1
|
Uddin MN, Hossain MT, Mahmud N, Alam S, Jobaer M, Mahedi SI, Ali A. Research and applications of nanoclays: A review. SPE POLYMERS 2024; 5:507-535. [DOI: 10.1002/pls2.10146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractNanoclays, a specific type of nanomaterial, have emerged as versatile and dynamic materials, with tremendous potential for advanced functional applications. Despite publishing a large number of research articles, there are relatively few review articles on this topic. This comprehensive review delves into the most widely used nanoclays and explores the diverse range of applications in different fields, such as aerospace, automobile, construction, biomedical, food packaging, and polymer composites. With their ability to enhance the performance of materials and products, nanoclays have become a highly desired material in various industries. The challenges associated with nanoclays like complex properties, difficulty in developing new synthesis methods, and challenges in investigating long‐term durability and stability have been summarized. The future research directions with the exciting possibilities to develop future innovative materials have been highlighted at the end of the article.Highlights
This review provides an extensive examination of the most widely used nanoclays, detailing their properties, types, and limitations.
A summary of publication trends over the last 15 years, based on Scopus data up to 2024, indicates growing interest and research output in nanoclays.
Applications of nanoclays span across aerospace, automobile, construction, biomedical, food packaging, and polymer composites, showcasing their versatility.
Key challenges discussed include complex properties, difficulties in new synthesis methods, and issues in long‐term durability and stability.
Future research directions highlight the potential for developing innovative materials using nanoclays.
Collapse
Affiliation(s)
- Md. Nur Uddin
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Md. Tanvir Hossain
- Department of Textile Engineering Bangladesh University of Business and Technology (BUBT) Dhaka Bangladesh
| | - Nadim Mahmud
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Sadikul Alam
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Md Jobaer
- Department of Electrical and Electronics Engineering Northern University Bangladesh Dhaka Bangladesh
| | - Sajjatul Islam Mahedi
- Bachelor of Medicine and Bachelor of Surgery Eastern Medical College Cumilla Bangladesh
| | - Ayub Ali
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| |
Collapse
|
2
|
Trigueiro P, Pereira JPDL, Ferreira MG, Silva LB, Neves L, Peña-Garcia RR. Clay Minerals and Biopolymers in Film Design: Overview of Properties and Applications. MINERALS 2024; 14:613. [DOI: 10.3390/min14060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Research to replace petroleum-based plastics has been quite challenging. Currently, there is a lot of interest in biopolymers as an alternative. However, biopolymers do not have suitable mechanical properties when in film form, which limits their applications. To resolve this issue, clay minerals are being incorporated as a strategy. Clay minerals offer the films good barrier, thermal, rheological, optical, and mechanical properties. They can also work with other additives to promote antioxidant and antimicrobial activity. This brief review focuses on incorporating clay minerals with other nanofillers and bioactives to improve their physical, chemical, and functional characteristics. The synergy of these materials gives the films exceptional properties and makes them suitable for applications such as food coatings, packaging materials, dressings, and bandages for treating skin wounds.
Collapse
Affiliation(s)
- Pollyana Trigueiro
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Juliane P. de L. Pereira
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Mirelly G. Ferreira
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Lucas B. Silva
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Luan Neves
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Ramón R. Peña-Garcia
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| |
Collapse
|
3
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
4
|
Alva-Ensastegui J, Morales-Avila E, de la Luz AP, Bernad-Bernad M. Determination of pKa values and deprotonation order of methotrexate using a combined experimental-theoretical study and binding constants of the methotrexate-Laponite complex at different pH values. J Photochem Photobiol A Chem 2024; 449:115406. [DOI: 10.1016/j.jphotochem.2023.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Ruiz-Hitzky E, Ruiz-Garcia C. MXenes vs. clays: emerging and traditional 2D layered nanoarchitectonics. NANOSCALE 2023; 15:18959-18979. [PMID: 37937945 DOI: 10.1039/d3nr03037g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Although MXene materials are considered an emerging research topic, they are receiving considerable interest because, like metals and graphene, they are good electronic conductors but with the particularity that they have a marked hydrophilic character. Having a structural organization and properties close to those of clay minerals (natural silicates typically with a lamellar morphology), they are sometimes referred to as "conducting clays" and exhibit colloidal, surface and intercalation properties also similar to those of clay minerals. The present contribution aims to inform and discuss the nature of MXenes in comparison with clay phyllosilicates, taking into account their structural analogies, outstanding surface properties and advanced applications. The current in-depth understanding of clay minerals may represent a basis for the future development of MXene-derived nanoarchitectures. Comparative examples of the preparation, and studies on the properties and applications of various nanoarchitectures based on clays and MXenes have been included in the present work.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Cristina Ruiz-Garcia
- Chemical Engineering Department, Faculty of Science, c/Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Alcântara ACS, González-Alfaro Y, Darder M, Ruiz-Hitzky E, Aranda P. Magnetite-sepiolite nanoarchitectonics for improving zein-based bionanocomposite foams. Dalton Trans 2023; 52:16951-16962. [PMID: 37930107 DOI: 10.1039/d3dt02845c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Magnetic nanoarchitectures have been used to introduce multifunctionality in biopolymeric matrices. Bionanocomposite foams based on the corn protein zein were prepared for the first time using the hydrophobic properties of zein in a sequential treatment consisting of the removal of ethanol-soluble fractions, followed by the water swelling of the remaining phase and a further freeze-drying process. When this protocol is applied to zein pellets, they can be consolidated as porous monoliths. Moreover, it is possible to incorporate diverse types of inorganic nanoparticles in the starting pellet to produce the bionanocomposite foams. In particular, the preparation of superparamagnetic foams has been explored using two approaches: the direct incorporation of magnetite nanoparticles in a ferrofluid by impregnation in the foams, and the application of the foaming process to mixtures of zein with magnetite nanoparticles alone or previously assembled into sepiolite clay fibers. The first methodology leads to the production of inhomogeneous foams, while the use of magnetite nanoparticles and better Fe3O4-sepiolite nanoarchitectured materials as fillers results in more homogeneous materials with improved water stability and mechanical properties, offering superparamagnetic behavior. The resulting multifunctional foams have been tested in adsorption processes using the herbicide 4-chloro-2-methylphenoxyacetic acid as a model pollutant, confirming their potential utility in decontamination applications in open waters as they can be easily recovered from the aqueous medium using a magnet.
