1
|
Li N, Wang R, Ai X, Guo J, Bai Y, Guo X, Zhang R, Du X, Chen J, Li H. Electroacupuncture Inhibits Neural Ferroptosis in Rat Model of Traumatic Brain Injury via Activating System Xc -/GSH/GPX4 Axis. Curr Neurovasc Res 2024; 21:86-100. [PMID: 38629369 DOI: 10.2174/0115672026297775240405073502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Ferroptosis is an iron-dependent regulating programmed cell death discovered recently that has been receiving much attention in traumatic brain injury (TBI). xCT, a major functional subunit of Cystine/glutamic acid reverse transporter (System Xc-), promotes cystine intake and glutathione biosynthesis, thereby protecting against oxidative stress and ferroptosis. OBJECTIVE The intention of this research was to verify the hypothesis that electroacupuncture (EA) exerted an anti-ferroptosis effect via an increase in the expression of xCT and activation of the System Xc-/GSH/GPX4 axis in cortical neurons of TBI rats. METHODS After the TBI rat model was prepared, animals received EA treatment at GV20, GV26, ST36 and PC6, for 15 min. The xCT inhibitor Sulfasalazine (SSZ) was administered 2h prior to model being prepared. The degree of neurological impairment was evaluated by means of TUNEL staining and the modified neurological severity score (mNSS). Specific indicators of ferroptosis (Ultrastructure of mitochondria, Iron and ROS) were detected by transmission electron microscopy (TEM), Prussian blue staining (Perls stain) and flow cytometry (FCM), respectively. GSH synthesis and metabolism-related factors in the content of the cerebral cortex were detected by an assay kit. Real-time quantitative PCR (RT-QPCR), Western blot (WB), and immunofluorescence (IF) were used for detecting the expression of System Xc-/GSH/GPX4 axisrelated proteins in injured cerebral cortex tissues. RESULTS EA successfully relieved nerve damage within 7 days after TBI, significantly inhibited neuronal ferroptosis, upregulated the expression of xCT and System Xc-/GSH/GPX4 axis forward protein and promoted glutathione (GSH) synthesis and metabolism in the injured area of the cerebral cortex. However, aggravation of nerve damage and increased ferroptosis effect were found in TBI rats injected with xCT inhibitors. CONCLUSIONS EA inhibits neuronal ferroptosis by up-regulated xCT expression and by activating System Xc-/GSH/GPX4 axis after TBI, confirming the relevant theories regarding the EA effect in treating TBI and providing theoretical support for clinical practice.
Collapse
Affiliation(s)
- Na Li
- School of Acupuncture-Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Ruihui Wang
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Xia Ai
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Jie Guo
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Yuwang Bai
- Department of Pneumology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710001, China
| | - Xinrong Guo
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Rongchao Zhang
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Xu Du
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Jingxuan Chen
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Hua Li
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| |
Collapse
|
2
|
Jamrozik D, Dutczak R, Machowicz J, Wojtyniak A, Smędowski A, Pietrucha-Dutczak M. Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants (Basel) 2023; 12:1251. [PMID: 37371981 DOI: 10.3390/antiox12061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Metallothioneins are the metal-rich proteins that play important roles in metal homeostasis and detoxification. Moreover, these proteins protect cells against oxidative stress, inhibit proapoptotic mechanisms and enhance cell differentiation and survival. Furthermore, MTs, mainly MT-1/2 and MT-3, play a vital role in protecting the neuronal retinal cells in the eye. Expression disorders of these proteins may be responsible for the development of various age-related eye diseases, including glaucoma, age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa. In this review, we focused on the literature reports suggesting that these proteins may be a key component of the endogenous protection system of the retinal neurons, and, when the expression of MTs is disrupted, this system becomes inefficient. Moreover, we described the location of different MT isoforms in ocular tissues. Then we discussed the changes in MT subtypes' expression in the context of the common eye diseases. Finally, we highlighted the possibility of the use of MTs as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Daniel Jamrozik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Radosław Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alicja Wojtyniak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Adrian Smędowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- GlaucoTech Co., Gen., Władysława Sikorskiego 45/177, 40-282 Katowice, Poland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
3
|
Pacwa A, Machowicz J, Akhtar S, Rodak P, Liu X, Pietrucha-Dutczak M, Lewin-Kowalik J, Amadio M, Smedowski A. Deficiency of the RNA-binding protein ELAVL1/HuR leads to the failure of endogenous and exogenous neuroprotection of retinal ganglion cells. Front Cell Neurosci 2023; 17:1131356. [PMID: 36874215 PMCID: PMC9982123 DOI: 10.3389/fncel.2023.1131356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction ELAVL1/HuR is a keystone regulator of gene expression at the posttranscriptional level, including stress response and homeostasis maintenance. The aim of this study was to evaluate the impact of hur silencing on the age-related degeneration of retinal ganglion cells (RGC), which potentially describes the efficiency of endogenous neuroprotection mechanisms, as well as to assess the exogenous neuroprotection capacity of hur-silenced RGC in the rat glaucoma model. Methods The study consisted of in vitro and in vivo approaches. In vitro, we used rat B-35 cells to investigate, whether AAV-shRNA-HuR delivery affects survival and oxidative stress markers under temperature and excitotoxic insults. In vivo approach consisted of two different settings. In first one, 35 eight-week-old rats received intravitreal injection of AAV-shRNA-HuR or