth ulcers, a highly prevalent ailment affecting the oral mucosa, leading to pain and discomfort, significantly impacting the patient's daily life. The development of innovative approaches for oral ulcer treatment is of great importance. Moreover, a deeper and more comprehensive understanding of mouth ulcers will facilitate the development of innovative therapeutic strategies. The oral environment possesses distinct traits as it serves as the gateway to the digestive and respiratory systems. The permeability of various epithelial layers can influence drug absorption. Moreover, oral mucosal injuries exhibit distinct healing patterns compared to cutaneous lesions, influenced by various inherent and extrinsic factors. Furthermore, the moist and dynamic oral environment, influenced by saliva and daily physiological functions like chewing and speaking, presents additional challenges in local therapy. Also, suitable mucosal adhesion materials are crucial to alleviate pain and promote healing process. To this end, the review comprehensively examines the anatomical and structural aspects of the oral cavity, elucidates the healing mechanisms of oral ulcers, explores the factors contributing to scar-free healing in the oral mucosa, and investigates the application of mucosal adhesive materials as drug delivery systems. This endeavor seeks to offer novel insights and perspectives for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| | - Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Wangni Xie
- School of Stomatology, Jilin University, Changchun, China
| | - Jing Cui
- School of Stomatology, Jilin University, Changchun, China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Boya Zhang
- School of Stomatology, Jilin University, Changchun, China
| | - Liuyi Du
- School of Stomatology, Jilin University, Changchun, China
| | - Wenhao Zhai
- School of Stomatology, Jilin University, Changchun, China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- School of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
2
|
Sudhakar MP, Maurya R, Mehariya S, Karthikeyan OP, Dharani G, Arunkumar K, Pereda SV, Hernández-González MC, Buschmann AH, Pugazhendhi A. Feasibility of bioplastic production using micro- and macroalgae- A review. ENVIRONMENTAL RESEARCH 2024; 240:117465. [PMID: 37879387 DOI: 10.1016/j.envres.2023.117465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Plastic disposal and their degraded products in the environment are global concern due to its adverse effects and persistence in nature. To overcome plastic pollution and its impacts on environment, a sustainable bioplastic production using renewable feedstock's, such as algae, are envisioned. In this review, the production of polymer precursors such as polylactic acid, polyhydroxybutyrates, polyhydroxyalkanoates, agar, carrageenan and alginate from microalgae and macroalgae through direct conversion and fermentation routes are summarized and discussed. The direct conversion of algal biopolymers without any bioprocess (whole algal biomass used emphasizing zero waste discharge concept) favours economic feasibility. Whereas indirect method uses conversion of algal polymers to monomers after pretreatment followed by bioplastic precursor production by fermentation are emphasized. This review paper also outlines the current state of technological developments in the field of algae-based bioplastic, both in industry and in research, and highlights the creation of novel solutions for green bioplastic production employing algal polymers. Finally, the cost economics of the bioplastic production using algal biopolymers are clearly mentioned with future directions of next level bioplastic production. In this review study, the cost estimation was given at laboratory level bioplastic production using casting methods. Further development of bioplastics at pilot scale level may give clear economic feasibility of production at industry. Here, in this review, we emphasized the overview of algal biopolymers for different bioplastic product development and its economic value and also current industries involved in bioplastic production.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biopolymers & Advanced Bioactive Materials Research Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India; Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India.