Collapse
Affiliation(s)
- Ana C S Alcântara
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Yorexis González-Alfaro
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Meirelles LMA, de Melo Barbosa R, de Almeida Júnior RF, Machado PRL, Perioli L, Viseras C, Raffin FN. Biocomposite for Prolonged Release of Water-Soluble Drugs. Pharmaceutics 2023; 15:1722. [PMID: 37376170 DOI: 10.3390/pharmaceutics15061722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to develop a prolonged-release system based on palygorskite and chitosan, which are natural ingredients widely available, affordable, and accessible. The chosen model drug was ethambutol (ETB), a tuberculostatic drug with high aqueous solubility and hygroscopicity, which is incompatible with other drugs used in tuberculosis therapy. The composites loaded with ETB were obtained using different proportions of palygorskite and chitosan through the spray drying technique. The main physicochemical properties of the microparticles were determined using XRD, FTIR, thermal analysis, and SEM. Additionally, the release profile and biocompatibility of the microparticles were evaluated. As a result, the chitosan-palygorskite composites loaded with the model drug appeared as spherical microparticles. The drug underwent amorphization within the microparticles, with an encapsulation efficiency greater than 84%. Furthermore, the microparticles exhibited prolonged release, particularly after the addition of palygorskite. They demonstrated biocompatibility in an in vitro model, and their release profile was influenced by the proportion of inputs in the formulation. Therefore, incorporating ETB into this system offers improved stability for the administered product in the initial tuberculosis pharmacotherapy dose, minimizing its contact with other tuberculostatic agents in the treatment, as well as reducing its hygroscopicity.
Collapse
Affiliation(s)
- Lyghia M A Meirelles
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| | | | - Paula Renata Lima Machado
- Immunology Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de Las Palmeras 4, 18100 Armilla, Spain
| | - Fernanda Nervo Raffin
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| |
Collapse
|
8
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
9
|
Nomicisio C, Ruggeri M, Bianchi E, Vigani B, Valentino C, Aguzzi C, Viseras C, Rossi S, Sandri G. Natural and Synthetic Clay Minerals in the Pharmaceutical and Biomedical Fields. Pharmaceutics 2023; 15:pharmaceutics15051368. [PMID: 37242610 DOI: 10.3390/pharmaceutics15051368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Clay minerals are historically among the most used materials with a wide variety of applications. In pharmaceutical and biomedical fields, their healing properties have always been known and used in pelotherapy and therefore attractive for their potential. In recent decades, the research has therefore focused on the systematic investigation of these properties. This review aims to describe the most relevant and recent uses of clays in the pharmaceutical and biomedical field, especially for drug delivery and tissue engineering purposes. Clay minerals, which are biocompatible and non-toxic materials, can act as carriers for active ingredients while controlling their release and increasing their bioavailability. Moreover, the combination of clays and polymers is useful as it can improve the mechanical and thermal properties of polymers, as well as induce cell adhesion and proliferation. Different types of clays, both of natural (such as montmorillonite and halloysite) and synthetic origin (layered double hydroxides and zeolites), were considered in order to compare them and to assess their advantages and different uses.
Collapse
Affiliation(s)
- Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
10
|
Halloysite Nanotubes and Sepiolite for Health Applications. Int J Mol Sci 2023; 24:ijms24054801. [PMID: 36902232 PMCID: PMC10003602 DOI: 10.3390/ijms24054801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The need for safe, therapeutically effective, and patient-compliant drug delivery systems continuously leads researchers to design novel tools and strategies. Clay minerals are widely used in drug products both as excipients and active agents but, in recent years, there has been a growing interest in research aimed at the development of new organic or inorganic nanocomposites. The attention of the scientific community has been drawn by nanoclays, thanks to their natural origin, worldwide abundance, availability, sustainability, and biocompatibility. In this review, we focused our attention on the studies inherent to the pharmaceutical and biomedical applications of halloysite and sepiolite, and their semi-synthetic or synthetic derivatives, as drug delivery systems. After having described the structure of both materials and their biocompatibility, we delineate the use of the nanoclays to enhance the stability, the controlled release, the bioavailability, and the adsorption properties of drugs. Several types of surface functionalization have been discussed, showing that these materials could be used for the development of an innovative therapeutic approach.