AAV-shRNA scramble control. Animals underwent electroretinography tests and were sacrificed 2, 4 or 6 months after injection. Retinas and optic nerves were collected and processed for immunostainings, electron microscopy and stereology. For the second approach, animals received similar gene constructs. To induce chronic glaucoma, 8 weeks after AAV injection, unilateral episcleral vein cauterization was performed. Animals from each group received intravitreal injection of metallothionein II. Animals underwent electroretinography tests and were sacrificed 8 weeks later. Retinas and optic nerves were collected and processed for immunostainings, electron microscopy and stereology. Results Silencing of hur induced apoptosis and increased oxidative stress markers in B-35 cells. Additionally, shRNA treatment impaired the cellular stress response to temperature and excitotoxic insults. In vivo, RGC count was decreased by 39% in shRNA-HuR group 6 months after injection, when compared to shRNA scramble control group. In neuroprotection study, the average loss of RGCs was 35% in animals with glaucoma treated with metallothionein and shRNA-HuR and 11.4% in animals with glaucoma treated with metallothionein and the scramble control shRNA. An alteration in HuR cellular content resulted in diminished photopic negative responses in the electroretinogram. Conclusions Based on our findings, we conclude that HuR is essential for the survival and efficient neuroprotection of RGC and that the induced alteration in HuR content accelerates both the age-related and glaucoma-induced decline in RGC number and function, further confirming HuR's key role in maintaining cell homeostasis and its possible involvement in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Saeed Akhtar
- College of Applied Medical Sciences, Inaya Medical Colleges, Riyadh, Saudi Arabia
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Piotr Rodak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, The University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| |
Collapse
|
4
|
Yue C, Shan Z, Tan Y, Yao C, Liu Y, Liu Q, Tan X, Du X. His-Rich Domain of Selenoprotein P Ameliorates Neuropathology and Cognitive Deficits by Regulating TrkB Pathway and Zinc Homeostasis in an Alzheimer Model of Mice. ACS Chem Neurosci 2020; 11:4098-4110. [PMID: 33226214 DOI: 10.1021/acschemneuro.0c00278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Selenoproteins are a family of special proteins that contain the 21st amino acid, selenocysteine (Sec), in their sequence. Selenoprotein P has 10 Sec residues and modulates selenium homeostasis and redox balance in the brain. Previously, we found that the Sec-devoid His-rich motif of selenoprotein P (Selenop-H) suppressed metal-induced aggregation and neurotoxicities of both Aβ and tau in vitro. To investigate the intervening capacity of Selenop-H on the neuropathology and cognitive deficits of triple transgenic AD (3 × Tg-AD) mice, the Selenop-H gene packaged in rAAV9 was delivered into the hippocampal CA3 regions of mice via stereotaxic injection. Four months later, we demonstrated that Selenop-H (1) improved the spatial learning and memory deficits, (2) alleviated neuron damage and synaptic protein loss, (3) inhibited both tau pathology and amyloid beta protein (Aβ) aggregation, (4) activated both BDNF- and Src-mediated TrkB signaling, and (5) increased MT3 and ZnT3 levels and restored Zn2+ homeostasis in the mice model of AD. The study revealed that Selenop-H is potent in ameliorating AD-related neuropathology and cognitive deficits by modulating TrkB signaling and Zn2+ homeostasis.
Collapse
Affiliation(s)
- Caiping Yue
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
| | - Zhifu Shan
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
- College of Veterinary Medicine, Northeast Agricultural University, No. 600 Chang jiang Street, Harbin 150030, P. R. China
| | - Yibin Tan
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
| | - Chuangyu Yao
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
| | - Yuanheng Liu
- Advance Institute of Engineering Science for Intelligent Manufacturing, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiangshi Tan
- Department of Chemistry &Shanghai Key Laboratory of Chemical Biology for Protein Research and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
5
|
Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z, Eckschlager T. Drug Sequestration in Lysosomes as One of the Mechanisms of Chemoresistance of Cancer Cells and the Possibilities of Its Inhibition. Int J Mol Sci 2020; 21:ijms21124392. [PMID: 32575682 PMCID: PMC7352242 DOI: 10.3390/ijms21124392] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Resistance to chemotherapeutics and targeted drugs is one of the main problems in successful cancer therapy. Various mechanisms have been identified to contribute to drug resistance. One of those mechanisms is lysosome-mediated drug resistance. Lysosomes have been shown to trap certain hydrophobic weak base chemotherapeutics, as well as some tyrosine kinase inhibitors, thereby being sequestered away from their intracellular target site. Lysosomal sequestration is in most cases followed by the release of their content from the cell by exocytosis. Lysosomal accumulation of anticancer drugs is caused mainly by ion-trapping, but active transport of certain drugs into lysosomes was also described. Lysosomal low pH, which is necessary for ion-trapping is achieved by the activity of the V-ATPase. This sequestration can be successfully inhibited by lysosomotropic agents and V-ATPase inhibitors in experimental conditions. Clinical trials have been performed only with lysosomotropic drug chloroquine and their results were less successful. The aim of this review is to give an overview of lysosomal sequestration and expression of acidifying enzymes as yet not well known mechanism of cancer cell chemoresistance and about possibilities how to overcome this form of resistance.
Collapse
Affiliation(s)
- Jan Hraběta
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Marie Belhajová
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
| | - Hana Šubrtová
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (H.Š.); (M.A.M.R.); (Z.H.)
