1
|
Chatterjee D, Sivashanmugam K. Immunomodulatory peptides: new therapeutic horizons for emerging and re-emerging infectious diseases. Front Microbiol 2024; 15:1505571. [PMID: 39760081 PMCID: PMC11695410 DOI: 10.3389/fmicb.2024.1505571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
The emergence and re-emergence of multi-drug-resistant (MDR) infectious diseases have once again posed a significant global health challenge, largely attributed to the development of bacterial resistance to conventional anti-microbial treatments. To mitigate the risk of drug resistance globally, both antibiotics and immunotherapy are essential. Antimicrobial peptides (AMPs), also referred to as host defense peptides (HDPs), present a promising therapeutic alternative for treating drug-resistant infections due to their various mechanisms of action, which encompass antimicrobial and immunomodulatory effects. Many eukaryotic organisms produce HDPs as a defense mechanism, for example Purothionin from Triticum aestivum plant, Defensins, Cathelicidins, and Histatins from humans and many such peptides are currently the focus of research because of their antibacterial, antiviral and anti-fungicidal properties. This article offers a comprehensive review of the immunomodulatory activities of HDPs derived from eukaryotic organisms including humans, plants, birds, amphibians, reptiles, and marine species along with their mechanisms of action and therapeutic benefits.
Collapse
|
2
|
Chen S, Luo X, Ma R, Guo Z, Zhao J, Gao J, He R, Jin W. Promotes M1-polarization and diabetic wound healing using Prussian blue nanozymes. Int Immunopharmacol 2024; 141:113009. [PMID: 39191123 DOI: 10.1016/j.intimp.2024.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Long-term inflammation and impaired angiogenesis are the main reasons for the difficulty of diabetic wound healing. What to do to effectively promote vascular endothelial cell response and immune cell reprogramming is the key to diabetic skin healing. However, contemporary therapies cannot simultaneously coordinate the promotion of vascular endothelial cells and macrophage polarization, which leads to an increased rate of disability in patients with chronic diabetes. Therefore, we developed a method of repair composed of self-assembling Prussian blue nanoenzymes, which achieved synergistic support for the immune microenvironment, and also contributed to macrophage polarization in the tissue regeneration cycle, and enhanced vascular endothelial cell activity. The template hydrothermal synthesis PB-Zr nanoplatform was prepared and locally applied to wounds to accelerate wound healing through the synergistic effect of reactive oxygen species (ROS). PB-Zr significantly normalized the wound microenvironment, thereby inhibiting ROS production and inflammatory response, which may be because it inhibited the M1 polarization of macrophages in a rat model of wound. PB-Zr treatment significantly promoted the activity of vascular endothelial cells, which better promoted the growth and regeneration of other tissues in the body. The results confirmed the disease microenvironment of PB-Zr-mediated wound therapy and indicated its application in other inflammation-related diseases.
Collapse
Affiliation(s)
- ShuRui Chen
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Xiang Luo
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Ruixi Ma
- Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Zeyu Guo
- Department of Orthopedic, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jiyu Zhao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinpeng Gao
- Department of Orthopedic, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Rongrong He
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.
| | - Wen Jin
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Achary AS, Mahapatra C. Reactive nitrogen species-mediated cell proliferation during tail regeneration and retinoic acid as a putative modulator of tissue regeneration in the geckos. Cells Dev 2024; 177:203901. [PMID: 38278363 DOI: 10.1016/j.cdev.2024.203901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Reactive nitrogen species (RNS), a mediator of nitrosative stress, plays a vital role during wound healing but its role during tissue regeneration is poorly understood. In the present study, the role of RNS was investigated post-tail autotomy and limb amputation in a gecko species, Hemidactylus murrayi Gleadow, 1887. Tail autotomy led to an increased expression of iNOS and nitrosative stress leading to protein S-nitrosylation that probably restricted the acute inflammatory response caused by wounding. Increased nitrosative stress was also associated with proliferation of the wound epithelium and the tail blastema. Nitric oxide synthase inhibitor (L-NAME) caused retarded growth and structural abnormalities in the regenerating tail while peroxynitrite inhibitor (FeTmPyp) arrested tail regeneration. Spermine NONOate and retinoic acid, used as NO donors generated small outgrowths post-amputation of limbs with an increased number of proliferating cells and s-nitrosylation indicating the role of nitric oxide signalling in cell proliferation during regeneration. Additionally, retinoic acid treatment caused regeneration of nerve, muscle and adipose tissue in the regenerated limb structure 105 days post-amputation suggesting it to be a putative modulator of tissue regeneration in the non-regenerating limbs.
Collapse
Affiliation(s)
- A Sarada Achary
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India.
| | - Cuckoo Mahapatra
- P.G. Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India.
| |
Collapse
|
4
|
Xu C, Hutchins ED, Eckalbar W, Pendarvis K, Benson DM, Lake DF, McCarthy FM, Kusumi K. Comparative proteomic analysis of tail regeneration in the green anole lizard, Anolis carolinensis. NATURAL SCIENCES (WEINHEIM, GERMANY) 2024; 4:e20210421. [PMID: 38505006 PMCID: PMC10947082 DOI: 10.1002/ntls.20210421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As amniote vertebrates, lizards are the most closely related organisms to humans capable of appendage regeneration. Lizards can autotomize, or release their tails as a means of predator evasion, and subsequently regenerate a functional replacement. Green anoles (Anolis carolinensis) can regenerate their tails through a process that involves differential expression of hundreds of genes, which has previously been analyzed by transcriptomic and microRNA analysis. To investigate protein expression in regenerating tissue, we performed whole proteomic analysis of regenerating tail tip and base. This is the first proteomic data set available for any anole lizard. We identified a total of 2,646 proteins - 976 proteins only in the regenerating tail base, 796 only in the tail tip, and 874 in both tip and base. For over 90% of these proteins in these tissues, we were able to assign a clear orthology to gene models in either the Ensembl or NCBI databases. For 13 proteins in the tail base, 9 proteins in the tail tip, and 10 proteins in both regions, the gene model in Ensembl and NCBI matched an uncharacterized protein, confirming that these predictions are present in the proteome. Ontology and pathways analysis of proteins expressed in the regenerating tail base identified categories including actin filament-based process, ncRNA metabolism, regulation of phosphatase activity, small GTPase mediated signal transduction, and cellular component organization or biogenesis. Analysis of proteins expressed in the tail tip identified categories including regulation of organelle organization, regulation of protein localization, ubiquitin-dependent protein catabolism, small GTPase mediated signal transduction, morphogenesis of epithelium, and regulation of biological quality. These proteomic findings confirm pathways and gene families activated in tail regeneration in the green anole as well as identify uncharacterized proteins whose role in regrowth remains to be revealed. This study demonstrates the insights that are possible from the integration of proteomic and transcriptomic data in tail regrowth in the green anole, with potentially broader application to studies in other regenerative models.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Elizabeth D. Hutchins
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Walter Eckalbar
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Current addresses: School of Medicine, University of California, San Francisco, California, USA
| | - Ken Pendarvis
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Derek M. Benson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Fiona M. McCarthy
- Department of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
5
|
Greco N, Onisto M, Alibardi L. Protein extracts from regenerating lizard tail show an inhibitory effect on human cancer cells cultivated in-vitro. Ann Anat 2023; 250:152115. [PMID: 37315628 DOI: 10.1016/j.aanat.2023.152115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND accumulating evidence indicates that during tail regeneration in lizards the initial stage of regenerative blastema is a tumor-like proliferative outgrowth that rapidly elongates into a new tail composed of fully differentiated tissues. Both oncogenes and tumor-suppressors are expressed during regeneration, and it has been hypothesized that an efficient control of cell proliferation avoids that the blastema is turned into a tumor outgrowth. METHODS in order to determine whether functional tumor-suppressors are present in the growing blastema we have utilized protein extracts collected from early regenerating tails of 3-5 mm that have been tested for a potential anti-tumor effect on in-vitro culture by using cancer cell lines from human mammary gland (MDA-MB-231) and prostate cancer (DU145). RESULTS at specific dilutions, the extract determines a reduction of viability in cancer cells after 2-4 days of culture, as supported by statistical and morphological analyses. While control cells appear viable, treated cells result damaged and produce an intense cytoplasmic granulation and degeneration. CONCLUSIONS this negative effect on cell viability and proliferation is absent using tissues from the original tail supporting the hypothesis that only regenerating tissues synthesize tumor-suppressor molecules. The study suggests that the regenerating tail of lizard at the stages here selected contains some molecules that determine inhibition of cell viability on the cancer cells analyzed.
