1
|
Tevet S, Amir RJ. Hydrophobicity as a tool for programming sequential mesophase transitions of enzyme-responsive polymeric amphiphiles. J Mater Chem B 2024; 12:11685-11695. [PMID: 39385664 DOI: 10.1039/d4tb01587h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The ability of polymeric assemblies to undergo programmable cascades of mesophase transitions is prevalent in many systems in nature, where structural and functional features are tightly bound to maximize activity. In this study, we have examined the ability to program the mesophase transition rates of co-assembled enzyme-responsive polymeric micelles, through fine adjustments of the hydrophobicity of their amphiphilic components. We have utilized the different reactivities of di- and tri-block amphiphiles toward enzymatic degradation as a tool for programming formulations to undergo sequential enzymatically induced transitions from micelles to hydrogels and finally to dissolved polymers. By varying the aliphatic end-groups of PEG-dendron di-block and tri-block amphiphiles, we could demonstrate the remarkable impact of minor modifications to the di-block amphiphiles' structure and hydrophobicity on the transition rates between the different mesophases, ranging from a few hours to a week. Additionally, the study reveals how altering the relative hydrophobicity of its amphiphilic components influences the formulation ratio and enzymatic selectivity, as well as the stability and degradation rate of the resulting hydrogels. The findings underscore the importance of molecular architecture and hydrophobicity as key parameters in the design of programmable enzyme-responsive polymeric assemblies, offering insights into the ability to precisely control multi-step mesophase transitions for tailored functionality.
Collapse
Affiliation(s)
- Shahar Tevet
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, Israel
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Ziegler K, Schlichter L, Post Y, Gröschel AH, Ravoo BJ. Photoresponsive Block Copolymer Nanostructures through Implementation of Arylazopyrazoles. ACS Macro Lett 2024; 13:1065-1071. [PMID: 39094101 DOI: 10.1021/acsmacrolett.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Responsive nanomaterials that can undergo reversible changes in morphology are interesting for the development of functional materials that interact with and respond to their environment. Amphiphilic block copolymers are well-known for their ability to create a wide range of supramolecular nanostructures in solution. Arylazopyrazoles (AAPs) are versatile molecular photoswitches, which change their configuration and hydrophobicity upon irradiation with UV light (365 nm, Z isomer, less hydrophobic) and green light (520 nm, E isomer, more hydrophobic). In this work, photoswitchable block copolymers containing arylazopyrazole tetraethylene glycol methacrylate (AAPMA) and oligo(ethylene glycol) methacrylate (OEGMA) forming amphiphilic POEGMA-b-PAAPMA with varying block lengths are prepared by RAFT polymerization. The photochemical properties of AAP persist in the polymers. Due to their amphiphilic structure, the polymers self-assemble into supramolecular morphologies in water. Remarkably, photoisomerization results in a reversible change in the self-assembly behavior. Specifically, spherical and cylindrical micelles are observed for POEGMA33-b-PAAPMA47 when illuminated with green or UV light during assembly. Furthermore, the morphology of assembled structures can be reversibly switched by subsequent irradiation with UV and green light.
Collapse
Affiliation(s)
- Katharina Ziegler
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Lisa Schlichter
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Yorick Post
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - André H Gröschel
- Bavarian Center for Battery Technology (BayBatt) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95448 Bayreuth, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
3
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
4
|
Andrade-Gagnon B, Casillas-Popova SN, Jazani AM, Oh JK. Design, Synthesis, and Acid-Responsive Disassembly of Shell-Sheddable Block Copolymer Labeled with Benzaldehyde Acetal Junction. Macromol Rapid Commun 2024; 45:e2400097. [PMID: 38499007 DOI: 10.1002/marc.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage. The authors explore the synthesis and aqueous micellization of well-defined poly(ethylene glycol)-based block copolymer bearing BzAA linkage covalently attached to a polymethacrylate block for the formation of colloidally-stable nanoassemblies with BzAA groups at core/corona interfaces. Promisingly, the investigation on acid-catalyzed hydrolysis and disassembly shows that the formed nanoassemblies meet the criteria for acid-degradable shell-sheddable nanoassemblies: slow degradation at tumoral pH = 6.5 and rapid disassembly at endo/lysosomal pH = 5.0, while colloidal stability at physiological pH = 7.4. This work guides the design principle of acid-degradable shell-sheddable nanoassemblies bearing BzAA at interfaces, thus offering the promise to address the PEG dilemma and improve endocytosis in tumor-targeting drug delivery.
Collapse
Affiliation(s)
- Brandon Andrade-Gagnon
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| | | | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
5
|
Ye L, Liu M, Wang X, Yu Z, Huang Z, Zhou N, Zhang Z, Zhu X. Sequence effect on the self-assembly of discrete amphiphilic co-oligomers with fluorene-azobenzene semirigid backbones. RSC Adv 2023; 13:24181-24190. [PMID: 37575403 PMCID: PMC10416705 DOI: 10.1039/d3ra04205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Sequences can have a dramatic impact on the unique properties and self-assembly in natural macromolecules, which has received increasing interest. Herein, we report a series of discrete amphiphilic co-oligomers with the same composition but different building blocks in a semirigid backbone. These sequence-defined oligomers possess two primary amine groups on the side chain of the azobenzene building block, and hence, they become amphipathic due to quaternization of the amine groups when protonated in acidic aqueous solution. These oligomer isomers assembled into different nanoparticles, including nanofibers, hollow vesicles and spherical micellar complexes, in a THF/water/HCl mixture under the same conditions. UV-vis absorption spectra, differential scanning calorimetry (DSC) and X-ray scattering (XRD) experiments combined with theoretical calculations reveal that the sequence-controlled co-oligomers induce different molecular packing conformations and arrangement modes of building blocks in self-assembly. Furthermore, these self-assembled nanoparticles demonstrate photoresponsive morphological transformation and fluorescence emission under UV light irradiation due to trans-to-cis photoisomerization of azobenzene. This work demonstrates that customizing functional nanoparticles can be achieved by controlling the sequence structure in synthetic co-oligomers.