| | - Rahulkumar Maurya
- Coastal Algae Cultivation, Microbial Biofuels & Biochemicals, Advanced Biofuels Division, The Energy and Resources Institute, Navi Mumbai, 400 708, India
| | | | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopal Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai, 600100, Tamil Nadu, India
| | - Kulanthiyesu Arunkumar
- Microalgae Group-Phycoscience Laboratory, Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, 671 320, Kasaragod, Kerala, India
| | - Sandra V Pereda
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - María C Hernández-González
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - Alejandro H Buschmann
- Centro i-mar, CeBiB and Núcleo Milenio MASH, Universidad de Los Lagos, 5480000, Puerto Montt, Región de Los Lagos, Chile
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
3
|
Thangsunan P, Kitiyodom S, Srisapoome P, Pirarat N, Yata T, Thangsunan P, Boonrungsiman S, Bunnoy A, Rodkhum C. Novel development of cationic surfactant-based mucoadhesive nanovaccine for direct immersion vaccination against Francisella noatunensis subsp. orientalis in red tilapia (Oreochromis sp.). FISH & SHELLFISH IMMUNOLOGY 2022; 127:1051-1060. [PMID: 35872335 DOI: 10.1016/j.fsi.2022.07.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Francisella noatunensis subsp. orientalis (Fno) is one of the infectious diseases that causes economic losses associated with tilapia mortality. Even though direct immersion administration of vaccines is more practicable for small fish and fry compared with oral and injection vaccination in the fields, the efficacy is still insufficient due to lower potency of antigen uptake. Herein, we accomplished the development of a mucoadhesive nanovaccine platform using cetyltrimethylammonium bromide (CTAB), a cationic surfactant, to improve the efficiency of immersion vaccination against Fno in tilapia. Cationic Fno nanovaccine (CAT-Fno-NV) was prepared though emulsification using an ultrasonic method. In our investigation, the CAT-Fno-NV increased the opportunity of Fno vaccine uptake by extending the contact time between vaccine and mucosal surface of fish gills and enhancing the protective efficacy against Fno infection. Fish were vaccinated with the CAT-Fno-NV by a direct immersion protocol. The challenge trial by Fno injection revealed that CAT-Fno-NV at the concentration 1:100 ratio (approximately 1 × 106 cfu/mL) had the highest efficacy to protect fish from Fno infection at day 30 after post challenge period according to the total number of Fno detected in head kidney, spleen and liver. A significant upregulation of IgM gene was observed in gills, skin, head kidney, serum and peripheral blood lymphocytes (PBLs) and spleen tissues treated with WC and CAT-Fno-NV (1:100) vaccines, while IgT gene was highly expressed in only gills and skin tissues for treated WC and CAT-Fno-NV (1:100) groups. We anticipate that the cationic surfactant-based nanovaccine developed in this study could become an efficient alternative for direct immersion vaccination to induce humoral immune responses against Fno in vaccinated tilapia.
Collapse
Affiliation(s)
- Patcharapong Thangsunan
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirikorn Kitiyodom
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Nopadon Pirarat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattanapong Thangsunan
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwimon Boonrungsiman
- National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Ruiz-Pulido G, Medina DI. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles. Eur J Pharm Biopharm 2020; 159:123-136. [PMID: 33387633 DOI: 10.1016/j.ejpb.2020.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/28/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
This review discusses the physicochemical and mechanical properties of porcine gastrointestinal mucus from a rheological point of view. Considering mucus as a viscoelastic gel that functions as a biological barrier by limiting particles passage, lubricating the gastrointestinal tract, and protecting the stomach from gastric acids. The viscoelastic and protective properties of mucus are mainly produced by its mucin network, which is stabilized through electrostatic, hydrophobic and hydrogen bonding interactions. Otherwise, mucus rheology is determined by its polyanionic nature at physiological pH. At neutral pH, mucus presents a viscous behavior produced by chains crosslinking. While, at acidic pH, mucus exhibits an elastic behavior related with the extended conformation that produces mucus gelation at the stomach. Additionally, rheology studies the degree of adhesion between a polymer-mucus mixture through rheological synergism, and how it varies at different pH conditions. Finally, mucoadhesion phenomenon is exemplified with chitosan (cationic) and poly (lactic-co-glycolic) acid (anionic) polymers.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico.
| |
Collapse
|
5
|
Macocinschi D, Filip D, Ciubotaru BI, Dumitriu RP, Varganici CD, Zaltariov MF. Blends of sodium deoxycholate-based poly(ester ether)urethane ionomer and hydroxypropylcellulose with mucosal adhesiveness. Int J Biol Macromol 2020; 162:1262-1275. [PMID: 32585272 DOI: 10.1016/j.ijbiomac.2020.06.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022]
Abstract
New mucoadhesive blends of sodium deoxycholate-based poly(ester ether)urethane ionomer (PU) and hydroxypropyl cellulose (HPC) are prepared. The presence of the intermolecular interactions between the polymeric components has been investigated by FTIR spectroscopy indicating their miscibility in the solid phase. DSC studies also revealed a single glass transition of the blends, which is indicative of miscibility of PU and HPC in the amorphous phase. The amount of HPC in the blends influences strongly the physicochemical and mucoadhesion/bioadhesion properties. It was found that the value of area attributed to ordered hydrogen bonding (FTIR), the onset temperature values of thermal degradation in N2 flow (TG/DTG), the values of the sorption capacity (Dynamic Vapor Sorption-DVS), the values of the apparent viscosity (rheological measurements) and mucoadhesion/bioadhesion properties increased by increasing the HPC content in the blends. Complex viscosity revealed shear thinning behavior for all the studied solutions evidencing the contributive role of polymer viscoelasticity on mucoadhesion. It was found that both G' and G" increase with an increase in angular frequency and G">G' which is characteristic for liquid-like (sol state) behavior for all blended solutions and this behavior is helpful in the adhesion with mucosa surface. Mucoadhesion of PU/HPC blends was assessed in the stomach mucosa at pH 2.6 and 37 °C. Bioadhesion test was performed at pH 7.4 and 37 °C and revealed a stronger interaction of PU/HPC blends with cellulose membrane than with stomach mucosa. The similar nature of the HPC and cellulose membrane determines additional adhesion forces and implicity high adhesion properties. The HPC component increases the hydrophilicity of the blends as DVS analysis revealed, but also leads to hydrolytic degradation. FTIR spectroscopy analysis was used to evaluate the hydrolytic stability in acid (pH 2.6) and slightly alkaline (pH 7.4) PBS media and a mechanism of degradation has been proposed.