- Central European Institute of Technologies, Brno University of Technology, CZ-612 00 Brno, Czech Republic
| | - Tomáš Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, CZ-150 06 Prague, Czech Republic; (J.H.); (M.B.)
- Correspondence: ; Tel.: +420-606-364-730
| |
Collapse
|
6
|
Saleh HM, El-Sayed YS, Naser SM, Eltahawy AS, Onoda A, Umezawa M. Efficacy of α-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24593-24601. [PMID: 28913608 DOI: 10.1007/s11356-017-0158-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
To explore the protective efficacy of α-lipoic acid (ALA) against Cd-prompted neurotoxicity, young male New Zealand rabbits (Oryctolagus cuniculus) were divided randomly into four groups. Group 1 (control) received demineralized water. Group 2 (Cd) administered cadmium chloride (CdCl2) 3 mg/kg bwt. Group 3 (ALA) administered ALA 100 mg/kg bwt. Group 4 (Cd + ALA) administered ALA 1 h after Cd. The treatments were administered orally for 30 consecutive days. Cd-induced marked disturbances in neurochemical parameters were indicated by the reduction in micro- and macro-elements (Zn, Fe, Cu, P, and Ca), with the highest reduction in Cd-exposed rabbits, followed by Cd + ALA group and then ALA group. In the brain tissues, Cd has significantly augmented the lipid hydroperoxides (LPO) and reduced the glutathione (GSH) and total antioxidant capacity (TAC), and glutathione peroxidase and glutathione S-transferase enzyme activities but had an insignificant effect on the antioxidant redox enzymes. Administration of ALA effectively restored LPO and sustained GSH and TAC contents. Moreover, Cd downregulated the transcriptional levels of Nrf2, MT3, and SOD1 genes, and upregulated that of Keap1 gene. ALA treatment, shortly following Cd exposure, downregulated Keap1, and upregulated Nrf2 and GPx1, while maintained MT3 and SOD1 mRNA gene expression in the rabbits' brain. These data indicated the ALA effectiveness in protecting against Cd-induced oxidative stress and the depletion of cellular antioxidants in the brain of rabbits perhaps due to its antioxidant, free radical scavenging, and chelating properties.
Collapse
Affiliation(s)
- Hamida M Saleh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Sherif M Naser
- Department of Veterinary Genetics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Abdelgawad S Eltahawy
- Department of Veterinary Economics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Atsuto Onoda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| |
Collapse
|
7
|
Okita Y, Rcom-H'cheo-Gauthier AN, Goulding M, Chung RS, Faller P, Pountney DL. Metallothionein, Copper and Alpha-Synuclein in Alpha-Synucleinopathies. Front Neurosci 2017; 11:114. [PMID: 28420950 PMCID: PMC5380005 DOI: 10.3389/fnins.2017.00114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Metallothioneins (MTs) are proteins that function by metal exchange to regulate the bioavailability of metals, such as zinc and copper. Copper functions in the brain to regulate mitochondria, neurotransmitter production, and cell signaling. Inappropriate copper binding can result in loss of protein function and Cu(I)/(II) redox cycling can generate reactive oxygen species. Copper accumulates in the brain with aging and has been shown to bind alpha-synuclein and initiate its aggregation, the primary aetiological factor in Parkinson's disease (PD), and other alpha-synucleinopathies. In PD, total tissue copper is decreased, including neuromelanin-bound copper and there is a reduction in copper transporter CTR-1. Conversely cerebrospinal fluid (CSF) copper is increased. MT-1/2 expression is increased in activated astrocytes in alpha-synucleinopathies, yet expression of the neuronal MT-3 isoform may be reduced. MTs have been implicated in inflammatory states to perform one-way exchange of copper, releasing free zinc and recent studies have found copper bound to alpha-synuclein is transferred to the MT-3 isoform in vitro and MT-3 is found bound to pathological alpha-synuclein aggregates in the alpha-synucleinopathy, multiple systems atrophy. Moreover, both MT and alpha-synuclein can be released and taken up by neural cells via specific receptors and so may interact both intra- and extra-cellularly. Here, we critically review the role of MTs in copper dyshomeostasis and alpha-synuclein aggregation, and their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuho Okita
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| | | | - Michael Goulding
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Peter Faller
- Centre National de la Recherche Scientifique, Institut de Chimie UMR 7177, Université de StrasbourgStrasbourg, France.,University of Strasbourg Institute for Advanced StudyStrasbourg, France
| | - Dean L Pountney
- Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| |
Collapse
|
8
|
Lee SJ, Seo BR, Koh JY. Metallothionein-3 modulates the amyloid β endocytosis of astrocytes through its effects on actin polymerization. Mol Brain 2015; 8:84. [PMID: 26637294 PMCID: PMC4670512 DOI: 10.1186/s13041-015-0173-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022] Open
Abstract
Background Astrocytes may play important roles in the pathogenesis of Alzheimer’s disease (AD) by clearing extracellular amyloid beta (Aβ) through endocytosis and degradation. We recently showed that metallothionein 3 (Mt3), a zinc-binding metallothionein that is enriched in the central nervous system, contributes to actin polymerization in astrocytes. Because actin is likely involved in the endocytosis of Aβ, we investigated the possible role of Mt3 in Aβ endocytosis by cortical astrocytes in this study. Results To assess the route of Aβ uptake, we exposed cultured astrocytes to fluorescently labeled Aβ1–40 or Aβ1–42 together with chloropromazine (CP) or methyl-beta-cyclodextrin (MβCD), inhibitors of clathrin- and caveolin-dependent endocytosis, respectively. CP treatment almost completely blocked Aβ1–40 and Aβ1–42 endocytosis, whereas exposure to MβCD had no significant effect. Actin disruption with cytochalasin D (CytD) or latrunculin B also completely blocked Aβ1–40 and Aβ1–42 endocytosis. Because the absence of Mt3 also results in actin disruption, we examined Aβ1–40 and Aβ1–42 uptake and expression in Mt3−/− astrocytes. Compared with wild-type (WT) cells, Mt3−/− cells exhibited markedly reduced Aβ1–40 and Aβ1–42 endocytosis and expression of Aβ1-42 monomers and oligomers. A similar reduction was observed in CytD-treated WT cells. Finally, actin disruption and Mt3 knockout each increased the overall levels of clathrin and the associated protein phosphatidylinositol-binding clathrin assembly protein (PICALM) in astrocytes. Conclusions Our results suggest that the absence of Mt3 reduces Aβ uptake in astrocytes through an abnormality in actin polymerization. In light of evidence that Mt3 is downregulated in AD, our findings indicate that this mechanism may contribute to the extracellular accumulation of Aβ in this disease.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea. .,Present address: Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon, 34134, South Korea.