Collapse
Affiliation(s)
- Liandong Ye
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Min Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiao Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihong Yu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihao Huang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Nianchen Zhou
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
6
|
Ma J, Ma C, Huang X, de Araujo PHH, Goyal AK, Lu G, Feng C. Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media. FUNDAMENTAL RESEARCH 2023; 3:93-101. [PMID: 38933561 PMCID: PMC11197544 DOI: 10.1016/j.fmre.2022.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Fragmentation/disassembly of fiber-like micelles generated by living crystalline-driven self-assembly (CDSA) is usually encountered in aqueous media, which hinders the applications of micelles. Herein, we report the generation of uniform fiber-like micelles consisting of a π-conjugated oligo(p-phenylenevinylene) core and a cross-linking silica shell with grafted poly(ethylene glycol) (PEG) chains by the combination of living CDSA, silica chemistry and surface grafting-onto strategy. Owing to the presence of crosslinking silica shell and the outmost PEG chains, the resulting micelles exhibit excellent dispersity and colloidal stability in PBS buffer, BSA aqueous solution and upon heating at 80 °C for 2 h without micellar fragmentation/disassembly. The micelles also show negligible cytotoxicity toward both HeLa cervical cancer and HEK239T human embryonic kidney cell lines. Interestingly, micelles with L n of 156 nm show the "stealth" property with no significant uptake by HeLa cells, whereas some certain amounts of micelles with L n of 535 nm can penetrate into HeLa cells, showing length-dependent cellular uptake behaviors. These results provide a route to prepare uniform, colloidally stable fiber-like nanostructures with tunable length and functions derived for biomedical applications.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pedro Henrique Hermes de Araujo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis-SC, 88040-970, SC, Brazil
| | - Amit Kumal Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Tehsil-Kishangarh-305 801 Distt.-Ajmer, Rajasthan, India
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Sikdar P, Dip TM, Dhar AK, Bhattacharjee M, Hoque MS, Ali SB. Polyurethane (
PU
) based multifunctional materials: Emerging paradigm for functional textiles, smart, and biomedical applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.52832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Partha Sikdar
- Department of Textiles, Merchandising and Interiors University of Georgia Athens Georgia USA
| | | | - Avik K. Dhar
- Department of Textiles, Merchandising and Interiors University of Georgia Athens Georgia USA
| | | | - Md. Saiful Hoque
- Department of Human Ecology University of Alberta Edmonton Alberta Canada
- Department of Textile Engineering Daffodil International University 102 Shukrabad, Dhanmondi Dhaka Bangladesh
| | | |
Collapse
|
8
|
Jazani AM, Arezi N, Shetty C, Oh JK. Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Mol Pharm 2022. [DOI: 10.1021/acs.molpharmaceut.1c00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Newsha Arezi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
9
|
Wang S, Liu Y, Xu M, Hu F, Yu Q, Wang L. Polymersomes as virus-surrogate particles for evaluating the performance of air filter materials. GIANT (OXFORD, ENGLAND) 2022; 10:100104. [PMID: 35600793 PMCID: PMC9116050 DOI: 10.1016/j.giant.2022.100104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 05/15/2023]
Abstract
The development of antivirus air filter materials has attracted considerable interests due to the pandemic of coronavirus disease 2019 (COVID-19). Filtration efficiency (FE) of these materials against virus is critical in the assessment of their use in disease prevention. Due to the high cost and biosafety laboratory required for conducting research using actual virus samples, surrogates for virus are commonly used in the filtration test. Here, we explore the employment of polymersomes (polymeric vesicles) as a new type of surrogate. The polymersomes are hollow shell nanoparticles with amphiphilic bilayer membranes, which can be fabricated in nanosized, and possess similar size and structural features to virus. The performance of commercial KN95 mask and surgical mask with micro-sized fibers, and electrospun polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) nanofibers were chosen to be evaluated. The filtration tests against fluorescent-labeled virus-surrogate particles (VSPs), i.e. polymersomes, allowed the determination of the FE of the multilayered filter materials in a layer-specific manner. The results suggested the importance of hydrophobicity in designing the nanofibrous filter materials. The employment of VSPs in filtration performance evaluation allows a cost-effective way to estimate the FE against virus, providing guidance on future development of air filter materials.
Collapse
Affiliation(s)
- Shuo Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Mengmeng Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fei Hu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
10
|
Li J, Xiang H, Zhang Q, Miao X. Polysaccharide-Based Transdermal Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15050602. [PMID: 35631428 PMCID: PMC9146969 DOI: 10.3390/ph15050602] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Collapse
Affiliation(s)
- Jingyuan Li
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264209, China
- Correspondence: ; Tel.: +86-19806301068
| |
Collapse
|
11
|
Advances of supramolecular interaction systems for improved oil recovery (IOR). Adv Colloid Interface Sci 2022; 301:102617. [PMID: 35217257 DOI: 10.1016/j.cis.2022.102617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/07/2023]
Abstract
Improved oil recovery (IOR) includes enhanced oil recovery (EOR) and other technologies (i.e. fracturing, water injection optimization, etc.), have become important methods to increase the oil/gas production in petroleum industry. However, conventional flooding systems always encounter the problems of low efficiency, high cost and complicated synthetic procedures for harsh reservoirs conditions. In recent decades, the supramolecular interactions are introduced into IOR processes to simplify the synthetic procedures, alter their structures and properties with bespoke functionalities and responsiveness suitable for different conditions. Herein, we primarily review the fundamentals of several supramolecular interactions, including hydrophobic association, hydrogen bond, electrostatic interaction, host-guest recognition, metal-ligand coordination and dynamic covalent bond from intrinsic principles and extrinsic functions. Then, the descriptions of supramolecular interactions in IOR processes from categories and advances are focused on the following variables: polymer, surfactant, surfactant/polymer (SP) complex for EOR and viscoelasticity surfactant (VES) for clean hydraulic fracturing aspects. Finally, the field applications, challenges and prospects for supramolecular interactions in IOR processes are involved and systematically addressed. The development of supramolecular interactions can open the way toward adaptive and evolutive IOR technology, a further step towards the cost-effective production of petroleum industry.