Collapse
Affiliation(s)
- Doina Macocinschi
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Daniela Filip
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Bianca-Iulia Ciubotaru
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | | | | | - Mirela-Fernanda Zaltariov
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania.
| |
Collapse
|
6
|
Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers (Basel) 2020; 12:E2417. [PMID: 33092194 PMCID: PMC7589871 DOI: 10.3390/polym12102417] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used extensively as an additive and ingredient in the food industry, alginate has become an important compound for a wide range of industries and applications, such as the medical, pharmaceutical and cosmetics sectors. In the food industry, alginate has been used to coat fruits and vegetables, as a microbial and viral protection product, and as a gelling, thickening, stabilizing or emulsifying agent. Its biocompatibility, biodegradability, nontoxicity and the possibility of it being used in quantum satis doses prompted scientists to explore new properties for alginate usage. Thus, the use of alginate has been expanded so as to be directed towards the pharmaceutical and biomedical industries, where studies have shown that it can be used successfully as biomaterial for wound, hydrogel, and aerogel dressings, among others. Furthermore, the ability to encapsulate natural substances has led to the possibility of using alginate as a drug coating and drug delivery agent, including the encapsulation of probiotics. This is important considering the fact that, until recently, encapsulation and coating agents used in the pharmaceutical industry were limited to the use of lactose, a potentially allergenic agent or gelatin. Obtained at a relatively low cost from marine brown algae, this hydrocolloid can also be used as a potential tool in the management of diabetes, not only as an insulin delivery agent but also due to its ability to improve insulin resistance, attenuate chronic inflammation and decrease oxidative stress. In addition, alginate has been recognized as a potential weight loss treatment, as alginate supplementation has been used as an adjunct treatment to energy restriction, to enhance satiety and improve weight loss in obese individuals. Thus, alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity. This review highlights recent research advances on the characteristics of alginate and brings to the forefront the beneficial aspects of using alginate, from the food industry to the biomedical field.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Andrei Lobiuc
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
7
|
Taipaleenmäki E, Christensen G, Brodszkij E, Mouritzen SA, Gal N, Madsen S, Hedemann MS, Knudsen TA, Jensen HM, Christiansen SL, Sparsø FV, Städler B. Mucopenetrating polymer – Lipid hybrid nanovesicles as subunits in alginate beads as an oral formulation. J Control Release 2020; 322:470-485. [DOI: 10.1016/j.jconrel.2020.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/21/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
|
8
|
Rashad AA, Nageeb El-Helaly S, Abd El Rehim RT, El-Gazayerly ON. Chronological Delivery of Antihypertensive Drugs in Bilayered Core-in-Cup Buccoadhesive Tablets: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2019; 21:21. [PMID: 31823090 DOI: 10.1208/s12249-019-1575-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022] Open
Abstract
Hypertension shows circadian blood pressure rhythms (day-night pattern) that urge the delivery of antihypertensive drugs at the right time in the desired levels. Thus, a bilayered core-in-cup buccoadhesive tablet was formulated that immediately releases olmesartan, to give a burst effect, and controls azelnidipine release, to prolong its therapeutic effect. The main challenge was the poor bioavailability of azelnidipine due to its poor aqueous solubility and first-pass effect. Hence, liquisolid compact buccoadhesive tablets were prepared to enhance solubility, dissolution profiles, and bypass the oral route. Two factorial designs were conducted to study the type and concentration effect of the mucoadhesive polymers on the dissolution and mucoadhesion of olmesartan and azelnidipine. Characterization studies were conducted regarding drug content, surface pH, water uptake, mucoadhesive strength, in vitro release, and ex vivo permeability. The core-in-cup olmesartan/azelnidipine buccoadhesive tablet showed similar release profile to the statistically optimized formulae of each drug. In vitro dissolution study showed enhanced release of azelnidipine than the directly compressed tablets, to comply with the regulatory standards of controlled release systems. In vivo pharmacokinetic study of olmesartan and azelnidipine conducted on human volunteers against Rezaltas® 10/8 mg tablet showed percentage relative bioavailability of 106.12 and 470.82%, respectively. Graphical Abstract.