| | - Bo-Ra Seo
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea. .,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
9
|
O'Connor KS, Parnell G, Patrick E, Ahlenstiel G, Suppiah V, van der Poorten D, Read SA, Leung R, Douglas MW, Yang JYH, Stewart GJ, Liddle C, George J, Booth DR. Hepatic metallothionein expression in chronic hepatitis C virus infection is IFNL3 genotype-dependent. Genes Immun 2014; 15:88-94. [PMID: 24335707 DOI: 10.1038/gene.2013.66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 01/14/2023]
Abstract
The IFNL3 genotype predicts the clearance of hepatitis C virus (HCV), spontaneously and with interferon (IFN)-based therapy. The responder genotype is associated with lower expression of interferon stimulated genes (ISGs) in liver biopsies from chronic hepatitis C patients. However, ISGs represent many interacting molecular pathways, and we hypothesised that the IFNL3 genotype may produce a characteristic pattern of ISG expression explaining the effect of genotype on viral clearance. For the first time, we identified an association between a cluster of ISGs, the metallothioneins (MTs) and IFNL3 genotype. Importantly, MTs were significantly upregulated (in contrast to most other ISGs) in HCV-infected liver biopsies of rs8099917 responders. An association between lower fibrosis scores and higher MT levels was demonstrated underlying clinical relevance of this association. As expected, overall ISGs were significantly downregulated in biopsies from subjects with the IFNL3 rs8099917 responder genotype (P=2.38 × 10(-7)). Peripheral blood analysis revealed paradoxical and not previously described findings with upregulation of ISGs seen in the responder genotype (P=1.00 × 10(-4)). The higher MT expression in responders may contribute to their improved viral clearance and MT-inducing agents may be useful adjuncts to therapy for HCV. Upregulation of immune cell ISGs in responders may also contribute to the IFNL3 genotype effect.
Collapse
Affiliation(s)
- K S O'Connor
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - G Parnell
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - E Patrick
- Department of Mathematics, University of Sydney, Sydney, New South Wales, Australia
| | - G Ahlenstiel
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - V Suppiah
- 1] Institute for Immunology and Allergy Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia [2] Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - D van der Poorten
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - S A Read
- 1] Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia [2] Centre for Infectious Diseases and Microbiology, Sydney Emerging infections and Biosecurity Institute, University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - R Leung
- 1] Institute for Immunology and Allergy Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia [2] Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - M W Douglas
- 1] Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia [2] Centre for Infectious Diseases and Microbiology, Sydney Emerging infections and Biosecurity Institute, University of Sydney and Westmead Hospital, Sydney, New South Wales, Australia
| | - J Y H Yang
- Department of Mathematics, University of Sydney, Sydney, New South Wales, Australia
| | - G J Stewart
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - C Liddle
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - J George
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - D R Booth
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Zhang M, Shan H, Chang P, Wang T, Dong W, Chen X, Tao L. Hydrogen sulfide offers neuroprotection on traumatic brain injury in parallel with reduced apoptosis and autophagy in mice. PLoS One 2014; 9:e87241. [PMID: 24466346 PMCID: PMC3900713 DOI: 10.1371/journal.pone.0087241] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/24/2013] [Indexed: 11/23/2022] Open
Abstract
Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the central nervous system. The present study was undertaken to study the effects of exogenous H2S on traumatic brain injury (TBI) and the underlying mechanisms. The effects of exogenous H2S on TBI were examined by using measurement of brain edema, behavior assessment, propidium iodide (PI) staining, and Western blotting, respectively. Compared to TBI groups, H2S pretreatment had reduced brain edema, improved motor performance and ameliorated performance in Morris water maze test after TBI. Immunoblotting results showed that H2S pretreatment reversed TBI-induced cleavage of caspase-3 and decline of Bcl-2, suppressed LC3-II, Beclin-1 and Vps34 activation and maintained p62 level in injured cortex and hippocampus post TBI. The results suggest a protective effect and therapeutic potential of H2S in the treatment of brain injury and the protective effect against TBI may be associated with regulating apoptosis and autophagy.