Collapse
|
12
|
Ma J, Lu G, Huang X, Feng C. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem Commun (Camb) 2021; 57:13259-13274. [PMID: 34816824 DOI: 10.1039/d1cc04825b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
π-Conjugated-polymer-based nanofibers (CPNFs) of controlled length, composition and morphology are promising for a broad range of emerging applications in optoelectronics, biomedicine and catalysis, owing to the morphological merits of fiber-like nanostructures and structural attributes of π-conjugated polymers. Living crystallization-driven self-assembly (CDSA) of π-conjugated-polymer-containing block copolymers (BCPs) has emerged as an efficient strategy to prepare CPNFs with precise dimensional and structural controllability by taking advantage of the crystallinity of π-conjugated polymers. In this review, recent advances in the generation of CPNFs have been highlighted. The influence of the structure of π-conjugated-polymer-containing BCPs and experimental conditions on the CDSA behaviors, especially seeded growth and self-seeding processes of living CDSA, has been discussed in detail, aiming to provide an in-depth overview of living CDSA of π-conjugated-polymer-containing BCPs. In addition, the properties of CPNFs as well as their potential applications have been illustrated. Finally, we put forward the current challenges and research directions in the field of CPNFs.
Collapse
Affiliation(s)
- Junyu Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
13
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Bos I, Timmerman M, Sprakel J. FRET-Based Determination of the Exchange Dynamics of Complex Coacervate Core Micelles. Macromolecules 2021; 54:398-411. [PMID: 33456072 PMCID: PMC7808214 DOI: 10.1021/acs.macromol.0c02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Complex coacervate core micelles (C3Ms) are nanoscopic structures formed by charge interactions between oppositely charged macroions and used to encapsulate a wide variety of charged (bio)molecules. In most cases, C3Ms are in a dynamic equilibrium with their surroundings. Understanding the dynamics of molecular exchange reactions is essential as this determines the rate at which their cargo is exposed to the environment. Here, we study the molecular exchange in C3Ms by making use of Förster resonance energy transfer (FRET) and derive an analytical model to relate the experimentally observed increase in FRET efficiency to the underlying macromolecular exchange rates. We show that equilibrated C3Ms have a broad distribution of exchange rates. The overall exchange rate can be strongly increased by increasing the salt concentration. In contrast, changing the unlabeled homopolymer length does not affect the exchange of the labeled homopolymers and an increase in the micelle concentration only affects the FRET increase rate at low micelle concentrations. Together, these results suggest that the exchange of these equilibrated C3Ms occurs mainly by expulsion and insertion, where the rate-limiting step is the breaking of ionic bonds to expel the chains from the core. These are important insights to further improve the encapsulation efficiency of C3Ms.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marga Timmerman
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
15
|
Xu L, Wang H, Tian H, Zhang M, He J, Ni P. Facile construction of noncovalent graft copolymers with triple stimuli-responsiveness for triggered drug delivery. Polym Chem 2021. [DOI: 10.1039/d1py00135c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A triple stimuli-responsive noncovalent graft copolymer was designed and synthesized by the host–guest interactions between β-CD grafted dextran and ferrocene-terminated poly(lactide).
Collapse
Affiliation(s)
- Lei Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Hairong Wang
- Children's Hospital of Soochow University
- Pediatric Research Institute of Soochow University
- Suzhou
- China
| | - Hongrui Tian
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| |
Collapse
|
16
|
Tian M, Ma C, Huang X, Lu G, Feng C. Supramolecular-micelle-directed preparation of uniform magnetic nanofibers with length tunability, colloidal stability and capacity for surface functionalization. Polym Chem 2021. [DOI: 10.1039/d1py00168j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a versatile and efficient platform to prepare uniform magnetic nanofibers with length tunability, colloidal and morphological stability, capacity for surface functionalization and enhanced T2 contrast.
Collapse
Affiliation(s)
- Mingwei Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
17
|
Twum K, Rissanen K, Beyeh NK. Recent Advances in Halogen Bonded Assemblies with Resorcin[4]arenes. CHEM REC 2020; 21:386-395. [PMID: 33369108 DOI: 10.1002/tcr.202000140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/12/2022]
Abstract
Resorcinarenes are cavity-containing compounds when in the crown conformation, from the calixarene family of concave compounds. These easy to synthesize macrocycles can be decorated at the upper rim through the eight hydroxyl groups and/or the 2-position of the aromatic ring. They are good synthons in supramolecular chemistry leading to appealing assemblies such as open-inclusion complexes, capsules and tubes through multiple weak interactions with various guests. Halogen bonding (XB) is a highly directional non-covalent interaction by an electron-deficient halogen atom as a donor that interacts with a Lewis base, the XB acceptor. This tutorial review provides an overview of recent advances in halogen-bonded assemblies based on resorcinarenes and their derivatives, specifically focusing on discrete and capsular assemblies.
Collapse
Affiliation(s)
- Kwaku Twum
- Oakland University, Department of Chemistry, 146 Library Drive, Rochester, 48309, Michigan, USA
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P. O. Box 35, 40014, Jyvaskyla, Finland
| | - Ngong Kodiah Beyeh
- Oakland University, Department of Chemistry, 146 Library Drive, Rochester, 48309, Michigan, USA
| |
Collapse
|
18
|
Gao Z, Zhang Z, Guo J, Hao J, Zhang P, Cui J. Polypeptide Nanoparticles with pH-Sheddable PEGylation for Improved Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13656-13662. [PMID: 33147977 DOI: 10.1021/acs.langmuir.0c02532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The variation of tumor microenvironments provides a tool for the construction of stimulus-responsive nanomedicines to enhance drug delivery efficacy. Herein, the assembly of drug-loaded polypeptide nanoparticles (NPs) with pH-sheddable modification of poly(ethylene glycol) (PEG) is prepared to enhance therapeutic efficiency. Poly(l-lysine) and poly(l-glutamic acid) were self-assembled to fabricate polypeptide NPs by electrostatic interactions, followed by PEGylation based on amidation reaction. The NP sizes can be controlled by tuning the molecular weight or the ratio of polypeptides. The PEG coating is cleavable at the tumor acid microenvironment to reverse the surface charge and reduce the NP size, which effectively enhances cell uptake. In addition, the presence of reducing reagent (e.g., glutathione) in cancer cells induces the drug (i.e., cisplatin) release from the polypeptide NPs and subsequently results in the cell toxicity. This reported method highlights the engineering of transformable polypeptide drug carriers, which provides a promising way for enhanced drug delivery efficacy.