Collapse
|
11
|
Bio-nanocomposites and their potential applications in physiochemical properties of cheese: an updated review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Brooks D, Piétrement O, Dardillac E, Jayantha A, Lores Guevara MA, Castro-Smirnov FA, Aranda P, Ruiz-Hitzky E, Lopez BS. Impact of Increased Sonication-Induced Dispersion of Sepiolite on Its Interaction with Biological Macromolecules and Toxicity/Proliferation in Human Cells. ACS OMEGA 2023; 8:1026-1036. [PMID: 36643441 PMCID: PMC9835666 DOI: 10.1021/acsomega.2c06391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Sepiolite is a natural clay silicate that is widely used, including biomedical applications; notably sepiolite shows promising features for the transfer of biological macromolecules into mammalian cells. However, before its use, such an approach should address the efficiency of binding to biological macromolecules and cell toxicity. Because sepiolite spontaneously forms aggregates, its disaggregation can represent an important challenge for improving the suspension performance and the assembly with biological species. However, this can also influence the toxicity of sepiolite in mammalian cells. Here, a very pure commercial sepiolite (Pangel S9), which is present as a partially defibrillated clay mineral, is used to study the consequences of additional deagglomeration/dispersion through sonication. We analyzed the impact of extra sonication on the dispersion of sepiolite aggregates. Factors such as sonication time, sonicator power, and temperature are taken into account. With increasing sonication time, a decrease in aggregation is observed, as well as a decrease in the length of the nanofibers monitored by atomic force microscopy. Changes in the temperature and pH of the solution are also observed during the sonication process. Moreover, although the adsorption capacity of bovine serum albumin (BSA) protein on sepiolite is increased with sonication time, the DNA adsorption efficiency remains unaffected. Finally, sonication of sepiolite decreases the hemolytic activity in blood cells and the toxicity in two different human cell lines. These data show that extra sonication of deagglomerated sepiolite can further favor its interaction with some biomacromolecules (e.g., BSA), and, in parallel, decrease sepiolite toxicity in mammalian cells. Therefore, sonication represents an alluring procedure for future biomedical applications of sepiolite, even when using commercial defibrillated particles.
Collapse
Affiliation(s)
- David
Adame Brooks
- Université
de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin,
Equipe Labellisée Ligue Contre le Cancer, 24 Rue Du Faubourg St. Jacques, Paris75014, France
- Centro
de Biofísica Médica, Universidad de Oriente, Patricio Lumumba S/NSantiago de Cuba, CP 90500, Cuba
| | - Olivier Piétrement
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université
de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, Dijon Cedex21078, France
| | - Elodie Dardillac
- Université
de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin,
Equipe Labellisée Ligue Contre le Cancer, 24 Rue Du Faubourg St. Jacques, Paris75014, France
| | - Ayesha Jayantha
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université
de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, Dijon Cedex21078, France
| | - Manuel A. Lores Guevara
- Centro
de Biofísica Médica, Universidad de Oriente, Patricio Lumumba S/NSantiago de Cuba, CP 90500, Cuba
| | | | - Pilar Aranda
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, Madrid28049, Spain
| | - Eduardo Ruiz-Hitzky
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, Madrid28049, Spain
| | - Bernard S. Lopez
- Université
de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin,
Equipe Labellisée Ligue Contre le Cancer, 24 Rue Du Faubourg St. Jacques, Paris75014, France
| |
Collapse
|
13
|
Shishkhanova K, Molchanov V, Baranov A, Kharitonova E, Orekhov A, Arkharova N, Philippova O. A pH-triggered reinforcement of transient network of wormlike micelles by halloysite nanotubes of different charge. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Polyurethane/Vermiculite Foam Composite as Sustainable Material for Vertical Flame Retardant. Polymers (Basel) 2022; 14:polym14183777. [PMID: 36145923 PMCID: PMC9504044 DOI: 10.3390/polym14183777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Rigid polyurethane foams were prepared by the one-step expandable foam method using casting molding followed by forming clay-based composites. Polyurethane/vermiculite foam composites (PU/VMT) were controlled based on adding the percentage of clay in the formulation. The effects of composite modifications were evaluated by X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), and scanning electron microscopy (SEM/EDS) applied to the flame retardancy explored by the vertical burn test. The results indicated that adding clay controlled the particle size concerning polyurethane (PU) foams. However, they exhibited spherical structures with closed cells with relatively uniform distribution. XRD analysis showed the peaks defined at 2θ = 18° and 2θ = 73° relative to the crystallinity in formation and interaction of rigid segments were identified, as well as the influence of crystallinity reduction in composites. In the flame test, the flame retardant surface was successful in all composites, given the success of the dispersibility and planar orientation of the clay layers and the existence of an ideal content of vermiculite (VMT) incorporated in the foam matrix.