Collapse
Affiliation(s)
- Mingyang Zhang
- Department of Forensic Science and Laboratory of Brain Injury, Medical College of Soochow University, Suzhou, China
- Department of Forensic Science, Medical College of Nantong University, Nantong, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, North District of Suzhou Municipal Hospital, Suzhou, China
| | - Pan Chang
- Department of Forensic Science and Laboratory of Brain Injury, Medical College of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Science and Laboratory of Brain Injury, Medical College of Soochow University, Suzhou, China
| | - Wenwen Dong
- Department of Forensic Science and Laboratory of Brain Injury, Medical College of Soochow University, Suzhou, China
| | - Xiping Chen
- Department of Forensic Science and Laboratory of Brain Injury, Medical College of Soochow University, Suzhou, China
- * E-mail: (XC); (LT)
| | - Luyang Tao
- Department of Forensic Science and Laboratory of Brain Injury, Medical College of Soochow University, Suzhou, China
- * E-mail: (XC); (LT)
| |
Collapse
|
11
|
Pan R, Chen C, Liu WL, Liu KJ. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1. CNS Neurosci Ther 2013; 19:511-20. [PMID: 23582235 DOI: 10.1111/cns.12098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 01/01/2023] Open
Abstract
AIM Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. METHODS Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. RESULTS Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. CONCLUSIONS Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
12
|
Edaravone increases regional cerebral blood flow after traumatic brain injury in mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:103-9. [PMID: 23564113 DOI: 10.1007/978-3-7091-1434-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of preventable death and serious morbidity, with subsequent low cerebral blood flow (CBF) considered to be associated with poor prognosis. In the present study, we demonstrated the effect of the free radical scavenger edaravone on regional CBF (rCBF) after TBI. Male mice (C57/BL6) were subjected to TBI using a controlled cortical impactor device. Immediately after TBI, the animals were intravenously administered 3.0 mg/kg of edaravone or a vehicle saline solution. Two-dimensional rCBF images were acquired before and 24 h post-TBI, and were quantified in the ipsilateral and contralateral hemispheres (n = 5 animals per group). CBF in the vehicle-treated animals decreased broadly over the ipsilateral hemisphere, with the region of low rCBF spreading from the frontal cortex to the occipital lobe. The zone of lowest rCBF matched that of the contusion area. The mean rCBF at 24 h for a defined elliptical region between the bregma and lambda was 73.7 ± 5.8 %. In comparison, the reduction of rCBF in edaravone-treated animals was significantly attenuated (93.4 ± 5.7 %, p < 0.05). The edaravone-treated animals also exhibited higher rCBF in the contralateral hemisphere compared with that seen in -vehicle-treated animals. It is suggested that edaravone reduces neuronal damage by scavenging reactive oxygen species (ROS) and by maintaining intact the autoregulation of the cerebral vasculature.
Collapse
|
13
|
Seo JW, Kim JH, Kim JH, Seo M, Han HS, Park J, Suk K. Time-dependent effects of hypothermia on microglial activation and migration. J Neuroinflammation 2012; 9:164. [PMID: 22776061 PMCID: PMC3470995 DOI: 10.1186/1742-2094-9-164] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/14/2012] [Indexed: 12/02/2022] Open
Abstract
Background Therapeutic hypothermia is one of the neuroprotective strategies that improve neurological outcomes after brain damage in ischemic stroke and traumatic brain injury. Microglial cells become activated following brain injury and play an important role in neuroinflammation and subsequent brain damage. The aim of this study was to determine the time-dependent effects of hypothermia on microglial cell activation and migration, which are accompanied by neuroinflammation. Methods Microglial cells in culture were subjected to mild (33 °C) or moderate (29 °C) hypothermic conditions before, during, or after lipopolysaccharide (LPS) or hypoxic stimulation, and the production of nitric oxide (NO), proinflammatory cytokines, reactive oxygen species, and neurotoxicity was evaluated. Effects of hypothermia on microglial migration were also determined in in vitro as well as in vivo settings. Results Early-, co-, and delayed-hypothermic treatments inhibited microglial production of inflammatory mediators to varying degrees: early treatment was the most efficient, and delayed treatment showed time-dependent effects. Delayed hypothermia also suppressed the mRNA levels of proinflammatory cytokines and iNOS, and attenuated microglial neurotoxicity in microglia-neuron co-cultures. Furthermore, delayed hypothermia reduced microglial migration in the Boyden chamber assay and wound healing assay. In a stab injury model, delayed local hypothermia reduced migration of microglia toward the injury site in the rat brain. Conclusion Taken together, our results indicate that delayed hypothermia is sufficient to attenuate microglial activation and migration, and provide the basis of determining the optimal time window for therapeutic hypothermia. Delayed hypothermia may be neuroprotective by inhibiting microglia-mediated neuroinflammation, indicating the therapeutic potential of post-injury hypothermia for patients with brain damages exhibiting some of the inflammatory components.