Collapse
Affiliation(s)
- Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhonghe Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Jianman Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
19
|
Bordallo E, Torneiro M, Lazzari M. Dissolution of amorphous nifedipine from micelle-forming carboxymethylcellulose derivatives. Carbohydr Polym 2020; 247:116699. [PMID: 32829827 DOI: 10.1016/j.carbpol.2020.116699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
We show that a novel amphiphilic graft copolymer combining the biodegradability and biocompatibility of oxidized carboxymethylcellulose (CMC) with that of hydrophilic poly(ethylene glycol) (PEG), and hydrophobic dodecylamine (DDA), improves the solubility and dissolution performance of nifedipine (NIF), considered as a model hydrophobic drug. The hydrophobic components of the graft copolymer have the multiple effect of favouring micelle formation and loading. At the same time, the interaction between the hydrophobic core and NIF has the secondary effect to suppress drug crystallization, favouring its dissolution, and to increase photostability. Oxidized CMC-g-PEG-DDA micelles reached values of drug concentration, loading capacity and encapsulation efficiency as high as 340 μg mL-1, 6.4 % and 34.1 %, respectively. Loaded micelles showed a good stability with a limited release profile at pH 1.2, whereas at pH 7.4 the swollen cores enable much higher and progressive release, that reaches 3.4 and 6.6 % after 3 and 5 h, respectively, corresponding to very competitive concentration of 34 and 66 μg mL-1.
Collapse
Affiliation(s)
- Eduardo Bordallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mercedes Torneiro
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Massimo Lazzari
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Yang J, Pal R. Investigation of Surfactant-Polymer Interactions Using Rheology and Surface Tension Measurements. Polymers (Basel) 2020; 12:polym12102302. [PMID: 33050048 PMCID: PMC7599985 DOI: 10.3390/polym12102302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023] Open
Abstract
The interactions between surfactants and a drag-reducing polymer were investigated at a low polymer concentration of 500 ppm, using measurements of the rheology and surface activity of surfactant-polymer solutions. A well-known drag-reducing polymer (anionic sodium carboxymethyl cellulose) and five different surfactants (two anionic, two non-ionic, and one zwitterionic) were selected for the interaction studies. The surfactant-polymer solutions were shear thinning in nature, and they followed the power law model. The interaction between the surfactant and polymer had a strong effect on the consistency index of the solution and a marginal effect on the flow behavior index. The surface tension versus surfactant concentration plots were interpreted in terms of the interactions between surfactant and polymer. The critical aggregation concentration (CAC) of the surfactant was estimated based on the surface tension and rheological data. The CAC values of the same charge surfactants as that of the polymer were found to be significantly higher than other combinations of surfactant and polymer, such as non-ionic surfactant/anionic polymer, and zwitterionic surfactant/anionic polymer.
Collapse
Affiliation(s)
| | - Rajinder Pal
- Correspondence: ; Tel.: +1-519-888-4567 (ext. 32985)
| |
Collapse
|
21
|
|
22
|
Segal M, Ozery L, Slor G, Wagle SS, Ehm T, Beck R, Amir RJ. Architectural Change of the Shell-Forming Block from Linear to V-Shaped Accelerates Micellar Disassembly, but Slows the Complete Enzymatic Degradation of the Amphiphiles. Biomacromolecules 2020; 21:4076-4086. [PMID: 32833437 DOI: 10.1021/acs.biomac.0c00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuning the enzymatic degradation and disassembly rates of polymeric amphiphiles and their assemblies is crucial for designing enzyme-responsive nanocarriers for controlled drug delivery applications. The common methods to control the enzymatic degradation of amphiphilic polymers are to tune the molecular weights and ratios of the hydrophilic and hydrophobic blocks. In addition to these approaches, the architecture of the hydrophilic block can also serve as a tool to tune enzymatic degradation and disassembly. To gain a deeper understanding of the effect of the molecular architecture of the hydrophilic block, we prepared two types of well-defined PEG-dendron amphiphiles bearing linear or V-shaped PEG chains as the hydrophilic blocks. The high molecular precision of these amphiphiles, which emerges from the utilization of dendrons as the hydrophobic blocks, allowed us to study the self-assembly and enzymatic degradation and disassembly of the two types of amphiphiles with high resolution. Interestingly, the micelles of the V-shaped amphiphiles were significantly smaller and disassembled faster than those of the amphiphiles based on linear PEG. However, the complete enzymatic cleavage of the hydrophobic end groups was significantly slower for the V-shaped amphiphiles. Our results show that the V-shaped architecture can stabilize the unimer state and, hence, plays a double role in the enzymatic degradation and the induced disassembly and how it can be utilized to control the release of encapsulated or bound molecular cargo.
Collapse
Affiliation(s)
- Merav Segal
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Lihi Ozery
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Gadi Slor
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shreyas Shankar Wagle
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tamara Ehm
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.,School of Physics, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roy Beck
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.,School of Physics, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roey J Amir
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Tel Aviv University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Blavatnik Center for Drug Discovery, Tel-Aviv University, Tel-Aviv 6997801, Israel.,ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel.,The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
23
|
Wang X, Peng Y, Peña J, Xing J. Preparation of ultrasmall nanogels by facile emulsion-free photopolymerization at 532 nm. J Colloid Interface Sci 2020; 582:711-719. [PMID: 32911416 DOI: 10.1016/j.jcis.2020.08.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 01/07/2023]
Abstract
Nanogels have been widely prepared and characterized in recent years due to their unique advantages. Here, an effective, original, and facile method of emulsion-free photopolymerization at 532 nm without surfactant was developed to prepare nanogels based on poly(ethylene glycol) diacrylate (PEGDA). The 532 nm continuous laser with symmetrical energy distribution like a three-dimensional shape of a straw hat was used to control the reaction region. The self-emulsification of PEGDA in water was studied and PEGDA micelles were directly cross-linked by controlling the laser energy. The number of micelles participating in the microreaction region and the double bond crosslinking between micellar aggregates and inside micelles were reasonably regulated. The size of the nanogels could be effectively modulated by controlling reaction parameters including laser power, monomer concentration, initiator concentration, and reaction time. Finally, ultrasmall nanogels with around 30 nm in size were prepared by balancing double bond crosslinking between micellar aggregates and inside micelles.