Collapse
Affiliation(s)
- Nicola Greco
- Department of Biomedical Science, University of Padova, Italy
| | - Maurizio Onisto
- Department of Biomedical Science, University of Padova, Italy
| | | |
Collapse
|
6
|
Vonk AC, Zhao X, Pan Z, Hudnall ML, Oakes CG, Lopez GA, Hasel-Kolossa SC, Kuncz AWC, Sengelmann SB, Gamble DJ, Lozito TP. Single-cell analysis of lizard blastema fibroblasts reveals phagocyte-dependent activation of Hedgehog-responsive chondrogenesis. Nat Commun 2023; 14:4489. [PMID: 37563130 PMCID: PMC10415409 DOI: 10.1038/s41467-023-40206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Lizards cannot naturally regenerate limbs but are the closest known relatives of mammals capable of epimorphic tail regrowth. However, the mechanisms regulating lizard blastema formation and chondrogenesis remain unclear. Here, single-cell RNA sequencing analysis of regenerating lizard tails identifies fibroblast and phagocyte populations linked to cartilage formation. Pseudotime trajectory analyses suggest spp1+-activated fibroblasts as blastema cell sources, with subsets exhibiting sulf1 expression and chondrogenic potential. Tail blastema, but not limb, fibroblasts express sulf1 and form cartilage under Hedgehog signaling regulation. Depletion of phagocytes inhibits blastema formation, but treatment with pericytic phagocyte-conditioned media rescues blastema chondrogenesis and cartilage formation in amputated limbs. The results indicate a hierarchy of phagocyte-induced fibroblast gene activations during lizard blastema formation, culminating in sulf1+ pro-chondrogenic populations singularly responsive to Hedgehog signaling. These properties distinguish lizard blastema cells from homeostatic and injury-stimulated fibroblasts and indicate potential actionable targets for inducing regeneration in other species, including humans.
Collapse
Affiliation(s)
- Ariel C Vonk
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Xiaofan Zhao
- Molecular Genomics Core, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Zheyu Pan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Megan L Hudnall
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Conrad G Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Gabriela A Lopez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
| | - Sarah C Hasel-Kolossa
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
| | - Alexander W C Kuncz
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Sasha B Sengelmann
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Darian J Gamble
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Thomas P Lozito
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA.
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA.
| |
Collapse
|
7
|
Alibardi L. Immunolocalization of
CD3
,
CD5
and
MHCII
in amputated tail and limb of the lizard
Podarcis muralis
marks a scarring healing program. ACTA ZOOL-STOCKHOLM 2023. [DOI: 10.1111/azo.12457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
8
|
Alibardi L. The regenerating tail of lizard transits through a tumour‐like stage represented by the regenerative blastema. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Kübler IC, Kretzschmar J, Brankatschk M, Sandoval-Guzmán T. Local problems need global solutions: The metabolic needs of regenerating organisms. Wound Repair Regen 2022; 30:652-664. [PMID: 35596643 PMCID: PMC7613859 DOI: 10.1111/wrr.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
The vast majority of species that belong to the plant or animal kingdom evolved with two main strategies to counter tissue damage-scar formation and regeneration. Whereas scar formation provides a fast and cost-effective repair to exit life-threatening conditions, complete tissue regeneration is time-consuming and requires vast resources to reinstall functionality of affected organs or structures. Local environments in wound healing are widely studied and findings have provided important biomedical applications. Less well understood are organismic physiological parameters and signalling circuits essential to maintain effective tissue repair. Here, we review accumulated evidence that positions the interplay of local and systemic changes in metabolism as essential variables modulating the injury response. We particularly emphasise the role of lipids and lipid-like molecules as significant components long overlooked.
Collapse
Affiliation(s)
- Ines C. Kübler
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Marko Brankatschk
- Department of Molecular, Cell and Developmental Biology, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Brandão AS, Borbinha J, Pereira T, Brito PH, Lourenço R, Bensimon-Brito A, Jacinto A. A regeneration-triggered metabolic adaptation is necessary for cell identity transitions and cell cycle re-entry to support blastema formation and bone regeneration. eLife 2022; 11:e76987. [PMID: 35993337 PMCID: PMC9395193 DOI: 10.7554/elife.76987] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Regeneration depends on the ability of mature cells at the injury site to respond to injury, generating tissue-specific progenitors that incorporate the blastema and proliferate to reconstitute the original organ architecture. The metabolic microenvironment has been tightly connected to cell function and identity during development and tumorigenesis. Yet, the link between metabolism and cell identity at the mechanistic level in a regenerative context remains unclear. The adult zebrafish caudal fin, and bone cells specifically, have been crucial for the understanding of mature cell contribution to tissue regeneration. Here, we use this model to explore the relevance of glucose metabolism for the cell fate transitions preceding new osteoblast formation and blastema assembly. We show that injury triggers a modulation in the metabolic profile at early stages of regeneration to enhance glycolysis at the expense of mitochondrial oxidation. This metabolic adaptation mediates transcriptional changes that make mature osteoblast amenable to be reprogramed into pre-osteoblasts and induces cell cycle re-entry and progression. Manipulation of the metabolic profile led to severe reduction of the pre-osteoblast pool, diminishing their capacity to generate new osteoblasts, and to a complete abrogation of blastema formation. Overall, our data indicate that metabolic alterations have a powerful instructive role in regulating genetic programs that dictate fate decisions and stimulate proliferation, thereby providing a deeper understanding on the mechanisms regulating blastema formation and bone regeneration.