Collapse
|
15
|
Das P, Manna S, Behera AK, Shee M, Basak P, Sharma AK. Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review. ENVIRONMENTAL RESEARCH 2022; 212:113534. [PMID: 35654154 DOI: 10.1016/j.envres.2022.113534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/19/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Clays and its composites have received considerable attention recently due to their low cost, wide availability and low environmental impact. The development of various preparation processes and applications of innovative polymer-nanoclay composites has been aided by recent breakthroughs in material technologies. Novel polymer-nanoclay composites with better qualities have been effectively adopted in a variety of fields, including aerospace, car, construction, petroleum, biomedical, and wastewater treatment, owing to innovative production processes. Due to their superior qualities, such as increased density, strength, relatively large surface areas, high elastic modulus, flame retardancy, and thermomechanical/optoelectronic/magnetic capabilities, these composites are acknowledged as potential advanced materials. Hence the present paper reviews the advances in synthesis and preparation of clay-polymer nanocomposites. In addition, this study also focuses on the various techniques used for clay-polymer nanocomposites characterization e.g. scanning electron microscope (SEM), transmission electron microscope (TEM), thermo-gravimetric analysis (TGA) and differential colorimetric analysis (DSC), x-ray diffraction (XRD) analysis, Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopic (FTIR) characterization. These advanced physico-mechanical and chemical characterization techniques would be effective in understanding the most appropriate application of clay polymer nanocomposites. In addition, the application of clay polymer nanocomposites in biomedical sector is also discussed in brief.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, WB, 700032, India
| | - Suvendu Manna
- School of Bioscience and Engineering, Jadavpur University, Kolkata, WB, 700032, India; Department of Health Safety, Environment, and Civil Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India.
| | - Ajaya K Behera
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, 751004, India
| | - Moumita Shee
- Department of Health Safety, Environment, and Civil Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Piyali Basak
- Department of Health Safety, Environment, and Civil Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Amit Kumar Sharma
- School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
16
|
Zhang H, Lu Y, Zhang Q, Yang F, Hui A, Wang A. Structural evolution of palygorskite-rich clay as the nanocarriers of silver nanoparticles for efficient improving antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
The Application of Clay-Based Nanocomposite Hydrogels in Wound Healing. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Zhang Z, Zhang X, Fu Z, Cao L, Xiong Z, Tang Y, Feng Y. Fibrous palygorskite clays as versatile nanocarriers for skin delivery of tea tree oils in efficient acne therapy. Int J Pharm 2022; 623:121903. [PMID: 35697203 DOI: 10.1016/j.ijpharm.2022.121903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 02/02/2023]
Abstract
This paper presents a facile approach to develop palygorskite (Pal), a fibrous clay mineral, as a delivery system of tea tree oil (TTO) for topical acne therapy. The obtained TTO-Pal composite showed an efficient loading of TTO (27.4%) with a selective accumulation of terpine-4-ol and 1,8-cineole (two major antimicrobial TTO constituents), sustained release of TTO at skin physiological conditions (pH5.4, 32 °C) and superior skin sebum (2.2 g/g) absorbability. In vitro toxicological assessments showed that the Pal incorporation strategy significantly reduced the acute contact toxicity of TTO. The antimicrobial results revealed a preferable bacteriostatic effect for the TTO-Pal system towards opportunistic dermal pathogens (Escherichia coli, Staphylococcus aureus and Propionibacterium acnes) over the beneficial bacterium (Staphylococcus epidermis). Moreover, TTO-Pal based formulations exhibited pronounced clinical therapeutic efficacy in treating facial acne by rapidly reducing inflamed lesions, modulating skin sebum overproduction and restoring barrier function. This is the first report of using fibrous clay as a biocompatible nanocarrier system for topical delivery of essential oils in efficient management of facial acne with both in vitro and in vivo evidences, which may open perspectives for fibrous clay-drug delivery system in topical application and expand the high added value development of this mineral resource in the advanced healthcare fields.
Collapse
Affiliation(s)
- Zhaolun Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zhengpeng Fu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ziyi Xiong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Gansu West Attapulgite Application Research Institute, Baiyin, Gansu 730900, China.
| |
Collapse
|
19
|
Biopolymer-Based Films from Sodium Alginate and Citrus Pectin Reinforced with SiO2. MATERIALS 2022; 15:ma15113881. [PMID: 35683178 PMCID: PMC9182168 DOI: 10.3390/ma15113881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
Blend films based on sodium alginate (SA) and citrus pectin (P) reinforced with different concentrations of SiO2 (0–10% w/w) were developed in this study. From the morphological (SEM) and structural (FT-IR) evaluation, it was verified that the incorporation of the reinforcing agent did not drastically modify the microstructure of the films, nor did new chemical bonds form. However, the XRD results suggested a slight reduction in the crystallinities of the blends by the incorporation of SiO2. Among the formulations prepared, the addition of a 5% reinforcing agent was responsible for the simultaneous improvement of mechanical and barrier properties. Comparing the control sample (SA/P) with the SA/P/5.0%SiO2 film, the tensile strength increased from 27.7 ± 3.7 to 40.6 ± 4.5 MPa, and the water-vapor transmission rate decreased from 319.8 ± 38.7 to 288.9 ± 23.5 g m−2 day−1. Therefore, SiO2, as a reinforcing agent in SA/P blends, represents a simple and effective strategy for improving the properties of biopolymer-based films in applications, such as packaging.