Collapse
Affiliation(s)
- Xiaoying Wang
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Jhair Peña
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
24
|
Tarvirdipour S, Schoenenberger CA, Benenson Y, Palivan CG. A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. SOFT MATTER 2020; 16:1678-1691. [PMID: 31967171 DOI: 10.1039/c9sm01990a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To overcome the low efficiency and cytotoxicity associated with most non-viral DNA delivery systems we developed a purely peptidic self-assembling system that is able to entrap single- and double-stranded DNA of up to 100 nucleotides in length. (HR)3gT peptide design consists of a hydrophilic domain prone to undergo electrostatic interactions with DNA cargo, and a hydrophobic domain at a ratio that promotes the self-assembly into multi-compartment micellar nanoparticles (MCM-NPs). Self-assembled (HR)3gT MCM-NPs range between 100 to 180 nm which is conducive to a rapid and efficient uptake by cells. (HR)3gT MCM-NPs had no adverse effects on HeLa cell viability. In addition, they exhibit long-term structural stability at 4 °C but at 37 °C, the multi-micellar organization disassembles overtime which demonstrates their thermo-responsiveness. The comparison of (HR)3gT to a shorter, less charged H3gT peptide indicates that the additional arginine residues result in the incorporation of longer DNA segments, an improved DNA entrapment efficiency and an increase cellular uptake. Our unique non-viral system for DNA delivery sets the stage for developing amphiphilic peptide nanoparticles as candidates for future systemic gene delivery.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | | | | | | |
Collapse
|
25
|
Parekh P, Ohno S, Yusa S, Lv C, Du B, Ray D, Aswal VK, Bahadur P. Synthesis, aggregation and adsorption behaviour of a thermoresponsive pentablock copolymer. POLYM INT 2020. [DOI: 10.1002/pi.5967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paresh Parekh
- Chemistry Department Veer Narmad South Gujarat University Surat India
| | - Sayaka Ohno
- Graduate School of Engineering University of Hyogo Hyogo Japan
| | - Shin‐ichi Yusa
- Graduate School of Engineering University of Hyogo Hyogo Japan
| | - Chao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Debes Ray
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Vinod Kumar Aswal
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Pratap Bahadur
- Chemistry Department Veer Narmad South Gujarat University Surat India
| |
Collapse
|
26
|
Li S, Tao W, Gao K, Athir N, Li F, Chen Y, Liu J, Zhang L, Tsige M. Phase manipulation of topologically engineered AB-type multi-block copolymers. RSC Adv 2019; 9:42029-42042. [PMID: 35542880 PMCID: PMC9076629 DOI: 10.1039/c9ra07734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
Recent advances in the fundamental understanding of the ordered phases of multi-block copolymers (MBCPs) at the molecular level have attracted considerable scientific interest in recent years. Herein, by employing molecular dynamics simulation, we focus on the four typical systems: linear alternating, branch-like, star-like AB-type MBCPs and linear copolymers filled with nanoparticles (NPs). First, we establish the phase diagram for the linear tetrablock copolymers (ABAB) as a function of the composition ratio between A- and B-block, exhibiting six typical phase states. Furthermore, increasing the mutual repulsive interaction strength, the temperature and the periodic dynamic shearing cycle result in the merging of spheres, presenting a clear beginning of the order-to-order transition (OOT) behavior. Second, we examine the branch-like and star-like copolymers and find that increasing branch density significantly leads to the occurrence of phase transition. Particularly, we illustrate that the sphere configurations of the MBCPs can be described in terms of tail, loop and bridge conformations. Increasing the number of distinct blocks in linear alternating copolymers results in an enhancement of the bridge conformation, in which case some spheres are separated to smaller ones. Furthermore, for the tail conformation, we present a unified theoretical framework to rationalize the topological state of the chain arrangements of spheres and infer that the entanglements within the internal reaction layer between different A-blocks result in the inhomogeneous distribution of the spheres sizes even with controlled molecular weight and composition ratio between each block. Finally, we find that the ABAB tetrablock copolymers filled with moderate spherical NPs exhibit a clear OOT from spheres to double gyroid or cylinders. We infer that the maximum amount of the B-block within the second and/or third layers for the filled spherical NPs connects different NPs effectively, leading to the complicated OOT behavior. Generally, this fundamental study could provide some guidelines for designing and fabricating high performance BCPs by manipulating the formation of the ordered phases.