Collapse
Affiliation(s)
- Ana S Brandão
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Jorge Borbinha
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Telmo Pereira
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Patrícia H Brito
- UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de LisboaLisbonPortugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | | | - Antonio Jacinto
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| |
Collapse
|
11
|
Alibardi L. Immunolocalization of tumor suppressors arhgap28 and retinoblastoma in the lizard Podarcis muralis suggests that they contribute to the regulated regeneration of the tail. J Morphol 2022; 283:973-986. [PMID: 35708299 DOI: 10.1002/jmor.21484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022]
Abstract
Tail regeneration in lizards is an outstanding and unique postembryonic morphogenetic process. This developmental process is regulated by poorly known factors, but recent studies have suggested that it derives from a balanced activity between oncoproteins and tumor suppressors. Transcriptome and expression data have indicated that arhgap28 and retinoblastoma proteins are among the main tumor suppressors activated during tail regeneration. However, their cellular localization is not known. Therefore, in the present immunohistochemical study, two proteins have been detected in various tissues at the beginning of their differentiation. Both proteins are present especially in the new scales, axial cartilage, and muscle bundles of the regenerating tail, the main tissues forming the new tail. Sparse or occasionally labeled cells are observed in the blastema, but intense labeling is seen in the basal layers of the wound (regenerating) epidermis and in external differentiating epidermal layers. Numerous keratinocytes also show a nuclear localization for both proteins, suggesting that the latter may activate a gene program for tissue differentiation after the inhibition of cell multiplication. Based on microscopic, molecular, experimental, and in vitro studies, a hypothesis on the "inhibition of contact" among the apical cells of the blastema and those of proximal differentiating tissues is proposed to explain the permanence of an active blastema only at the apex of the regenerating tail without tail growth can degenerate into a tumorigenic outgrowth.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab, Padova, Italy.,Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Alibardi L. Immunohistochemistry Indicates That Persistent Inflammation Determines Failure of Tail, Limb and Finger Regeneration in the Lizard Podarcis muralis. Ann Anat 2022; 243:151940. [PMID: 35390473 DOI: 10.1016/j.aanat.2022.151940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The presence of white blood inflammatory cells in injured tissues and their effect on the process of organ regeneration in lizards has been assessed on tail, limb and digits. METHODS The present immunohistochemical survey analyzes the occurrence of CD68-labeled cells in lizard organs uncapable of regenerating tissues that exhibit strong inflammatory activity. RESULTS This marker mainly identifies macrophages and mast cells present in large number within tissues of injured limbs and digits. Also a high inflammation is associated with amputated tails that do not regenerate, derived from cauterization or infection of tissues of the tail stump. In the healing limbs and fingers at 12-20 days post-amputation, numerous CD68-labeled cells, most likely macrophages, are seen among superficial connective tissues and injured muscles and bones. These cells likely stimulate and give rise to scarring tissues and no regeneration of limb and fingers occurs. In the cauterized or in the infected tail stump a strong accumulation of CD68-positive mast cells and macrophages is observed, where they likely evoke epidermal coagulation, formation of scarring connective tissue, and loss of regeneration. CONCLUSIONS The present observations provide further cytological evidence that support the notion that a strong and lasting inflammatory condition impedes organ regeneration in specifically lizards and, more generally other vertebrates as well.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Dipartimento di Biologia, University of Bologna, via Selmi 3, 40126, BO, Italy
| |
Collapse
|
13
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
14
|
Alibardi L. Immunolocalization of Adenomatous Polyposis Coli protein (apc) in the regenerating lizard tail suggests involvement in tissue differentiation and regulation of growth. J Morphol 2022; 283:677-688. [PMID: 35195910 DOI: 10.1002/jmor.21465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/07/2022]
Abstract
Lizard tail regeneration is likely regulated by the balanced activity of oncogenes and tumor suppressors that control cell proliferation avoiding tumorigenic degeneration. One of the main tumor suppressor genes present in the regenerating tail is the "adenomatous polyposis coli (apc)" but the localization of its coded protein (apc) is not known. This protein may be involved in regulation of apical-basal tail regeneration in lizards. The present immunohistochemical study shows that apc is localized in apical wound epidermis and regenerating ependyme, two tissues that proliferate and also express onco-genes. Apc is not present in blastema cells but localizes in differentiating cells of regenerating scales, muscles and less intensely in the non-apical ependymal epithelium and cartilage. This suggests that apc is involved in the induction of their differentiation. The apc immunolabeling is mainly nuclear in the basal epidermal layer of the apical wound epidermis where it may be involved in modulating keratinocytes proliferation, like in the forming scales. In regenerating muscle and cartilage apc is mainly cytoplasmic while sparse labeled nuclei are seen in proliferative areas of these tissues. In the regenerating spinal cord, the nuclear and cytoplasmic apc labeling is present in ependymal cells of the distal-most ependymal ampulla but the labeling fades in more proximal regions and mainly remains in the cytoplasm facing the central canal and in sparse nuclei. It is suggested that the pattern of immunolabeling for apc indicates that this tumor suppressor may contribute to tissue differentiation within the regenerating tail. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology of the University of Bologna
| |
Collapse
|
15
|
Lizard Blastema Organoid Model Recapitulates Regenerated Tail Chondrogenesis. J Dev Biol 2022; 10:jdb10010012. [PMID: 35225965 PMCID: PMC8883911 DOI: 10.3390/jdb10010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Lizard tail regeneration provides a unique model of blastema-based tissue regeneration for large-scale appendage replacement in amniotes. Green anole lizard (Anolis carolinensis) blastemas contain fibroblastic connective tissue cells (FCTCs), which respond to hedgehog signaling to create cartilage in vivo. However, an in vitro model of the blastema has not previously been achieved in culture. (2) Methods: By testing two adapted tissue dissociation protocols and two optimized media formulations, lizard tail FCTCs were pelleted in vitro and grown in a micromass blastema organoid culture. Pellets were analyzed by histology and in situ hybridization for FCTC and cartilage markers alongside staged original and regenerating lizard tails. (3) Results: Using an optimized serum-free media and a trypsin- and collagenase II-based dissociation protocol, micromass blastema organoids were formed. Organoid cultures expressed FCTC marker CDH11 and produced cartilage in response to hedgehog signaling in vitro, mimicking in vivo blastema and tail regeneration. (4) Conclusions: Lizard tail blastema regeneration can be modeled in vitro using micromass organoid culture, recapitulating in vivo FCTC marker expression patterns and chondrogenic potential.
Collapse
|
16
|
Alibardi L. Microscopy suggests that glutathione S‐transferase is stored in large granules of myeloid cells in bone marrow and sparse granulocytes of the regenerating tail of lizard. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
17
|
Alibardi L. Introduction to the Study on Regeneration in Lizards as an Amniote Model of Organ Regeneration. J Dev Biol 2021; 9:51. [PMID: 34842730 PMCID: PMC8628930 DOI: 10.3390/jdb9040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Initial observations on the regeneration of the tail in lizards were recorded in brief notes by Aristotle over 2000 years ago, as reported in his book, History of Animals (cited from [...].
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, 35100 Padova, Italy;
- Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
18
|
Liu Z, Huang S, Xu M, Zhang W, Guan T, Wang Q, Liu M, Yao J, Liu Y. The vascularization, innervation and myogenesis of early regenerated tail in Gekko japonicus. J Mol Histol 2021; 52:1189-1204. [PMID: 34676488 DOI: 10.1007/s10735-021-10032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Many species of lizards are capable of tail regeneration. There has been increased interest in the study of lizard tail regeneration in recent years as it is an amenable regeneration model for amniotes. In this study, Gekko japonicus was used as a model to investigate the initiation of vascularization, innervation and myogenesis during tail regeneration. We found that angiogenesis and axon regeneration occurred almost simultaneously within 4 days post amputation. The results showed that the endothelial cells of the original vasculature proliferated and extended into the blastema as capillary vessels, which inter-connected to form a capillary network. The nerve fibers innervated the regenerated tissue from the original spinal cord and dorsal root ganglia, and the fiber bundles increased during 14 days. Regenerating muscle tissues emerged 2 weeks after amputation. PAX3 and PAX7 expression were detected during myogenesis, with PAX7 showing a continuous increase in expression from day 3 until the day 14, whereas PAX3 reached a peak level on day 10 day post amputation, and then declined quickly to level as normal control on day 14. PCNA and PAX3 double-positive satellite cells were observed in the original rostral tissues, indicating the involvement of satellite cell proliferation during tail regeneration. Taken together, these data suggest that tail regeneration in Gekko japonicus involved rapid angiogenesis from the beginning to the day 10 and followed by capillary remodeling. The innervation of regenerated tail was significant on day 4 and increased gradually during regeneration, while the regenerated muscle tissues was obvious on day 14 after amputation.