Collapse
|
20
|
Zhu Y, Wang A. Pickering emulsions and foams stabilization based on clay minerals. DEVELOPMENTS IN CLAY SCIENCE 2022:169-227. [DOI: 10.1016/b978-0-323-91858-9.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Karki S, Gohain MB, Yadav D, Ingole PG. Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. Int J Biol Macromol 2021; 193:2121-2139. [PMID: 34780890 DOI: 10.1016/j.ijbiomac.2021.11.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/13/2023]
Abstract
Nanocomposite and bio-nanocomposite polymer materials/membranes have fascinated prominent attention in the energy as well as the medical sector. Their composites make them appropriate choices for various applications in the medical, energy and industrial sectors. Composite materials are subject of interest in the polymer industry. Different kinds of fillers, such as cellulose-based fillers, carbon black, clay nanomaterials, glass fibers, ceramic nanomaterial, carbon quantum dots, talc and many others have been incorporated into polymers to improve the quality of the final product. These results are dependent on a variety of factors; however, nanoparticle dispersion and distribution are major obstacles to fully using nanocomposites/bio-nanocomposites materials/membranes in various applications. This review examines the various nanocomposite and bio-nanocomposite materials applications in the energy and medical sector. The review also covers the variety of ways for increasing nanocomposite and bio-nanocomposite materials features, each with its own set of applications. Recent researches on composite materials have shown that polymeric nanocomposites and bio-nanocomposites are promising materials that have been intensively explored for many applications that include electronics, environmental remediation, energy, sensing (biosensor) and energy storage devices among other applications. In this review, we studied various nanocomposite and bio-nanocomposite materials, their controlling parameters to develop the product and examine their features and applications in the fields of energy and the medical sector.
Collapse
Affiliation(s)
- Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
22
|
Cui Y, Huang Z, Lei L, Li Q, Jiang J, Zeng Q, Tang A, Yang H, Zhang Y. Robust hemostatic bandages based on nanoclay electrospun membranes. Nat Commun 2021; 12:5922. [PMID: 34635666 PMCID: PMC8505635 DOI: 10.1038/s41467-021-26237-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Death from acute hemorrhage is a major problem in military conflicts, traffic accidents, and surgical procedures, et al. Achieving rapid effective hemostasis for pre-hospital care is essential to save lives in massive bleeding. An ideal hemostasis material should have those features such as safe, efficient, convenient, economical, which remains challenging and most of them cannot be achieved at the same time. In this work, we report a rapid effective nanoclay-based hemostatic membranes with nanoclay particles incorporate into polyvinylpyrrolidone (PVP) electrospun fibers. The nanoclay electrospun membrane (NEM) with 60 wt% kaolinite (KEM1.5) shows better and faster hemostatic performance in vitro and in vivo with good biocompatibility compared with most other NEMs and clay-based hemostats, benefiting from its enriched hemostatic functional sites, robust fluffy framework, and hydrophilic surface. The robust hemostatic bandages based on nanoclay electrospun membrane is an effective candidate hemostat in practical application. Rapid, easy and effective haemostasis is needed to reduce the loss of life from traumatic haemorrhage. Here, the authors report on the creation of polymer-nanoclay electrospun membranes and demonstrate haemostatic effects showing superior effects to other clay based haemostats.
Collapse
Affiliation(s)
- Yan Cui
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Zongwang Huang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Li Lei
- Department of Dermatology, the Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Qinglin Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jinlong Jiang
- Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, 223003, Huaian, China
| | - Qinghai Zeng
- Department of Dermatology, the Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Aidong Tang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Huaming Yang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.
| |
Collapse
|
23
|
Ruiz-Hitzky E, Ruiz-García C, Fernandes FM, Lo Dico G, Lisuzzo L, Prevot V, Darder M, Aranda P. Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. Front Chem 2021; 9:733105. [PMID: 34485248 PMCID: PMC8414812 DOI: 10.3389/fchem.2021.733105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Sepiolite and palygorskite fibrous clay minerals are 1D silicates featuring unique textural and structural characteristics useful in diverse applications, and in particular as rheological additives. Here we report on the ability of grinded sepiolite to generate highly viscous and stable hydrogels by sonomechanical irradiation (ultrasounds). Adequate drying of such hydrogels leads to low-density xerogels that show extensive fiber disaggregation compared to the starting sepiolite—whose fibers are agglomerated as bundles. Upon re-dispersion in water under high-speed shear, these xerogels show comparable rheological properties to commercially available defibrillated sepiolite products, resulting in high viscosity hydrogels that minimize syneresis. These colloidal systems are thus very interesting as they can be used to stabilize many diverse compounds as well as nano-/micro-particles, leading to the production of a large variety of composites and nano/micro-architectured solids. In this context, we report here various examples showing how colloidal routes based on sepiolite hydrogels can be used to obtain new heterostructured functional materials, based on their assembly to solids of diverse topology and composition such as 2D and 1D kaolinite and halloysite aluminosilicates, as well as to the 2D synthetic Mg,Al-layered double hydroxides (LDH).