Collapse
|
9
|
Wagoner TB, Çakır-Fuller E, Shingleton R, Drake M, Foegeding EA. Viscosity drives texture perception of protein beverages more than hydrocolloid type. J Texture Stud 2019; 51:78-91. [PMID: 31323134 DOI: 10.1111/jtxs.12471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022]
Abstract
Hydrocolloids are added to alter rheological properties of beverages but have other properties that can contribute to overall taste and texture perception. In this study, tapioca starch and λ-carrageenan were used to determine how hydrocolloid type, viscosity level (4-6 mPa·s, 25-30 mPa·s, and 50-60 mPa·s at 50 s-1 ), and complexity of the system (aqueous, skim milk, or whole milk) influence sensory taste and texture of fluids. All fluids were shear thinning; however, skim milk and whole milk solutions that contained carrageenan had much higher low shear viscosity and lower high shear viscosity than those with starch. There was a significant effect of viscosity level on sensory perception of consistency, creamy/oily, mouthcoating, and residual mouthcoating in aqueous, skim milk, and whole milk beverages, and a weak effect of hydrocolloid type. However, normalizing creamy/oily, paste, and mouthcoating against sensory consistency removed the effect of hydrocolloid type. Flavors (cream, cooked, cardboard, and melon/cardboard) were associated with the type of hydrocolloid and milk protein ingredient. Temporal dominance of sensations showed that samples exhibit similar temporal sensory profiles, although the addition of hydrocolloids enhanced dominance of creaminess even in samples without fat. Hydrocolloid type did not significantly influence mouthcoating or the persistence of astringency. Additionally, increasing viscosity from 3 to 74 mPa·s at 50 s-1 did not suppress perceived sweet or salty taste. The results suggest that in fluid systems with viscosity levels typically found in beverages, textural properties are determined by viscosity and independent of the type of hydrocolloid.
Collapse
Affiliation(s)
- Ty B Wagoner
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Esra Çakır-Fuller
- Fonterra Research and Development Center, Palmerston North, New Zealand
| | | | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - E Allen Foegeding
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
10
|
Kitiyodom S, Kaewmalun S, Nittayasut N, Suktham K, Surassmo S, Namdee K, Rodkhum C, Pirarat N, Yata T. The potential of mucoadhesive polymer in enhancing efficacy of direct immersion vaccination against Flavobacterium columnare infection in tilapia. FISH & SHELLFISH IMMUNOLOGY 2019; 86:635-640. [PMID: 30528659 DOI: 10.1016/j.fsi.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Vaccination is the most effective approach for prevention of infectious diseases in aquaculture. Although immersion vaccination is more applicable compared to in-feed/oral administration and injection, this method suffers from low potency as the efficiency of uptake of antigens through mucosal membranes is limited. In this study, we have successfully developed a mucoadhesive vaccine delivery system to enhance the efficacy of direct immersion vaccination against Flavobacterium columnare, the causative agent of columnaris disease in red tilapia. A formalin-killed negatively charged, bacterial cell suspension was used to prepare a mucoadhesive vaccine by electrostatic coating with positively charged chitosan. Our results demonstrate that the chitosan-complexed vaccine greatly increases its mucoadhesiveness, thus increasing the chances of vaccine uptake by the gill mucosa and improving the protection obtained against columnaris infection. The surface charge of the chitosan-complexed vaccine was altered from anionic to cationic after chitosan modification. Tilapia were vaccinated with the prepared chitosan-complexed vaccine by immersion. The challenge test was then carried out 30 and 60 days post vaccination, which resulted in a high level of mortalities in the non-vaccinated and uncomplexed vaccine groups. A high relative percentage survival (RPS) of vaccinated fish was noted with the mucoadhesive vaccine. Our results indicated that the naked vaccine failed to protect the fish from columnaris infection, which is consistent with the mucoadhesive assays performed during the study showing that the naked vaccine was unable to bind to mucosal surfaces. This system is therefore an effective method for immersion vaccination in order to deliver the antigen preparation to the mucosal surface membrane of the fish.