Collapse
Affiliation(s)
- Zhuang Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qinghua Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jian Yao
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
19
|
Alibardi L. Review. Limb regeneration in lizards under natural and experimental conditions with considerations on the induction of appendages regeneration in amniotes. Ann Anat 2021; 239:151844. [PMID: 34662737 DOI: 10.1016/j.aanat.2021.151844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Study on the failure of limb regeneration in lizards evidences the difficult problems met from amniotes to regenerate organs. Contrary to the tail, limb loss in terrestrial environment is generally fatal and no selection for its regeneration occurred during lizard evolution. METHODS Experimentally amputated limbs were fixed and embedded for microscopy. RESULTS After limb loss an intense inflammatory reaction occurs and immune cells are recruited underneath a wound epidermis, forming a vascularized granulation tissue. The regenerating epidermis takes 2-3 weeks to cover the limb stump since degenerating long bones must be excised first while a dense connective tissue is formed and no limb growth occurs. Cell proliferation occurs in granulation tissues and wound epidermis during the initial 2-3 weeks of wound healing but disappears later determining the arrest of growth. Transcriptome data indicates that the limb, contrary to the tail, activates numerous genes involved in inflammation, immunity and fibroplasia while down-regulates some proliferative and most myogenic genes. Attempts to stimulate limb regeneration, by implants of nervous tissues or growth factors such as FGFs only maintain proliferation for few weeks but eventually the scarring program prevails and only short outgrowths missing of autopodial elements are regenerated. CONCLUSIONS While lizard limbs show the typical scarring outcome of mammals, the comparison of genes activated in the regenerating tail has allowed identifying key genes implicated in organ regeneration in amniotes.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Italy.
| |
Collapse
|
20
|
Alibardi L. Growth associated protein 43 and neurofilament immunolabeling in the transected lumbar spinal cord of lizard indicates limited axonal regeneration. Neural Regen Res 2021; 17:1034-1041. [PMID: 34558530 PMCID: PMC8552833 DOI: 10.4103/1673-5374.324850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Previous cytological studies on the transected lumbar spinal cord of lizards have shown the presence of differentiating glial cells, few neurons and axons in the bridge region between the proximal and distal stumps of the spinal cord in some cases. A limited number of axons (20–50) can cross the bridge and re-connect the caudal stump of the spinal cord with small neurons located in the rostral stump of the spinal cord. This axonal regeneration appears to be related to the recovery of hind-limb movements after initial paralysis. The present study extends previous studies and shows that after transection of the lumbar spinal cord in lizards, a glial-connective tissue bridge that reconnects the rostral and caudal stumps of the interrupted spinal cord is formed at 11–34 days post-injury. Following an initial paralysis some recovery of hindlimb movements occurs within 1–3 months post-injury. Immunohistochemical and ultrastructural analysis for a growth associated protein 43 (GAP-43) of 48–50 kDa shows that sparse GAP-43 positive axons are present in the proximal stump of the spinal cord but their number decreased in the bridge at 11–34 days post-transection. Few immunolabeled axons with a neurofilament protein of 200–220 kDa were seen in the bridge at 11–22 days post-transection but their number increased at 34 days and 3 months post-amputation in lizards that have recovered some hindlimb movements. Numerous neurons in the rostral and caudal stumps of the spinal cord were also labeled for GAP43, a cytoplasmic protein that is trans-located into their axonal growth cones. This indicates that GAP-43 biosynthesis is related to axonal regeneration and sprouting from neurons that were damaged by the transection. Taken together, previous studies that utilized tract-tracing technique to label the present observations confirm that a limited axonal re-connection of the transected spinal cord occurs 1–3 months post-injury in lizards. The few regenerating-sprouting axons within the bridge reconnect the caudal with the rostral stumps of the spinal cord, and likely contribute to activate the neural circuits that sustain the limited but important recovery of hind-limb movements after initial paralysis. The surgical procedures utilized in the study followed the regulations on animal care and experimental procedures under the Italian Guidelines (art. 5, DL 116/92).
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Berger A, Wu W, Bishop K, Elkahloun AG, Chitnis A, Liu P, Burgess SM. The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. NPJ Regen Med 2021; 6:55. [PMID: 34518542 PMCID: PMC8437957 DOI: 10.1038/s41536-021-00163-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration. Using this model, we show that tail amputation triggers an obligate metabolic shift to promote glucose metabolism during early regeneration similar to the Warburg effect observed in tumor forming cells. Inhibition of glucose metabolism did not affect the overall health of the embryo but completely blocked the tail from regenerating after amputation due to the failure to form a functional blastema. We performed a time series of single-cell RNA sequencing on regenerating tails with and without inhibition of glucose metabolism. We demonstrated that metabolic reprogramming is required for sustained TGF-β signaling and blocking glucose metabolism largely mimicked inhibition of TGF-β receptors, both resulting in an aberrant blastema. Finally, we showed using genetic ablation of three possible metabolic pathways for glucose, that metabolic reprogramming is required to provide glucose specifically to the hexosamine biosynthetic pathway while neither glycolysis nor the pentose phosphate pathway were necessary for regeneration.
Collapse
Affiliation(s)
- Jason W Sinclair
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Hoying
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Erica Bresciani
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Damian Dalle Nogare
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Carli D Needle
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Alexandra Berger
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ajay Chitnis
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Liu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
22
|
Alibardi L. Review: Regeneration of the tail in lizards appears regulated by a balanced expression of oncogenes and tumor suppressors. Ann Anat 2021; 239:151824. [PMID: 34478856 DOI: 10.1016/j.aanat.2021.151824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Tail regeneration in lizards is the only case of large multi-tissue organ regeneration in amniotes. METHODS The present Review summarizes numerous immunolocalization and gene-expression studies indicating that after tail amputation in lizards the stump is covered in 7-10 days by the migration of keratinocytes. This allows the accumulation of mesenchymal-fibroblasts underneath the wound epidermis and forms a regenerative blastema and a new tail. RESULTS During migration keratinocytes transit from a compact epidermis into relatively free keratinocytes in a process of "Epithelial Mesenchymal Transition" (EMT). While EMT has been implicated in carcinogenesis no malignant transformation is observed during these cell movements in the regenerative blastema. Immunolabeling for E-cadherin and snail shows that these proteins are present in the cytoplasm and nuclei of migrating keratinocytes. The basal layer of the wound epithelium of the apical blastema express onco-proteins (wnt2b, egfr, c-myc, fgfs, fgfr, rhov, etc.) and tumor suppressors (p53/63, fat2, ephr, apc, retinoblastoma, arhgap28 etc.). This suggests that their balanced action regulates proliferation of the blastema. CONCLUSIONS While apical epidermis and mesenchyme are kept under a tight proliferative control, in more proximal regions of the regenerating tail the expression of tumor-suppressors triggers the differentiation of numerous tissues, forming the large myomeres, axial cartilage, simple spinal cord and nerves, new scales, arteries and veins, fat deposits, dermis and other connective tissues. Understanding gene expression patterns of developmental pathways activated during tail regeneration in lizards is useful for cancer research and for future attempts to induce organ regeneration in other amniotes including humans.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Dipartmento di Biologia, Universita' di Bologna, Italy.