Collapse
Affiliation(s)
- Sai Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
| | - Wei Tao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
| | - Ke Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
| | - Naveed Athir
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
| | - Fanzhu Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
| | - Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology People's Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology 100029 Beijing People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology People's Republic of China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Beijing University of Chemical Technology People's Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology 100029 Beijing People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology 100029 Beijing People's Republic of China
| | - Mesfin Tsige
- Department of Polymer Science, The University of Akron Akron Ohio 44325 USA
| |
Collapse
|
27
|
Development of poly (acrylamide-co-diallyldimethylammoniumchloride) nanogels and study of their ability as drug delivery devices. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1742-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
28
|
Bos I, Sprakel J. Langevin Dynamics Simulations of the Exchange of Complex Coacervate Core Micelles: The Role of Nonelectrostatic Attraction and Polyelectrolyte Length. Macromolecules 2019; 52:8923-8931. [PMID: 31787780 PMCID: PMC6881903 DOI: 10.1021/acs.macromol.9b01442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Complex coacervate core micelles (C3Ms) are promising encapsulators for a wide variety of (bio)molecules. To protect and stabilize their cargo, it is essential to control their exchange dynamics. Yet, to date, little is known about the kinetic stability of C3Ms and the dynamic equilibrium of molecular building blocks with micellar species. Here we study the C3M exchange during the initial micellization by using Langevin dynamics simulations. In this way, we show that charge neutral heterocomplexes consisting of multiple building blocks are the primary mediator for exchange. In addition, we show that the kinetic stability of the C3Ms can be tuned not only by the electrostatic interaction but also by the nonelectrostatic attraction between the polyelectrolytes, the polyelectrolyte length ratio, and the overall polyelectrolyte length. These insights offer new rational design guides to aid the development of new C3M encapsulation strategies.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
29
|
Li Y, Wang N, Huang X, Li F, Davis TP, Qiao R, Ling D. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 3:121-142. [DOI: 10.1021/acsabm.9b00896] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
30
|
Parveen S, Arjmand F, Tabassum S. Clinical developments of antitumor polymer therapeutics. RSC Adv 2019; 9:24699-24721. [PMID: 35528643 PMCID: PMC9069890 DOI: 10.1039/c9ra04358f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023] Open
Abstract
Polymer therapeutics encompasses polymer-drug conjugates that are nano-sized, multicomponent constructs already in the clinic as antitumor compounds, either as single agents or in combination with other organic drug scaffolds. Nanoparticle-based polymer-conjugated therapeutics are poised to become a leading delivery strategy for cancer treatments as they exhibit prolonged half-life, higher stability and selectivity, water solubility, longer clearance time, lower immunogenicity and antigenicity and often also specific targeting to tissues or cells. Compared to free drugs, polymer-tethered drugs preferentially accumulate in the tumor sites unlike conventional chemotherapy which does not discriminate between the cancer cells and healthy cells, thereby causing severe side-effects. It is also desirable that the drug reaches its site of action at a particular concentration and the therapeutic dose remains constant over a sufficiently long period of time. This can be achieved by opting for new formulations possessing polymeric systems of drug carriers. However, many challenges still remain unanswered in polymeric drug conjugates which need to be readdressed and therefore, can broaden the scope of this field. This review highlights some of the antitumor polymer therapeutics including polymer-drug conjugates, polymeric micelles, polymeric liposomes and other polymeric nanoparticles that are currently under investigation.
Collapse
Affiliation(s)
- Shazia Parveen
- Chemistry Department, Faculty of Science, Taibah University Yanbu Branch 46423 Yanbu Saudi Arabia +966 504522069
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 India
| |
Collapse
|
31
|
IIJIMA M, KAWADA M, SATO Y, PUA M, KAMEYAMA M. Synthesis of Hetero-Telechelic Poly(ethylene glycol)s with a Carboxyl Group at the Alpha-Terminus. KOBUNSHI RONBUNSHU 2019. [DOI: 10.1295/koron.2019-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michihiro IIJIMA
- National Institute of Technology, Oyama College Department of Materials Chemistry and Bioengineering
| | - Maiko KAWADA
- National Institute of Technology, Oyama College Department of Materials Chemistry and Bioengineering
| | - Yuna SATO
- National Institute of Technology, Oyama College Department of Materials Chemistry and Bioengineering
| | - MinLey PUA
- National Institute of Technology, Oyama College Department of Materials Chemistry and Bioengineering
| | - Masayuki KAMEYAMA
- National Institute of Technology, Oyama College Department of Materials Chemistry and Bioengineering
| |
Collapse
|
32
|
Wu H, Ting JM, Weiss TM, Tirrell MV. Interparticle Interactions in Dilute Solutions of Polyelectrolyte Complex Micelles. ACS Macro Lett 2019; 8:819-825. [PMID: 35619501 DOI: 10.1021/acsmacrolett.9b00226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The application of dilute solutions of polyelectrolyte complex (PEC) micelles for delivering therapeutic nucleic acids into disease sites has gained momentum. This Letter reports a detailed characterization of PEC micelles in dilute solutions including their internal structures and the determination of the interparticle interactions. The polymer concentration ranges from 0.1 to 0.5 wt %, a regime where micelle-micelle interactions are infrequent. We employ synchrotron small-angle X-ray scattering (SAXS) to simultaneously probe the morphology, internal structure, and radius of gyration (Rg) of the self-assemblies formed by charged diblock polyelectrolytes and homopolyelectrolytes. The emerging appearance of the structure factor in SAXS profiles with the increasing polymer concentration demonstrates the presence of the repulsive intermicellar correlations, which is further confirmed by the differences between the "reciprocal Rg" estimated by Guinier approximation and the "real space Rg" determined by pair distribution functions. We find that the soft corona chains tethered on the surface of phase-separated complex domains are compressed when micelles come close to the point where a hard-sphere interaction takes over. These findings contribute to the fundamental understanding of the structure and space-filling constraints in the complexation-driven self-assemblies and advance the rational design of cationic polymer-based nonviral gene delivery vectors.
Collapse
Affiliation(s)
- Hao Wu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew V. Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
33
|
Chowdhury S, Rakshit A, Acharjee A, Saha B. Novel Amphiphiles and Their Applications for Different Purposes with Special Emphasis on Polymeric Surfactants. ChemistrySelect 2019. [DOI: 10.1002/slct.201901160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suman Chowdhury
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Atanu Rakshit
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Animesh Acharjee
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| | - Bidyut Saha
- Homogeneous Catalysis LaboratoryDepartment Of ChemistryThe University Of Burdwan, Golapbag, Burdwan, Pin - 713104 West Bengal India
| |
Collapse
|
34
|
Stimuli-responsive supramolecular assemblies via self-assembly of adamantane-containing block copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Pavan Rudhrabatla V, Jalababu R, Krishna Rao K, Suresh Reddy K. Fabrication and characterisation of curcumin loaded pH dependent sodium alginate-g-poly(acryloyl phenylalanine)-cl-ethylene glycol vinyl ether-co- hydroxyethyl acrylate hydrogels and their in-vitro, in-vivo and toxicological evaluation studies. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Tong Z, Liu X, Zhang B. Synthesis of sphere-like polyelectrolyte complexes and their homogeneous membranes for enhanced pervaporation performances in ethanol dehydration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Corrigan N, Zhernakov L, Hashim MH, Xu J, Boyer C. Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00014c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A slug flow process has been utilised in conjunction with metal-free photopolymerisation to produce well-defined polymers with outstanding consistency.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| | - Leonid Zhernakov
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Muhammad Hazim Hashim
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| |
Collapse
|
38
|
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019. [DOI: 10.1039/c8py01808a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Review on recent strategies to synthesize novel disulfide-containing reductively-degradable block copolymers and their nanoassemblies as being classified with the number, position, and location of the disulfide linkages toward effective tumor-targeting intracellular drug delivery exhibiting enhanced release of encapsulated drugs.