Collapse
Affiliation(s)
- Jung-Wan Seo
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, 101 Dong-In, Daegu, Joong-gu, 700-422, South Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Williams WM, Castellani RJ, Weinberg A, Perry G, Smith MA. Do β-defensins and other antimicrobial peptides play a role in neuroimmune function and neurodegeneration? ScientificWorldJournal 2012; 2012:905785. [PMID: 22606066 PMCID: PMC3346844 DOI: 10.1100/2012/905785] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/26/2011] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that the brain responds to mechanical trauma and development of most neurodegenerative diseases with an inflammatory sequelae that was once thought exclusive to systemic immunity. Mostly cationic peptides, such as the β-defensins, originally assigned an antimicrobial function are now recognized as mediators of both innate and adaptive immunity. Herein supporting evidence is presented for the hypothesis that neuropathological changes associated with chronic disease conditions of the CNS involve abnormal expression and regulatory function of specific antimicrobial peptides. It is also proposed that these alterations exacerbate proinflammatory conditions within the brain that ultimately potentiate the neurodegenerative process.
Collapse
Affiliation(s)
- Wesley M Williams
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
15
|
Metallothionein-II improves motor function recovery and increases spared tissue after spinal cord injury in rats. Neurosci Lett 2012; 514:102-5. [PMID: 22405890 DOI: 10.1016/j.neulet.2012.02.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/23/2022]
Abstract
After spinal cord injury (SCI), a complex cascade of pathophysiological processes rapidly damages the nervous tissue. The initial damage spreads to the surrounding tissue by different mechanisms, including oxidative stress. We have recently reported that the induction of metallothionein (MT) protein is an endogenous rapid-response mechanism after SCI. Since the participation of MT in neuroprotective processes after SCI is still unknown, the aim of the present study was to evaluate the possible neuroprotective effect of exogenously administered MT-II during the acute phase after SCI in rats. Female Wistar rats weighing 200-250g were submitted to spinal cord contusion by means of a computer-controlled device (NYU impactor). Rats received several doses of MT-II (3.2, 10 and 100μg) at 2 and 8h after SCI. Results of the BBB scale were statistically analysed using an ANOVA of repeated-measures, followed by Tukey's test. Among the three doses tested, only 10 and 100μg were able to significantly increase (p<0.05) BBB scale scores eight weeks after SCI from a mean of 7.88 in the control group, to means of 12.63 and 10.88 for the 10 and 100μg doses of MT-II, respectively. The amount of spared tissue was also higher in the groups treated with 10 and 100μg, as compared to the control group values. Results from the present study demonstrate a significant neuroprotective effect of exogenously administered MT-II. Further studies are needed in order to characterize the mechanisms involved in this neuroprotective action.
Collapse
|
16
|
Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return. Mol Neurodegener 2012; 7:6. [PMID: 22315999 PMCID: PMC3299607 DOI: 10.1186/1750-1326-7-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/08/2012] [Indexed: 12/13/2022] Open
Abstract
A mechanical trauma to the spinal cord can be followed by the development of irreversible and progressive neurodegeneration, as opposed to a temporary or partially reversible neurological damage. An increasing body of experimental and clinical evidence from humans and animal models indicates that spinal cord injury may set in motion the development of disabling and at times fatal neuromuscular disorders, whose occurrence is not normally associated with any major environmental event. This outcome appears to be dependent on the co-occurrence of a particular form of mechanical stress and of a genetically-determined vulnerability. This increased vulnerability to spinal cord injury may depend on a change of the nature and of the timing of activation of a number of neuroprotective and neurodestructive molecular signals in the injured cord. Among the main determinants, we could mention an altered homeostasis of lipids and neurofilaments, an earlier inflammatory response and the failure of the damaged tissue to rein in oxidative damage and apoptotic cell death. These changes could force injured tissue beyond a point of no return and precipitate an irreversible neurodegenerative process. A better knowledge of the molecular signals activated in a state of increased vulnerability to trauma can inform future treatment strategies and the prediction of the neurological outcome after spinal cord injury.
Collapse
Affiliation(s)
- Ping K Yip
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | | |
Collapse
|
17
|
Qian Y, Zheng Y, Taylor R, Tiffany-Castiglioni E. Involvement of the molecular chaperone Hspa5 in copper homeostasis in astrocytes. Brain Res 2012; 1447:9-19. [PMID: 22342161 DOI: 10.1016/j.brainres.2012.01.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/17/2012] [Accepted: 01/27/2012] [Indexed: 12/24/2022]
Abstract
Copper (Cu) ion availability in tissues and cells must be closely regulated within safe limits by Cu transporters and chaperones. Astrocytes play key roles in metal homeostasis and distribution in the brain that are only partially understood. The purpose of this study was to define the role that the protein chaperone Hspa5, also known as Grp78, plays in Cu homeostasis in astrocytes. First passage cultures of primary astrocytes from neonatal rats and cultures of the C6 rat glioma cells were used as models. We found that the level of Cu accumulation in astrocyte cultures increased with Cu concentrations in the medium, and Cu treatment significantly reduced cellular levels of iron (Fe), manganese (Mn) and zinc (Zn). Cu accumulation specifically induced protein expression of Hspa5 but not metallothioneins (MTs) in astrocytes. In C6 cells, Hspa5 was identified as one component of a Cu-binding complex and shown to directly bind Cu. However, the level of Hspa5 expression was not proportional to Cu accumulation in astrocytes and C6 cells: astrocytes expressed low protein levels of Hspa5 compared to C6 cells but accumulated significantly more Cu than did C6 cells. Consistent with this finding, astrocytes expressed a lower level of the Cu-extruding protein Atp7a than did C6 cells, and depletion of Hspa5 by RNA interference resulted in significantly increased Cu accumulation and induction of MT1/2 expression. These data demonstrate that Hspa5 is involved in Cu homeostasis in astrocytes but not as a Cu storage protein.