| |
Collapse
|
23
|
Khaire K, Verma U, Buch P, Patel S, Ranadive I, Balakrishnan S. Site-specific variation in the activity of COX-2 alters the pattern of wound healing in the tail and limb of northern house gecko by differentially regulating the expression of local inflammatory mediators. ZOOLOGY 2021; 148:125947. [PMID: 34333369 DOI: 10.1016/j.zool.2021.125947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/29/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The role of COX-2 induced PGE2 in the site-specific regulation of inflammatory mediators that facilitate disparate wound healing in the tail and limb of a lizard was studied by analysing their levels during various stages of healing. The activity of COX-2 and concentration of PGE2 surged during the early healing phase of tail along with the parallel rise in EP4 receptor. PGE2-EP4 interaction is corelated to early resolution (by 3 dpa) of inflammation by rising the antiinflammatory mediator IL-10. This likely causes reduction in proinflammatory mediators viz., iNOS, TNF-α, IL-6, IL-17 and IL-22. Conversely, in the limb, COX-2 derived PGE2 likely causes rise in inflammation through EP2 receptor-based signalling, as all the proinflammatory mediators stay elevated through the course of healing (till 9 dpa), while expression of IL-10 is reduced. This study brings to light the novel roles of IL-17 and IL-22 in programming wound healing. As IL-17 reduces in tail, IL-22 behaves in reparative way, causing conducive environment for scar-free wound healing. On the contrary, synergic elevation of both IL-17 and Il-22 form a micro-niche suitable for scarred wound healing in limb, thus obliterating its regenerative potential.
Collapse
Affiliation(s)
- Kashmira Khaire
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Urja Verma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Pranav Buch
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Sonam Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Isha Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390001, Gujarat, India.
| |
Collapse
|
24
|
Alesci A, Pergolizzi S, Lo Cascio P, Fumia A, Lauriano ER. Neuronal regeneration: Vertebrates comparative overview and new perspectives for neurodegenerative diseases. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
25
|
Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A. Neurogenesis after Spinal Cord Injury: State of the Art. Cells 2021; 10:cells10061499. [PMID: 34203611 PMCID: PMC8232196 DOI: 10.3390/cells10061499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis in the adult state is the process of new neuron formation. This relatively infrequent phenomenon comprises four stages: cell proliferation, cell migration, differentiation, and the integration of these cells into an existing circuit. Recent reports suggest that neurogenesis can be found in different regions of the Central Nervous System (CNS), including the spinal cord (SC). This process can be observed in physiological settings; however, it is more evident in pathological conditions. After spinal cord injury (SCI), the activation of microglial cells and certain cytokines have shown to exert different modulatory effects depending on the presence of inflammation and on the specific region of the injury site. In these conditions, microglial cells and cytokines are considered to play an important role in the regulation of neurogenesis after SCI. The purpose of this article is to present an overview on neural progenitor cells and neurogenic and non-neurogenic zones as well as the cellular and molecular regulation of neurogenesis. Additionally, we will briefly describe the recent advances in the knowledge of neurogenesis after SCI.
Collapse
|
26
|
Alibardi L. Immunoreactivity for Dab2 and Foxp3 suggests that immune‐suppressive cells are present in the regenerating tail blastema of lizard. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova Dipartimento di Biologia University of Bologna Bologna Italy
| |
Collapse
|
27
|
Santana FL, Estrada K, Ortiz E, Corzo G. Reptilian β-defensins: Expanding the repertoire of known crocodylian peptides. Peptides 2021; 136:170473. [PMID: 33309943 DOI: 10.1016/j.peptides.2020.170473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
One of the major families of host defense peptides (HDPs) in vertebrates are β-defensins. They constitute important components of innate immunity and have remained an interesting topic of research for more than two decades. While many β-defensin sequences in mammals and birds have been identified and their properties and functions characterized, β-defensin peptides from other groups of vertebrates, particularly reptiles, are still largely unexplored. In this review, we focus on reptilian β-defensins and summarize different aspects of their biology, such as their genomic organization, evolution, structure, and biological activities. Reptilian β-defensin genes exhibit similar genomic organization to birds and their number and gene structure are variable among different species. During the evolution of reptiles, several gene duplication and deletion events have occurred and the functional diversification of β-defensins has been mainly driven by positive selection. These peptides display broad antimicrobial activity in vitro, but a deeper understanding of their mechanisms of action in vivo, including their role as immunomodulators, is still lacking. Reptilian β-defensins constitute unique polypeptide sequences to expand our current understanding of innate immunity in these animals and elucidate core biological functions of this family of HDPs across amniotes.
Collapse
Affiliation(s)
- Felix L Santana
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca Mor., 62250, Mexico.
| | - Karel Estrada
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca Mor., 62250, Mexico
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca Mor., 62250, Mexico.
| |
Collapse
|
28
|
Abarca-Buis RF, Mandujano-Tinoco EA, Cabrera-Wrooman A, Krötzsch E. The complexity of TGFβ/activin signaling in regeneration. J Cell Commun Signal 2021; 15:7-23. [PMID: 33481173 DOI: 10.1007/s12079-021-00605-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
The role of transforming growth factor β TGFβ/activin signaling in wound repair and regeneration is highly conserved in the animal kingdom. Various studies have shown that TGF-β/activin signaling can either promote or inhibit different aspects of the regeneration process (i.e., proliferation, differentiation, and re-epithelialization). It has been demonstrated in several biological systems that some of the different cellular responses promoted by TGFβ/activin signaling depend on the activation of Smad-dependent or Smad-independent signal transduction pathways. In the context of regeneration and wound healing, it has been shown that the type of R-Smad stimulated determines the different effects that can be obtained. However, neither the possible roles of Smad-independent pathways nor the interaction of the TGFβ/activin pathway with other complex signaling networks involved in the regenerative process has been studied extensively. Here, we review the important aspects concerning the TGFβ/activin signaling pathway in the regeneration process. We discuss data regarding the role of TGF-β/activin in the most common animal regenerative models to demonstrate how this signaling promotes or inhibits regeneration, depending on the cellular context.
Collapse
Affiliation(s)
- René Fernando Abarca-Buis
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico.
| | - Edna Ayerim Mandujano-Tinoco
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Alejandro Cabrera-Wrooman
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| |
Collapse
|
29
|
Degan M, Dalla Valle L, Alibardi L. Gene expression in regenerating and scarring tails of lizard evidences three main key genes (wnt2b, egfl6, and arhgap28) activated during the regulated process of tail regeneration. PROTOPLASMA 2021; 258:3-17. [PMID: 32852660 DOI: 10.1007/s00709-020-01545-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
We have analyzed the expression of key genes orchestrating tail regeneration in lizard under normal and scarring conditions after cauterization. At 1-day post-cauterization (1 dpc), the injured blastema contains degenerating epithelial and mesenchymal cells, numerous mast cells, and immune cells. At 3 and 7 dpc, a stratified wound epidermis is forming while fibrocytes give rise to a scarring connective tissue. Oncogenes such as wnt2b, egfl6, wnt6, and mycn and the tumor suppressor arhgap28 are much more expressed than other oncogenes (hmga2, rhov, fgf8, fgfr4, tert, shh) and tumor suppressors (apcdd1, p63, rb, fat2, bcl11b) in the normal blastema and at 7 dpc. Blastemas at 3 dpc feature the lowest upregulation of most genes, likely derived from damage after cauterization. Immunomodulator genes nfatc4 and lef1 are more expressed at 7 dpc than in normal blastema and 3 dpc suggesting the induction of immune response favoring scarring. Balanced over-expression of oncogenes, tumor suppressor genes, and immune modulator genes determines regulation of cell proliferation (anti-oncogenic), of movement (anti-metastatic), and immunosuppression in the normal blastema. Significant higher expression of oncogenes wnt2b and egfl6 in normal blastema and higher expression of the tumor suppressor arhgap28 in the 7 dpc blastema indicate that they are among the key/master genes that determine the regulated regeneration of the tail.