Collapse
Affiliation(s)
- Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
39
|
Holm R, Douverne M, Weber B, Bauer T, Best A, Ahlers P, Koynov K, Besenius P, Barz M. Impact of Branching on the Solution Behavior and Serum Stability of Starlike Block Copolymers. Biomacromolecules 2018; 20:375-388. [DOI: 10.1021/acs.biomac.8b01545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Marcel Douverne
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Bauer
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Best
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Patrick Ahlers
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Pol Besenius
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
40
|
Ahmed Z, Malli S, Diaz-Salmeron R, Destruel PL, Da Costa A, Guigner JM, Porcher F, Baptiste B, Ponchel G, Bouchemal K. New insights on the structure of hexagonally faceted platelets from hydrophobically modified chitosan and α-cyclodextrin. Int J Pharm 2018; 548:23-33. [DOI: 10.1016/j.ijpharm.2018.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
|
41
|
SATO T, LI Y. Structural Studies of Polymer Nano-Assemblies in Solution by Scattering Techniques. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2018-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Takahiro SATO
- Department of Macromolecular Science, Osaka University
| | - Yan LI
- Department of Macromolecular Science, Osaka University
| |
Collapse
|
42
|
Oh T, Nagao M, Hoshino Y, Miura Y. Self-Assembly of a Double Hydrophilic Block Glycopolymer and the Investigation of Its Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8591-8598. [PMID: 29957990 DOI: 10.1021/acs.langmuir.8b01527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the self-assembly of a double hydrophilic block glycopolymer (DHBG) via hydrogen bonding and coordinate bonding. This DHBG, composed of poly(ethylene)glycol (PEG) and glycopolymer, self-assembled into a well-defined structure. The DHBG was prepared through the controlled radical polymerization of trimethylsilyl-protected propargyl methacrylate using a PEG-based reversible addition-fragmentation chain transfer reagent, followed by sugar conjugation using click chemistry. The DHBG self-assembly capability was investigated by transmission electron microscopy and dynamic light scattering. Interestingly, the DHBG self-assembled into a spherical structure in aqueous solution. Hydrogen bonding and coordinate bonding with Ca2+ were identified as the driving forces for self-assembly.
Collapse
Affiliation(s)
- Takahiro Oh
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Masanori Nagao
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Yu Hoshino
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Yoshiko Miura
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| |
Collapse
|
43
|
Andrianov AK, Marin A, Martinez AP, Weidman JL, Fuerst TR. Hydrolytically Degradable PEGylated Polyelectrolyte Nanocomplexes for Protein Delivery. Biomacromolecules 2018; 19:3467-3478. [PMID: 29953203 DOI: 10.1021/acs.biomac.8b00785] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel oppositely charged polyphosphazene polyelectrolytes containing grafted poly(ethylene glycol) (PEG) chains were synthesized as modular components for the assembly of biodegradable PEGylated protein delivery vehicles. These macromolecular counterparts, which contained either carboxylic acid or tertiary amino groups, were then formulated at near physiological conditions into supramolecular assemblies of nanoscale level, below 100 nm. Nanocomplexes with electroneutral surface charge, as assessed by zeta potential measurements, were stable in aqueous solutions, which suggests their compact polyelectrolyte complex "core"-hydrophilic PEG "shell" structure. Investigation of PEGylated polyphosphazene nanocomplexes as agents for noncovalent PEGylation of the therapeutic protein l-asparaginase (L-ASP) in vitro demonstrated their ability to dramatically reduce protein antigenicity, as measured by antibody binding using enzyme linked immunosorbent assay (ELISA). Encapsulation in nanocomplexes did not affect enzymatic activity of L-ASP, but improved its thermal stability and proteolytic resistance. Gel permeation chromatography (GPC) experiments revealed that all synthesized polyphosphazenes exhibited composition controlled hydrolytic degradability in aqueous solutions at neutral pH and showed greater stability at lower temperatures. Overall, novel hydrolytically degradable polyphosphazene polyelectrolytes capable of spontaneous self-assembly into PEGylated nanoparticulates in aqueous solutions can potentially enable a simple and effective approach to modifying therapeutic proteins without the need for their covalent modification.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Andre P Martinez
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Jacob L Weidman
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States.,Department of Cell Biology and Molecular Genetics , 1109 Microbiology Building , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
44
|
Zhang K, Arranja A, Chen H, Mytnyk S, Wang Y, Oldenhof S, van Esch JH, Mendes E. A nano-fibrous platform of copolymer patterned surfaces for controlled cell alignment. RSC Adv 2018; 8:21777-21785. [PMID: 35541759 PMCID: PMC9081099 DOI: 10.1039/c8ra03527j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 11/25/2022] Open
Abstract
The last decade has witnessed great progress in understanding and manipulating self-assembly of block copolymers in solution. A wide variety of micellar structures can be created and many promising applications in bioscience have been reported. In particular, nano-fibrous micelles provide a great platform to mimic the filamentous structure of native extracellular matrix (ECM). However, the evaluation of this kind of filomicellar system with potential use in tissue engineering is virtually unexplored. The question behind it, such as if the block copolymer nano-fibrous micelles can regulate cellular response, has lingered for many years because of the difficulties in preparation and 3D manipulation of these tiny objects. Here, by using a combination approach of self-assembly of block copolymers and soft lithography, we establish a novel and unique nano-fibrous 2D platform of organized micelles and demonstrate that patterned micelles enable control over the cellular alignment behavior. The area density and orientation of fibrous micelles determine the alignment degree and directionality of cells, respectively. Furthermore, when cells were cultured on multi-directionally aligned micelles, a competitive response was observed. Due to the virtually infinite possibilities of functionalization of the micelle corona, our work opens a new route to further mimic the native fibrous networks with artificial micelles containing various functionalities.