Collapse
Affiliation(s)
| | - Cristina Ruiz-García
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Francisco M Fernandes
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Laboratoire de Chimie de la Matière Condensée de Paris, Faculté de Sciences, Sorbonne Université, Paris, France
| | - Giulia Lo Dico
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,IMDEA Materials Institute, Getafe, Spain
| | - Lorenzo Lisuzzo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Dipartimento di Fisica e Chimica - Emilio Segrè, Università degli Studi di Palermo, Palermo, Italy
| | - Vanessa Prevot
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Université Clermont Auvergne, CNRS, ICCF, Clermont-Ferrand, France
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| |
Collapse
|
24
|
Comparison of Surface Properties of Sepiolite and Palygorskite: Surface Energy and Nanoroughness. NANOMATERIALS 2021; 11:nano11061579. [PMID: 34208459 PMCID: PMC8235428 DOI: 10.3390/nano11061579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
The surface properties of two sepiolite samples and one palygorskite sample were compared using inverse gas chromatography (IGC). Samples were previously conditioned at appropriate temperatures for the removal of all zeolitic water. Dispersive (or Lifshitz–van der Waals) component of the surface energy (γsd), specific interactions (−ΔGas) with π electron donor bases (1-alkenes), and nanomorphology indices (IMχT) based on the injections of cycloalkanes and a branched alkane were measured. From IGC data, at 240 °C, it was found that the palygorskite was clearly distinguished from the sepiolites. The palygorskite possessed a lower γsd, larger −ΔGas with 1-alkenes, and remarkably higher IMχT. Slight differences could also be observed between the two sepiolite samples with the same origin. The results were rationalized in terms of the structural features of the two studied minerals. The larger channels of the sepiolite allow for a better insertion of the n-alkanes (longer retention times) while excluding the bulkier probes, such as cyclooctane or 2,2,4-trimethylpentane. Accordingly, the corresponding γsd values were larger and the IMχT values were lower (higher surface nanoroughness) for the sepiolites. Regarding Lewis acid–base properties, all the sample’s surfaces evidenced a very strong amphoteric character. The present results highlight the potential of the evaluated samples for, e.g., adsorption processes with volatile organic compounds or matrix–filler interactions regarding the production of composite structures with Lewis acid–base matrices.
Collapse
|
25
|
Köken N, Akşit E, Yilmaz M. Nanofibers from chitosan/polyacrylonitrile/sepiolite nanocomposites. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1934014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nesrin Köken
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Turkey
- Department of Chemistry, Istanbul Technical University, Graduate School of Science Engineering and Technology, Maslak, Istanbul, Turkey
| | - Elif Akşit
- Department of Chemistry, Istanbul Technical University, Graduate School of Science Engineering and Technology, Maslak, Istanbul, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Istanbul Technical University, Graduate School of Science Engineering and Technology, Maslak, Istanbul, Turkey
| |
Collapse
|
26
|
Álvarez-Castillo E, Bengoechea C, Guerrero A. Strengthening of Porcine Plasma Protein Superabsorbent Materials through a Solubilization-Freeze-Drying Process. Polymers (Basel) 2021; 13:772. [PMID: 33802290 PMCID: PMC7959129 DOI: 10.3390/polym13050772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
The replacement of common acrylic derivatives by biodegradable materials in the formulation of superabsorbent materials would lessen the associated environmental impact. Moreover, the use of by-products or biowastes from the food industry that are usually discarded would promote a desired circular economy. The present study deals with the development of superabsorbent materials based on a by-product from the meat industry, namely plasma protein, focusing on the effects of a freeze-drying stage before blending with glycerol and eventual injection molding. More specifically, this freeze-drying stage is carried out either directly on the protein flour or after its solubilization in deionized water (10% w/w). Superabsorbent materials obtained after this solubilization-freeze-drying process display higher Young's modulus and tensile strength values, without affecting their water uptake capacity. As greater water uptake is commonly related to poorer mechanical properties, the proposed solubilization-freeze-drying process is a useful strategy for producing strengthened hydrophilic materials.
Collapse
Affiliation(s)
- Estefanía Álvarez-Castillo
- Escuela Politécnica Superior, Chemical Engineering Department, University of Seville, Calle Virgen de África, 7, 41011 Sevilla, Spain; (C.B.); (A.G.)
| | | | | |
Collapse
|
27
|
Ding J, Zhang H, Wang W, Zhu Y, Wang Q, Wang A. Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Lima EMB, Middea A, Neumann R, Thiré RMDSM, Pereira JF, Freitas SC, Penteado MS, Lima AM, Minguita APDS, Mattos MDC, Teixeira ADS, Pereira ICS, Rojas dos Santos NR, Marconcini JM, Oliveira RN, Corrêa AC. Biocomposites of PLA and Mango Seed Waste: Potential Material for Food Packaging and a Technological Alternative to Reduce Environmental Impact. STARCH-STARKE 2021. [DOI: 10.1002/star.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Edla Maria Bezerra Lima
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Antonieta Middea
- Centre for Mineral Technology (CETEM) Av. Pedro Calmon, 900, Cidade Universitária Rio de Janeiro Rio de Janeiro 21941‐908 Brazil
| | - Reiner Neumann
- Centre for Mineral Technology (CETEM) Av. Pedro Calmon, 900, Cidade Universitária Rio de Janeiro Rio de Janeiro 21941‐908 Brazil
| | - Rossana Mara da Silva Moreira Thiré
- Program of Metallurgical and Materials Engineering (PEMM)/COPPE Federal University of Rio de Janeiro (UFRJ) Technology Center, Ilha do Fundão Rio de Janeiro Rio de Janeiro 21941‐598 Brazil
| | - Jéssica Fernandes Pereira
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Sidinea Cordeiro Freitas
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Marília Stephan Penteado
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | - Aline Muniz Lima
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | | | - Mariana da Costa Mattos