Collapse
Affiliation(s)
- Massimo Degan
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | | | - Lorenzo Alibardi
- Comparative Histolab Padova, Padua, Italy.
- Department of Biology, University of Bologna, Via Semi 3, 40126, Bologna, Italy.
| |
Collapse
|
30
|
Xu C, Palade J, Fisher RE, Smith CI, Clark AR, Sampson S, Bourgeois R, Rawls A, Elsey RM, Wilson-Rawls J, Kusumi K. Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis). Sci Rep 2020; 10:20122. [PMID: 33208803 PMCID: PMC7674433 DOI: 10.1038/s41598-020-77052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Reptiles are the only amniotes that maintain the capacity to regenerate appendages. This study presents the first anatomical and histological evidence of tail repair with regrowth in an archosaur, the American alligator. The regrown alligator tails constituted approximately 6–18% of the total body length and were morphologically distinct from original tail segments. Gross dissection, radiographs, and magnetic resonance imaging revealed that caudal vertebrae were replaced by a ventrally-positioned, unsegmented endoskeleton. This contrasts with lepidosaurs, where the regenerated tail is radially organized around a central endoskeleton. Furthermore, the regrown alligator tail lacked skeletal muscle and instead consisted of fibrous connective tissue composed of type I and type III collagen fibers. The overproduction of connective tissue shares features with mammalian wound healing or fibrosis. The lack of skeletal muscle contrasts with lizards, but shares similarities with regenerated tails in the tuatara and regenerated limbs in Xenopus adult frogs, which have a cartilaginous endoskeleton surrounded by connective tissue, but lack skeletal muscle. Overall, this study of wild-caught, juvenile American alligator tails identifies a distinct pattern of wound repair in mammals while exhibiting features in common with regeneration in lepidosaurs and amphibia.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Joanna Palade
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Rebecca E Fisher
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.,Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Cameron I Smith
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Andrew R Clark
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Samuel Sampson
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | | | - Alan Rawls
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, 70643, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.
| |
Collapse
|
31
|
Beatty AE, Schwartz TS. Gene expression of the IGF hormones and IGF binding proteins across time and tissues in a model reptile. Physiol Genomics 2020; 52:423-434. [PMID: 32776803 PMCID: PMC7509249 DOI: 10.1152/physiolgenomics.00059.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
The insulin and insulin-like signaling (IIS) network regulates cellular processes including pre- and postnatal growth, cellular development, wound healing, reproduction, and longevity. Despite their importance in the physiology of vertebrates, the study of the specific functions of the top regulators of the IIS network, insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs), has been mostly limited to a few model organisms. To expand our understanding of this network, we performed quantitative gene expression of IGF hormones in liver and qualitative expression of IGFBPs across tissues and developmental stages in a model reptile, the brown anole lizard (Anolis sagrei). We found that lizards express IGF2 across all life stages (preoviposition embryos to adulthood) and at a higher level than IGF1, which is opposite to patterns seen in laboratory rodents but similar to those seen in humans and other vertebrate models. IGFBP expression was ubiquitous across tissues (brain, gonad, heart, liver, skeletal muscle, tail, and regenerating tail) in adults, apart from IGFBP5, which was variable. These findings provide an essential foundation for further developing the anole lizard as a physiological and biomedical reptile model, as well as expanding our understanding of the function of the IIS network across species.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
32
|
Alibardi L. Appendage regeneration in anamniotes utilizes genes active during larval-metamorphic stages that have been lost or altered in amniotes: The case for studying lizard tail regeneration. J Morphol 2020; 281:1358-1381. [PMID: 32865265 DOI: 10.1002/jmor.21251] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
This review elaborates the idea that organ regeneration derives from specific evolutionary histories of vertebrates. Regenerative ability depends on genomic regulation of genes specific to the life-cycles that have differentially evolved in anamniotes and amniotes. In aquatic environments, where fish and amphibians live, one or multiple metamorphic transitions occur before the adult stage is reached. Each transition involves the destruction and remodeling of larval organs that are replaced with adult organs. After organ injury or loss in adult anamniotes, regeneration uses similar genes and developmental process than those operating during larval growth and metamorphosis. Therefore, the broad presence of regenerative capability across anamniotes is possible because generating new organs is included in their life history at metamorphic stages. Soft hyaluronate-rich regenerative blastemas grow in submersed or in hydrated environments, that is, essential conditions for regeneration, like during development. In adult anamniotes, the ability to regenerate different organs decreases in comparison to larval stages and becomes limited during aging. Comparisons of genes activated during metamorphosis and regeneration in anamniotes identify key genes unique to these processes, and include thyroid, wnt and non-coding RNAs developmental pathways. In the terrestrial environment, some genes or developmental pathways for metamorphic transitions were lost during amniote evolution, determining loss of regeneration. Among amniotes, the formation of soft and hydrated blastemas only occurs in lizards, a morphogenetic process that evolved favoring their survival through tail autotomy, leading to a massive although imperfect regeneration of the tail. Deciphering genes activity during lizard tail regeneration would address future attempts to recreate in other amniotes regenerative blastemas that grow into variably completed organs.