Collapse
Affiliation(s)
- Sirikorn Kitiyodom
- Wildlife Exotic and Aquatic Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somrudee Kaewmalun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Naiyaphat Nittayasut
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kunat Suktham
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Suvimol Surassmo
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Channarong Rodkhum
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nopadon Pirarat
- Wildlife Exotic and Aquatic Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Teerapong Yata
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
11
|
Cook SL, Woods S, Methven L, Parker JK, Khutoryanskiy VV. Mucoadhesive polysaccharides modulate sodium retention, release and taste perception. Food Chem 2017; 240:482-489. [PMID: 28946301 PMCID: PMC5625848 DOI: 10.1016/j.foodchem.2017.07.134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022]
Abstract
A potential role for mucoadhesive polysaccharides in food products is investigated. Mucoadhesion of a well-known food grade polysaccharide was established. Sensory tests show the mucoadhesive reduces saltiness in solution. Despite this reduction in perceived saltiness, the mucoadhesive retains more sodium ions for longer.
The mucoadhesion between polymeric substances and mucosal membranes, widely exploited in the pharmaceutics industry to prolong drug residence, has been investigated as a means of retaining taste or aroma molecules in the oral cavity. This study shows that the mucoadhesive properties of carboxymethyl cellulose, a commonly used polysaccharide in the food and pharmaceutics industry, can modify retention, release and perception of sodium over time. A three-part study was designed coupling in vitro retention using ex vivo porcine tongue, sensory perception with a trained panel and in vivo retention of sodium ions in human volunteers. The findings suggest that although salt perception is stunted in samples containing a random coil, ionic, mucoadhesive thickener, the retention of sodium ions in the mouth is prolonged due to the mucoadhesive nature of the polysaccharide. Not only has this study-investigated mucoadhesion of liquid formulations in the oral cavity but it is also the first to link the mucoadhesive nature of a commonly used polysaccharide to the organoleptic properties of a food.
Collapse
Affiliation(s)
- Sarah L Cook
- Department of Pharmacy, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom
| | - Samuel Woods
- Department of Food and Nutrition Sciences, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom
| | - Lisa Methven
- Department of Food and Nutrition Sciences, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom.
| | - Jane K Parker
- Department of Food and Nutrition Sciences, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom
| | - Vitaliy V Khutoryanskiy
- Department of Pharmacy, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom.
| |
Collapse
|
12
|
Schattling P, Taipaleenmäki E, Zhang Y, Städler B. A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration. Macromol Biosci 2017; 17. [PMID: 28675773 DOI: 10.1002/mabi.201700060] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/07/2017] [Indexed: 12/20/2022]
Abstract
Although oral is the preferred route of administration of pharmaceutical formulations, the long-standing challenge for medically active compounds to efficiently cross the mucus layer barrier limits its wider applicability. Efforts in nanomedicine to overcome this hurdle consider mucoadhesive and mucopenetrating drug carriers by selectively designing (macromolecular) building blocks. This review highlights and critically discusses recent strategies developed in this context including poly(ethylene glycol)-based modifications, cationic and thiolated polymers, as well as particles with high charge density, zeta-potential shifting ability, or mucolytic properties. The latest advances in ex vivo test platforms are also reviewed.
Collapse
Affiliation(s)
- Philipp Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav-Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
13
|
Mehta P. Dry Powder Inhalers: A Focus on Advancements in Novel Drug Delivery Systems. JOURNAL OF DRUG DELIVERY 2016; 2016:8290963. [PMID: 27867663 PMCID: PMC5102732 DOI: 10.1155/2016/8290963] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/25/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Administration of drug molecules by inhalation route for treatment of respiratory diseases has the ability to deliver drugs, hormones, nucleic acids, steroids, proteins, and peptides, particularly to the site of action, improving the efficacy of the treatment and consequently lessening adverse effects of the treatment. Numerous inhalation delivery systems have been developed and studied to treat respiratory diseases such as asthma, COPD, and other pulmonary infections. The progress of disciplines such as biomaterials science, nanotechnology, particle engineering, molecular biology, and cell biology permits further improvement of the treatment capability. The present review analyzes modern therapeutic approaches of inhaled drugs with special emphasis on novel drug delivery system for treatment of various respiratory diseases.
Collapse
Affiliation(s)
- Piyush Mehta
- Dry Powder Inhaler Lab, Respiratory Formulations, Cipla R & D, LBS Road, Vikhroli (W), Mumbai, Maharashtra 400079, India
| |
Collapse
|
14
|
|