Collapse
Affiliation(s)
- Yongchang Qian
- Department of Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
18
|
McCormick AM, Leipzig ND. Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng 2012; 40:578-97. [PMID: 22218702 DOI: 10.1007/s10439-011-0505-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 01/19/2023]
Abstract
There are currently no acceptable cures for central nervous system injuries, and damage induced large gaps in the peripheral nervous system have been challenging to bridge to restore neural functionality. Innervation by neurons is made possible by the growth cone. This dynamic structure is unique to neurons, and can directly sense physical and chemical activity in its environment, utilizing these cues to propel axons to precisely reach their targets. Guidance can occur through chemoattractive factors such as neurotrophins and netrins, chemorepulsive agents like semaphorins and slits, or contact-mediated molecules such as ephrins and those located in the extracellular matrix. The understanding of biomolecular activity during nervous system development and injury has generated new techniques and tactics for improving and restoring function to the nervous system after injury. This review will focus on the major neuronal guidance molecules and their utility in current tissue engineering and neural regenerative strategies.
Collapse
Affiliation(s)
- Aleesha M McCormick
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | | |
Collapse
|
19
|
Wilkinson AE, McCormick AM, Leipzig ND. Central Nervous System Tissue Engineering: Current Considerations and Strategies. ACTA ACUST UNITED AC 2011. [DOI: 10.2200/s00390ed1v01y201111tis008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Ji J, Tyurina YY, Tang M, Feng W, Stolz DB, Clark RSB, Meaney DF, Kochanek PM, Kagan VE, Bayır H. Mitochondrial injury after mechanical stretch of cortical neurons in vitro: biomarkers of apoptosis and selective peroxidation of anionic phospholipids. J Neurotrauma 2011; 29:776-88. [PMID: 21895519 DOI: 10.1089/neu.2010.1602] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mechanical injury of neurites accompanied by rupture of mitochondrial membranes may lead to immediate nonspecific release and spreading of pro-apoptotic factors and activation of proteases, that is, execution of apoptotic program. In the current work, we studied the time course of the major biomarkers of apoptosis as they are induced by exposure of rat cortical neurons to mechanical stretch. By using transmission electron microscopy, we found that mitochondria in the neurites were damaged early (1 h) after mechanical stretch injury whereas somal mitochondria were significantly more resistant and demonstrated structural damage and degenerative mitochondrial changes at a later time point after stretch (12 h). We also report that the stretch injury caused immediate activation of reactive oxygen species production followed by selective oxidation of a mitochondria-specific phospholipid, cardiolipin, whose individual peroxidized molecular species have been identified and quantified by electrospray ionization mass spectrometry analysis. Most abundant neuronal phospholipids - phosphatidylcholine, phophatidylethanolamine - did not undergo oxidative modification. Simultaneously, a small-scale release of cytochrome c was observed. Notably, caspase activation and phosphatidylserine externalization - two irreversible apoptotic events designating a point of no return - are substantially delayed and do not occur until 6-12 h after the initial impact. The early onset of reactive oxygen species production and cytochrome c release may be relevant to direct stretch-induced damage to mitochondria. The delayed emergence of apoptotic neuronal death after the immediate mechanical damage to mitochondria suggests a possible window of opportunity for targeted therapies.
Collapse
Affiliation(s)
- Jing Ji
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tiffany‐Castiglioni E, Hong S, Qian Y. Copper handling by astrocytes: Insights into neurodegenerative diseases. Int J Dev Neurosci 2011; 29:811-8. [DOI: 10.1016/j.ijdevneu.2011.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 12/14/2022] Open
Affiliation(s)
- Evelyn Tiffany‐Castiglioni
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasTX77843United States
| | | | - Yongchang Qian
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasTX77843United States
| |
Collapse
|
22
|
Lee SJ, Cho KS, Kim HN, Kim HJ, Koh JY. Role of zinc metallothionein-3 (ZnMt3) in epidermal growth factor (EGF)-induced c-Abl protein activation and actin polymerization in cultured astrocytes. J Biol Chem 2011; 286:40847-56. [PMID: 21900236 DOI: 10.1074/jbc.m111.245993] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent evidence indicates that zinc plays a major role in neurochemistry. Of the many zinc-binding proteins, metallothionein-3 (Mt3) is regarded as one of the major regulators of cellular zinc in the brain. However, biological functions of Mt3 are not yet well characterized. Recently, we found that lysosomal dysfunction in metallothionein-3 (Mt3)-null astrocytes involves down-regulation of c-Abl. In this study, we investigated the role of Mt3 in c-Abl activation and actin polymerization in cultured astrocytes following treatment with epidermal growth factor (EGF). Compared with wild-type (WT) astrocytes, Mt3-null cells exhibited a substantial reduction in the activation of c-Abl upon treatment with EGF. Consistent with previous studies, activation of c-Abl by EGF induced dissociation of c-Abl from F-actin. Mt3 added to astrocytic cell lysates bound F-actin, augmented F-actin polymerization, and promoted the dissociation of c-Abl from F-actin, suggesting a possible role for Mt3 in this process. Conversely, Mt3-deficient astrocytes showed significantly reduced dissociation of c-Abl from F-actin following EGF treatment. Experiments using various peptide fragments of Mt3 showed that a fragment containing the N-terminal TCPCP motif (peptide 1) is sufficient for this effect. Removal of zinc from Mt3 or pep1 with tetrakis(2-pyridylmethyl)ethylenediamine abrogated the effect of Mt3 on the association of c-Abl and F-actin, indicating that zinc binding is necessary for this action. These results suggest that ZnMt3 in cultured astrocytes may be a normal component of c-Abl activation in EGF receptor signaling. Hence, modulation of Mt3 levels or distribution may prove to be a useful strategy for controlling cytoskeletal mobilization following EGF stimulation in brain cells.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | |
Collapse
|
23
|
Nazıroğlu M. TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 2010; 36:355-66. [PMID: 21140288 DOI: 10.1007/s11064-010-0347-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 12/13/2022]
Abstract
The Na+ and Ca(2+)-permeable melastatin related transient receptor potential 2 (TRPM2) channels can be gated either by ADP-ribose (ADPR) in concert with Ca(2+) or by hydrogen peroxide (H(2)O(2)), an experimental model for oxidative stress, binding to the channel's enzymatic Nudix domain. Since the mechanisms that lead to TRPM2 gating in response to ADPR and H(2)O(2) are not understood in neuronal cells, I summarized previous findings and important recent advances in the understanding of Ca(2+) influx via TRPM2 channels in different neuronal cell types and disease processes. Considering that TRPM2 is activated by oxidative stress, mediated cell death and inflammation, and is highly expressed in brain, the channel has been investigated in the context of central nervous system. TRPM2 plays a role in H(2)O(2) and amyloid β-peptide induced striatal cell death. Genetic variants of the TRPM2 gene confer a risk of developing Western Pacific amyotropic lateral sclerosis and parkinsonism-dementia complex and bipolar disorders. TRPM2 also contributes to traumatic brain injury processes such as oxidative stress, inflammation and neuronal death. There are a limited number of TRPM2 channel blockers and they seem to be cell specific. For example, ADPR-induced Ca(2+) influx in rat hippocampal cells was not blocked by N-(p-amylcinnomoyl)anthralic acid (ACA), the IP(3) receptor inhibitor 2-aminoethoxydiphenyl borate or PLC inhibitor flufenamic acid (FFA). However, the Ca(2+) entry in rat primary striatal cells was blocked by ACA and FFA. In conclusion TRPM2 channels in neuronal cells can be gated by either ADPR or H(2)O(2). It seems to that the exact relationship between TRPM2 channels activation and neuronal cell death still remains to be determined.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
24
|
Lee SJ, Koh JY. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 2010; 3:30. [PMID: 20974010 PMCID: PMC2988061 DOI: 10.1186/1756-6606-3-30] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/26/2010] [Indexed: 12/18/2022] Open
Abstract
Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological diseases, further insight into the contribution of zinc dynamics and metallothionein-3 function may help provide ways to effectively regulate these processes in brain cells.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Center, Department of Neurology, Asan Institute for Life Science, University of Ulsan, College of Medicine, Seoul 138-736, Korea
| | | |
Collapse
|
25
|
Lee SJ, Park MH, Kim HJ, Koh JY. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 2010; 58:1186-96. [PMID: 20544854 DOI: 10.1002/glia.20998] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
26
|
Chauhan NB, Gatto R, Chauhan MB. Neuroanatomical correlation of behavioral deficits in the CCI model of TBI. J Neurosci Methods 2010; 190:1-9. [PMID: 20385166 DOI: 10.1016/j.jneumeth.2010.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/03/2010] [Accepted: 04/05/2010] [Indexed: 01/05/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability both in combat and civilian situations with limited treatment options including surgical removal of hematoma, ventricular drainage and use of hyperosmotic agents that restrict secondary injury following TBI. Availability of appropriate model system with full-range characterization of anatomical and behavioral components correlative with brain injury provides a pre-clinical platform to test candidate therapies for clinical translation. Modeling of TBI using controlled cortical impact injury (CCI) is largely considered to be close to clinical TBI and hence CCI models have been widely used in pre-clinical TBI research. Most studies reported so far using CCI models were presented with a limited behavioral characterization and lacked its correlation with the signature histopathology of TBI. Current investigation validated a detailed sensomotor and cognitive behavioral characterization correlative with diffuse axonal injury-the signature histopathology of TBI, in the CCI mouse model of TBI. Present study offers a comprehensively characterized model of TBI that can be used to investigate cellular and molecular mechanisms underlying TBI and to test candidate therapies in developing novel and effective treatments for TBI.
Collapse
Affiliation(s)
- Neelima B Chauhan
- Research & Development, Jesse Brown VA Medical Center Chicago, IL 60612, USA.
| | | | | |
Collapse
|
27
|
Bio-released gold ions modulate expression of neuroprotective and hematopoietic factors after brain injury. Brain Res 2010; 1307:1-13. [DOI: 10.1016/j.brainres.2009.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 12/21/2022]
|
28
|
Pedersen MØ, Hansen PB, Nielsen SL, Penkowa M. Metallothionein-I + II and receptor megalin are altered in relation to oxidative stress in cerebral lymphomas. Leuk Lymphoma 2009; 51:314-28. [DOI: 10.3109/10428190903518329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|