Collapse
Affiliation(s)
- Kai Zhang
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology Delft 2629 HZ The Netherlands
| | - Alexandra Arranja
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology Delft 2629 HZ The Netherlands
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht Utrecht 3584 CX The Netherlands
| | - Hongyu Chen
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University Blacksburg VA 24061 USA
| | - Serhii Mytnyk
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology Delft 2629 HZ The Netherlands
| | - Yiming Wang
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology Delft 2629 HZ The Netherlands
| | - Sander Oldenhof
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology Delft 2629 HZ The Netherlands
- Netherlands Forensic Institute Den Haag 2497 GB The Netherlands
| | - Jan H van Esch
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology Delft 2629 HZ The Netherlands
| | - Eduardo Mendes
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology Delft 2629 HZ The Netherlands
| |
Collapse
|
45
|
Contreras JM, Rondón M, López-Carrasquero F. Synthesis and characterization of aba-type block copolymer of poly(ϵ-caproplactone) with poly(ethylene glycol), by mean of activation end groups. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1470465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jesús M. Contreras
- Grupo de Polímeros, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - María Rondón
- Grupo de Polímeros, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Francisco López-Carrasquero
- Grupo de Polímeros, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| |
Collapse
|
46
|
Nolles A, van Dongen NJE, Westphal AH, Visser AJWG, Kleijn JM, van Berkel WJH, Borst JW. Encapsulation into complex coacervate core micelles promotes EGFP dimerization. Phys Chem Chem Phys 2018; 19:11380-11389. [PMID: 28422208 DOI: 10.1039/c7cp00755h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex coacervate core micelles (C3Ms) are colloidal structures useful for encapsulation of biomacromolecules. We previously demonstrated that enhanced green fluorescent protein (EGFP) can be encapsulated into C3Ms using the diblock copolymer poly(2-methyl-vinyl-pyridinium)41-b-poly(ethylene-oxide)205. This packaging resulted in deviating spectroscopic features of the encapsulated EGFP molecules. Here we show that for monomeric EGFP variant (mEGFP) micellar encapsulation affects the absorption and fluorescence properties to a much lesser extent, and that changes in circular dichroism characteristics are specific for encapsulated EGFP. Time-resolved fluorescence anisotropy of encapsulated (m)EGFP established the occurrence of homo-FRET (Förster resonance energy transfer) with larger transfer correlation times in the case of EGFP. Together, these findings support that EGFP dimerizes whereas the mEGFP mainly remains as a monomer in the densely packed C3Ms. We propose that dimerization of encapsulated EGFP causes a reorientation of Glu222, resulting in a pKa shift of the chromophore, which is fully reversible after release of EGFP from the C3Ms at a high ionic strength.
Collapse
Affiliation(s)
- A Nolles
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Takahashi R, Narayanan T, Yusa SI, Sato T. Kinetics of Morphological Transition between Cylindrical and Spherical Micelles in a Mixture of Anionic–Neutral and Cationic–Neutral Block Copolymers Studied by Time-Resolved SAXS and USAXS. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rintaro Takahashi
- ESRF−The
European Synchrotron, 71 Avenue des Martyrs, F-38043 Grenoble, France
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku,
Kitakyushu, Fukuoka 808-0135, Japan
| | | | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Takahiro Sato
- Department of Macromolecular Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
48
|
Vishnevetskaya NS, Hildebrand V, Dyakonova MA, Niebuur BJ, Kyriakos K, Raftopoulos KN, Di Z, Müller-Buschbaum P, Laschewsky A, Papadakis CM. Dual Orthogonal Switching of the “Schizophrenic” Self-Assembly of Diblock Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00096] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Natalya S. Vishnevetskaya
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Viet Hildebrand
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Margarita A. Dyakonova
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Konstantinos Kyriakos
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Konstantinos N. Raftopoulos
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Zhenyu Di
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at MLZ, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Peter Müller-Buschbaum
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institut
für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Christine M. Papadakis
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
49
|
Hong SH, Patel T, Ip S, Garg S, Oh JK. Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3316-3325. [PMID: 29485889 DOI: 10.1021/acs.langmuir.8b00338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlling the size and narrow size distribution of polymer-based nanocarriers for targeted drug delivery is an important parameter that significantly influences their colloidal stability, biodistribution, and targeting ability. Herein, we report a high-throughput microfluidic process to fabricate colloidally stable aqueous nanoparticulate colloids with tunable sizes at 50-150 nm and narrow size distribution. The nanoparticulates are designed with different molecular weight polyesters having both ester bonds (responsive to esterase) and sulfide linkages (to oxidative reaction) on the backbones, thus exhibiting dual esterase/oxidation responses, causing the destabilization of the nanoparticulates to lead to the controlled release of encapsulated therapeutics. The systematic investigation on both microfluidic and formulation parameters enables to control their properties as allowing for decreasing nanoparticulate sizes as well as improving colloidal stability and cytotoxicity. Further to such control over smaller size and narrow size distribution, dual stimuli-responsive degradation and excellent cellular uptake could suggest that the microfluidic nanoparticulates stabilized with polymeric stabilizers could offer the versatility toward dual smart drug delivery exhibiting enhanced release kinetics.
Collapse
Affiliation(s)
- Sung Hwa Hong
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| | - Twinkal Patel
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| | - Shell Ip
- Precision NanoSystems, Vancouver , BC , Canada V6T 1Z3
| | - Shyam Garg
- Precision NanoSystems, Vancouver , BC , Canada V6T 1Z3
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| |
Collapse
|
50
|
Bongiovì F, Di Prima G, Palumbo FS, Licciardi M, Pitarresi G, Giammona G. Hyaluronic Acid-Based Micelles as Ocular Platform to Modulate the Loading, Release, and Corneal Permeation of Corticosteroids. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Flavia Bongiovì
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Fabio S. Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
- Mediterranean Center of Human Health Advanced Biotechnologies (CHAB); AteN Center; Viale delle Scienze, Edificio 18 90128 Palermo Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF); Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
- Mediterranean Center of Human Health Advanced Biotechnologies (CHAB); AteN Center; Viale delle Scienze, Edificio 18 90128 Palermo Italy
| |
Collapse
|