Collapse
|
33
|
Alibardi L. NOGO-A immunolabeling is present in glial cells and some neurons of the recovering lumbar spinal cord in lizards. J Morphol 2020; 281:1260-1270. [PMID: 32770765 DOI: 10.1002/jmor.21245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
The transected lumbar spinal cord of lizards was studied for its ability to recover after paralysis. At 34 days post-lesion about 50% of lizards were capable of walking with a limited coordination, likely due to the regeneration of few connecting axons crossing the transection site of the spinal cord. This region, indicated as "bridge", contains glial cells among which oligodendrocytes and their elongation that are immunolabeled for NOGO-A. A main reactive protein band occurs at 100-110 kDa but a weaker band is also observed around 240 kDa, suggesting fragmentation of the native protein due to extraction or to physiological processing of the original protein. Most of the cytoplasmic immunolabeling observed in oligodendrocytes is associated with vesicles of the endoplasmic reticulum. Also, the nucleus is labeled in some oligodendrocytes that are myelinating sparse axons observed within the bridge at 22-34 days post-transection. This suggests that axonal regeneration is present within the bridge region. Immunolabeling for NOGO-A shows that the protein is also present in numerous reactive neurons, in particular motor-neurons localized in the proximal stump of the transected spinal cord. Ultrastructural immunolocalization suggests that NOGO is synthesized in the ribosomes of these neurons and becomes associated with the cisternae of the endoplasmic reticulum, probably following a secretory pathway addressed toward the axon. The present observations suggest that, like for the regenerating spinal cord of fish and amphibians, also in lizard NOGO-A is present in reactive neurons and appears associated to axonal regeneration and myelination.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Alibardi L. Autoradiography and inmmunolabeling suggests that lizard blastema contains arginase-positive M2-like macrophages that may support tail regeneration. Ann Anat 2020; 231:151549. [PMID: 32512203 DOI: 10.1016/j.aanat.2020.151549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The regenerating blastema of the tail in the lizard Podarcis muralis contains numerous macrophages among the prevalent mesenchymal cells. Some macrophages are phagocytic but others are devoid of phagosomes suggesting that they have other roles aside phagocytosis. METHODS The presence of healing macrophages (M2-like) has been tested using autoradiographic, immunohistochemical and ultrastructural studies. RESULTS Autoradiography shows an uptake of tritiated arginine in sparse cells of the blastema and in the regenerating epidermis. Bioinformatics analysis suggests that epitopes for arginase-1 and -2, recognized by the employed antibody, are present in lizards. Immunofluorescence shows sparse arginase immunopositive macrophages in the blastema and few macrophages also in the apical wound epidermis. The ultrastructural study shows that macrophages contain dense secretory granules, most likely inactive lysosomes, and small cytoplasmic pale vesicles. Some of the small vesicles are arginase-positive while immunolabeling is very diffuse in the macrophage cytoplasm. CONCLUSIONS The presence of cells incorporating arginine and of arginase 1-positive cells suggests that M2-like macrophages are present among mesenchymal and epidermal cells of the regenerative tail blastema. M2-like macrophages may promote tail regeneration differently from the numerous pro-inflammatory macrophages previously detected in the scarring limb. The presence of M2-like macrophages in addition to hyaluronate, support the hypothesis that the regenerative blastema of the tail in lizards is an immuno-privileged organ where cell proliferation and growth occur without degenerating in a tumorigenic outgrowth.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology University of Bologna, Italy.
| |
Collapse
|
35
|
Alibardi L. Microscopic observations on amputated and scarring lizard digits show an intense inflammatory reaction. ZOOLOGY 2019; 139:125737. [PMID: 32062299 DOI: 10.1016/j.zool.2019.125737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/28/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023]
Abstract
The microscopic details of the failure of digit regeneration in lizards are not known. The present study reports some histological, ultrastructural and 5BrdU-immunohistochemical observations on healing digits after amputation in the lizard Podarcis muralis. At 7-12 days post-amputation, the stump of digits forms a multilayered wound epidermis covering a loose connective tissue that is invaded by granulocytes, macrophages and lymphocytes. In addition to macrophages also electron-pale multinuclear giant cells are seen underneath or penetrating the wound epidermis while osteoclasts are present in the degrading bone of the severed phalanges. Granulocytes and macrophages invading the wound epidermis indicate the formation of an intra-epidermal immune barrier beneath the scab where numerous bacteria remain entrapped. Immunofluorescence for 5BrdU reveals that few proliferating cells are present in the wound epidermis and the underlying connective tissue at 12 and 32 days post-amputation. Outgrowths of less than 1mm stop growing and at 32 days they appear scaling. Most of connective cells give rise to fibrocytes and large irregular collagen bundles, as is typical for scar tissue. In conclusion, like for the amputated limb, the intense inflammatory reaction and scarring here described after digit loss appears associated with immune cells invasion.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Dipartimento di Biologia, University of Bologna, via Semi 3, 40126 Bologna, Italy.
| |
Collapse
|
36
|
Alibardi L. Observations on the recovering lumbar spinal cord of lizards show multiple origins of the cells forming the bridge region including immune cells. J Morphol 2019; 281:95-109. [DOI: 10.1002/jmor.21082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna Bologna Italy
| |
Collapse
|
37
|
Wang Y, Wei S, Song H, Zhang X, Wang W, Du N, Song T, Liang H, Chen X, Wang Y. Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation. FASEB J 2019; 33:14798-14810. [PMID: 31689136 DOI: 10.1096/fj.201801966rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Macrophages and their initiation of acute inflammation have been defined to be functionally important in tissue repair and regeneration. In injury-induced production of macrophage migration inhibitory factor (MIF), which has been described as a pleiotropic protein that participates in multiple cellular and biologic processes, it is unknown whether it is involved in the regulation of macrophage events during the epimorphic regeneration. In the model of gecko tail amputation, the protein levels of gecko MIF (gMIF) have been determined to be significantly increased in the nerve cells of the spinal cord in association with the recruitment of macrophages to the lesion site. gMIF has been shown to interact with the CD74 receptor to promote the migration of macrophages through activation of Ras homolog gene family member A and to trigger inflammatory responses through MAPK signaling pathways. The determination of microsphere phagocytosis also indicated that gMIF could enhance macrophage phagocytosis. gMIF-mediated recruitment and activation of macrophages have been found to be necessary for gecko tail regeneration, as evidenced by the depletion of macrophages using clodronate liposomes. The results present a novel function of MIF during the epimorphic regeneration, which is beneficial for insights into its pleiotropic property.-Wang, Y., Wei, S., Song, H., Zhang, X., Wang, W., Du, N., Song, T., Liang, H., Chen, X., Wang, Y. Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sumei Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuejie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Nan Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tiancheng Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaojun Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
38
|
Alibardi L, Borsetti F. Immunolabelling for RhoV and actin in early regenerating tail of the lizard
Podarcis muralis
suggests involvement in epithelial and mesenchymal cell motility. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology of University of Bologna Bologna Italy
| | - Francesca Borsetti
- Comparative Histolab Padova and Department of Biology of University of Bologna Bologna Italy
| |
Collapse
|
39
|
Alibardi L. Immunodetection of ephrin receptors in the regenerating tail of the lizard Podarcis muralis suggests stimulation of differentiation and muscle segmentation. Zool Res 2019; 40:416-426. [PMID: 31111695 PMCID: PMC6755122 DOI: 10.24272/j.issn.2095-8137.2019.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ephrin receptors are the most common tyrosine kinase effectors operating during development. Ephrin receptor genes are reported to be up-regulated in the regenerating tail of the Podarcis muralis lizard. Thus, in the current study, we investigated immunolocalization of ephrin receptors in the Podarcis muralis tail during regeneration. Weak immunolabelled bands for ephrin receptors were detected at 15-17 kDa, with a stronger band also detected at 60-65 kDa. Labelled cells and nuclei were seen in the basal layer of the apical wound epidermis and ependyma, two key tissues stimulating tail regeneration. Strong nuclear and cytoplasmic labelling were present in the segmental muscles of the regenerating tail, sparse blood vessels, and perichondrium of regenerating cartilage. The immunolocalization of ephrin receptors in muscle that gives rise to large portions of new tail tissue was correlated with their segmentation. This study suggests that the high localization of ephrin receptors in differentiating epidermis, ependyma, muscle, and cartilaginous cells is connected to the regulation of cell proliferation through the activation of programs for cell differentiation in the proximal regions of the regenerating tail. The lower immunolabelling of ephrin receptors in the apical blastema, where signaling proteins stimulating cell proliferation are instead present, helps maintain the continuous growth of this region.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna 40126, Italy; E-mail:
| |
Collapse
|
40
|
Alibardi L. Tail regeneration in Lepidosauria as an exception to the generalized lack of organ regeneration in amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 336:145-164. [PMID: 31532061 DOI: 10.1002/jez.b.22901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
The present review hypothesizes that during the transition from water to land, amniotes lost part of the genetic program for metamorphosis utilized in larvae of their amphibian ancestors, a program that in extant fish and amphibians allows organ regeneration. The direct development of amniotes, with their growth from embryos to adults, occurred with the elimination of larval stages, increases the efficiency of immune responses and the complexity of nervous circuits. In amniotes, T-cells and macrophages likely eliminate embryonic-larval antigens that are replaced with the definitive antigens of adult organs. Among lepidosaurians numerous lizard families during the Permian and Triassic evolved the process of tail autotomy to escape predation, followed by tail regeneration. Autotomy limits inflammation allowing the formation of a regenerative blastema rich in the immunosuppressant and hygroscopic hyaluronic acid. Expression loss of developmental genes for metamorphosis and segmentation in addition to an effective immune system, determined an imperfect regeneration of the tail. Genes involved in somitogenesis were likely lost or are inactivated and the axial skeleton and muscles of the original tail are replaced with a nonsegmented cartilaginous tube and segmental myotomes. Lack of neural genes, negative influence of immune system, and isolation of the regenerating spinal cord within the cartilaginous tube impede the production of nerve and glial cells, and a stratified spinal cord with ganglia. Tissue and organ regeneration in other body regions of lizards and other reptiles is relatively limited, like in the other amniotes, although the cartilage shows a higher regenerative capability than in mammals.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
van Hoek ML, Prickett MD, Settlage RE, Kang L, Michalak P, Vliet KA, Bishop BM. The Komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clusters. BMC Genomics 2019; 20:684. [PMID: 31470795 PMCID: PMC6716921 DOI: 10.1186/s12864-019-6029-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background We report the sequencing, assembly and analysis of the genome of the Komodo dragon (Varanus komodoensis), the largest extant lizard, with a focus on antimicrobial host-defense peptides. The Komodo dragon diet includes carrion, and a complex milieu of bacteria, including potentially pathogenic strains, has been detected in the saliva of wild dragons. They appear to be unaffected, suggesting that dragons have robust defenses against infection. While little information is available regarding the molecular biology of reptile immunity, it is believed that innate immunity, which employs antimicrobial host-defense peptides including defensins and cathelicidins, plays a more prominent role in reptile immunity than it does in mammals. . Results High molecular weight genomic DNA was extracted from Komodo dragon blood cells. Subsequent sequencing and assembly of the genome from the collected DNA yielded a genome size of 1.6 Gb with 45x coverage, and the identification of 17,213 predicted genes. Through further analyses of the genome, we identified genes and gene-clusters corresponding to antimicrobial host-defense peptide genes. Multiple β-defensin-related gene clusters were identified, as well as a cluster of potential Komodo dragon ovodefensin genes located in close proximity to a cluster of Komodo dragon β-defensin genes. In addition to these defensins, multiple cathelicidin-like genes were also identified in the genome. Overall, 66 β-defensin genes, six ovodefensin genes and three cathelicidin genes were identified in the Komodo dragon genome. Conclusions Genes with important roles in host-defense and innate immunity were identified in this newly sequenced Komodo dragon genome, suggesting that these organisms have a robust innate immune system. Specifically, multiple Komodo antimicrobial peptide genes were identified. Importantly, many of the antimicrobial peptide genes were found in gene clusters. We found that these innate immunity genes are conserved among reptiles, and the organization is similar to that seen in other avian and reptilian species. Having the genome of this important squamate will allow researchers to learn more about reptilian gene families and will be a valuable resource for researchers studying the evolution and biology of the endangered Komodo dragon. Electronic supplementary material The online version of this article (10.1186/s12864-019-6029-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - M Dennis Prickett
- Dipartimento di Scienze della Vita-Edif. C11, Università di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Robert E Settlage
- Advanced Research Computing, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Pawel Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA.,Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA.,Institute of Evolution, University of Haifa, 3498838, Haifa, Israel
| | - Kent A Vliet
- Department of Biology, University of Florida, Gainesville, Florida, FL, 32611, USA
| | - Barney M Bishop
- Department of Chemistry, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
42
|
Luís C, Rodrigues I, Guerreiro SG, Fernandes R, Soares R. Regeneration in the Podarcis bocagei model organism: a comprehensive immune-/histochemical analysis of the tail. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Alibardi L. Organ regeneration evolved in fish and amphibians in relation to metamorphosis: Speculations on a post-embryonic developmental process lost in amniotes after the water to land transition. Ann Anat 2019; 222:114-119. [DOI: 10.1016/j.aanat.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
|
44
|
Alibardi L. Review: The Regenerating Tail Blastema of Lizards as a Model to Study Organ Regeneration and Tumor Growth Regulation in Amniotes. Anat Rec (Hoboken) 2018; 302:1469-1490. [DOI: 10.1002/ar.24029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology at University of Bologna Bologna Italy
| |
Collapse
|
45
|
Alibardi L. Perspective: Appendage regeneration in amphibians and some reptiles derived from specific evolutionary histories. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:396-405. [DOI: 10.1002/jez.b.22835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative HistolabPadova Italy
- Department of BiologyUniversity of BolognaBologna Italy
| |
Collapse
|
46
|
Alibardi L. Immunolocalization of Matrix Metalloproteinases in regenerating lizard tail suggests that an intense remodelling activity allows for apical tail growth. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
47
|
Alibardi L. Tail regeneration reduction in lizards after repetitive amputation or cauterization reflects an increase of immune cells in blastemas. Zool Res 2018; 39:413-423. [PMID: 29976844 PMCID: PMC6085768 DOI: 10.24272/j.issn.2095-8137.2018.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lizards are key amniote models for studying organ regeneration. During tail regeneration in lizards, blastemas contain sparse granulocytes, macrophages, and lymphocytes among the prevalent mesenchymal cells. Using transmission electron microscopy to examine scarring blastemas after third and fourth sequential tail amputations, the number of granulocytes, macrophages, and lymphocytes increased at 3-4 weeks in comparison to the first regeneration. An increase in granulocytes and agranulocytes also occurred within a week after blastema cauterization during the process of scarring. Blood at the third and fourth regeneration also showed a significant increase in white blood cells compared with that under normal conditions and at the first regeneration. The extracellular matrix of the scarring blastema, especially after cauterization, was denser than that in the normal blastema and numerous white blood cells and fibroblasts were surrounded by electron-pale, fine fibrinoid material mixed with variable collagen fibrils. In addition to previous studies, the present observations support the hypothesis that an increase in inflammation and immune reactions determine scarring rather than regeneration. These new findings verify that an immune reaction against mesenchymal and epidermal cells of the regenerative blastema is one of the main causes for the failure of organ regeneration in amniotes.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padua, Department of Biology, University of Bologna, Bologna 40126, Italy; E-mail:
| |
Collapse
|
48
|
Alibardi L. Ultrastructural analysis of early regenerating lizard tail suggests that a process of dedifferentiation is involved in the formation of the regenerative blastema. J Morphol 2018; 279:1171-1184. [DOI: 10.1002/jmor.20838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab, Padova, and Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
49
|
Alibardi L. Review: Limb regeneration in humans: Dream or reality? Ann Anat 2018; 217:1-6. [DOI: 10.1016/j.aanat.2017.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023]
|
50
|
Alibardi L. Temporal distribution of 5BrdU‐labelled cells suggests that most injured tissues contribute proliferating cells for the regeneration of the tail and limb in lizard. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of BiologyUniversity of Bologna Bologna Italy
| |
Collapse
|