- EMBRAPA Food Technology Av. das Américas, 29501 – Guaratiba Rio de Janeiro Rio de Janeiro 23020‐470 Brazil
| | | | | | | | - José Manoel Marconcini
- National Nanotechnology Laboratory for Agriculture (LNNA) EMBRAPA Instrumentation São Carlos São Paulo 13560‐970 ‐ PO Box 741 Brazil
| | - Renata Nunes Oliveira
- Post Graduation Program of Chemical Engineering Chemical Engineering Department Federal Rural University of Rio de Janeiro Rod. BR 465, Km 07, s/n – Zona Rural Seropédica Rio de Janeiro 23890‐000 Brazil
| | - Ana Carolina Corrêa
- National Nanotechnology Laboratory for Agriculture (LNNA) EMBRAPA Instrumentation São Carlos São Paulo 13560‐970 ‐ PO Box 741 Brazil
- Graduate Program in Materials Science and Engineering Federal University of Sao Carlos (UFSCar) Rod. Washington Luiz, km 235 São Carlos São Paulo 13565‐905 Brazil
| |
Collapse
|
29
|
Gomes CSF, Santos DFG, Amaral MHR. Nanominerals and Nanomaterials Utilized in Pharmacy and Therapeutics. MINERALS LATU SENSU AND HUMAN HEALTH 2021:443-475. [DOI: 10.1007/978-3-030-65706-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
31
|
Stabilization of Palygorskite Aqueous Suspensions Using Bio-Based and Synthetic Polyelectrolytes. Polymers (Basel) 2020; 13:polym13010129. [PMID: 33396903 PMCID: PMC7795911 DOI: 10.3390/polym13010129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Palygorskite is a natural fibrous clay mineral that can be used in several applications, for which colloidal stability in aqueous suspensions is a key point to improve its performance. In this study, methods of magnetic stirring, high-speed shearing, and ultrasonication, as well as different chemical dispersants, combined with these methods, namely carboxymethylcellulose, alginate, polyphosphate, and polyacrylate, were used to improve the dispersibility and the formation of stable suspensions of palygorskite in different conditions of pH. The stability and particle size of suspensions with a low concentration of palygorskite were evaluated by visual inspection, optical and electron microscopy, dynamic light scattering, and zeta potential measurements. Moreover, the palygorskite used in this work was initially characterized for its mineralogical, chemical, physical, and morphological properties. It was found that more stable suspensions were produced with ultrasonication compared to the other two physical treatments, with magnetic stirring being inefficient in all tested cases, and for higher pH values (pH of 12 and pH of 8, the natural pH of the clay) when compared to lower pH values (pH of 3). Remarkably, combined with ultrasonication, carboxymethylcellulose or in a lesser extent polyphosphate at near neutral pH allowed for the disaggregation of crystal bundles of palygorskite into individualized crystals. These results may be helpful to optimize the performance of palygorskite in several domains where it is applied.
Collapse
|
32
|
Charradi K, Ahmed Z, Thmaini N, Aranda P, Al‐Ghamdi YO, Ocon P, Keshk SMAS, Chtourou R. Incorporating of layered double hydroxide/sepiolite to improve the performance of sulfonated poly(ether ether ketone) composite membranes for proton exchange membrane fuel cells. J Appl Polym Sci 2020. [DOI: 10.1002/app.50364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Khaled Charradi
- Nanomaterials and Systems for Renewable Energy Laboratory Research and Technology Center of Energy Hammam Lif Tunisia
| | - Zakarya Ahmed
- Nanomaterials and Systems for Renewable Energy Laboratory Research and Technology Center of Energy Hammam Lif Tunisia
| | - Noura Thmaini
- Nanomaterials and Systems for Renewable Energy Laboratory Research and Technology Center of Energy Hammam Lif Tunisia
- Materials Science Institute of Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco Madrid Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Cantoblanco Madrid Spain
| | - Youssef O. Al‐Ghamdi
- Department of Chemistry College of Science Al‐Zulfi, Majmaah University Al‐Majmaah Saudi Arabia
| | - Pilar Ocon
- Departamento de Química Física Aplicada Universidad Autónoma de Madrid Madrid Spain
| | - Sherif M. A. S. Keshk
- Nanomaterials and Systems for Renewable Energy Laboratory Research and Technology Center of Energy Hammam Lif Tunisia
| | - Radouane Chtourou
- Nanomaterials and Systems for Renewable Energy Laboratory Research and Technology Center of Energy Hammam Lif Tunisia
| |
Collapse
|
33
|
Cheikh D, Martín-Sampedro R, Majdoub H, Darder M. Alginate bionanocomposite films containing sepiolite modified with polyphenols from myrtle berries extract. Int J Biol Macromol 2020; 165:2079-2088. [DOI: 10.1016/j.ijbiomac.2020.10.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 01/26/2023]
|
34
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Zhu X, Fan X, Wang Y, Zhai Q, Hu M, Li S, Jiang Y. Amino modified magnetic halloysite nanotube supporting chloroperoxidase immobilization: enhanced stability, reusability, and efficient degradation of pesticide residue in wastewater. Bioprocess Biosyst Eng 2020; 44:483-493. [PMID: 33044587 DOI: 10.1007/s00449-020-02458-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Halloysite nanotube (HNT) is a natural bio-compatible and stable nanomaterial available in abundance at low-cost. In this work, HNT was modified by two strategies to make it suitable for supporting immobilization of chloroperoxidase (CPO). Firstly, Fe3O4 nanoparticles were deposited on HNT, so magnetic separation can be used instead of centrifugation. Then, the magnetic HNT was modified by 3-aminopropyltriethoxysilane (APTES), which can provide amine group on surface of HNT and meanwhile inhibit the agglomeration of magnetic HNT. Then, HNT-Fe3O4 -APTES was linked with branched polyethyleneimine (PEI) to provide more amino for binding with enzyme. The so-prepared CPO@HNT-Fe3O4-APTES-PEI showed enhanced enzyme loading, reusability, improved thermal stability and tolerance to organic solvents than free CPO. For example, after 10 repeated uses, CPO@HNT- Fe3O4-APTES-PEI can maintain 92.20% of its original activity compared with 65.12% of activity of CPO@HNT-APTES-PEI and 45.69% of activity of CPO@HNT. The kinetic parameters indicated the affinity and specificity of immobilized enzyme to substrate was increased. CPO@HNT-Fe3O4-APTES-PEI was very efficient when it was applied in the degradation of pesticides mesotrione in wastewater. The degradation efficiency can reach 90% within 20 min at range of 5-40 μmol·L-1. These results ensure the potential practical application of this bio-materials in wastewater treatment.
Collapse
Affiliation(s)
- Xuefang Zhu
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an District, Xi'an, 710119, People's Republic of China
| | - Xueting Fan
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an District, Xi'an, 710119, People's Republic of China
| | - Yuting Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an District, Xi'an, 710119, People's Republic of China
| | - Quanguo Zhai
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an District, Xi'an, 710119, People's Republic of China.,Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Mancheng Hu
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an District, Xi'an, 710119, People's Republic of China.,Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Shuni Li
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an District, Xi'an, 710119, People's Republic of China.,Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Yucheng Jiang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620 West Chang'an Road, Chang'an District, Xi'an, 710119, People's Republic of China. .,Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| |
Collapse
|
36
|
Damasceno Junior E, Almeida JMFD, Silva IDN, Assis MLMD, Santos LMD, Dias EF, Silva FED, Fernandes NS, Silva DRD. Obtaining and Applying Nanohybrid Palygorskite-Rifampicin in the pH-Responsive Release of the Tuberculostatic Drug. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10251-10269. [PMID: 32808528 DOI: 10.1021/acs.langmuir.0c01834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite having good efficacy in the treatment and prevention of tuberculosis, the administration of rifampicin (RIF) can cause serious side effects, resulting from the prolonged use of this substance. Thus, it is necessary to seek new systems for administering tuberculostatic drugs, to avoid unwanted adverse effects, increase their bioavailability and, consequently, improve their therapeutic efficacy. The present work describes the achievement of a pH-responsive system for RIF, using palygorskite, a fibrous clay mineral, as a nanocarrier. To evaluate the influence of some operational variables on the drug adsorption process, a 24 factorial experimental design was used. The experiment using a maximum concentration (0.125 mg/mL), lower mass of PAL (300 mg), and lower pH (pH 2) was more efficient compared to other experiments, resulting in a higher dose of the incorporated drug, equivalent to 33.62 mg/g. To elucidate the mechanism of interaction between the materials, the hybrid obtained was characterized by different characterization techniques (Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry/derived thermogravimetry, zeta potential, scanning electron microscopy, and dispersive energy spectroscopy). In addition, kinetic models and adsorption isotherms were applied to the experimental data. Through in vitro release studies, it was possible to verify the effectiveness of the pH-dependent system obtained. The adjustment of experimental release data to the theoretical model of Higuchi indicated that the release of rifampicin occurs in a prolonged way from the palygorskite.
Collapse
Affiliation(s)
- Elmar Damasceno Junior
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| | - Janiele Mayara Ferreira de Almeida
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| | - Isabel do Nascimento Silva
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| | - Mikaely Lizandra Moreira de Assis
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| | - Lamara Maciel Dos Santos
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| | - Elizete Faustino Dias
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| | - Francisco Emanuel da Silva
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| | - Nedja Suely Fernandes
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| | - Djalma Ribeiro da Silva
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, 59072-970 Natal, Rio Grande do Norte, Brasil
| |
Collapse
|
37
|
Significantly improve the water and chemicals resistance of alginate-based nanocomposite films by a simple in-situ surface coating approach. Int J Biol Macromol 2020; 156:1297-1307. [PMID: 31759999 DOI: 10.1016/j.ijbiomac.2019.11.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 11/24/2022]
Abstract
Biopolymers have shown great application prospects due to their advantages of being biodegradable, renewable, non-toxic, safe and inexpensive. However, the innate hydrophilicity of biopolymers means the materials prepared from them easily swell or disintegrate in aqueous media, limiting their applications. Herein, on the basis of improving the mechanical performance of a sodium alginate/poly(vinyl alcohol) (SA/PVA) film by introducing palygorskite (Pal) nanorods, the hydrophobicity of the obtained SA/PVA/Pal film was improved further by surface coating with methyltrichlorosilane (MTCS) through a vapor deposition-surface polycondensation reaction. MTCS nanofilaments, with a size of approximately 50 nm, were formed on the film surface by the silanization reaction between MTCS and hydroxyls, resulting in an improvement in surface hydrophobicity characterized by a contact angle (111.8°) higher than that of SA/PVA/Pal film (72.7°). Therefore, the obtained films maintained their original shape and strength after soaking for a long time in aqueous solutions containing acid, alkaline, and electrolyte, also in organics, while the uncoated film dissolved quickly and lost its original shape. Moreover, the surface coating also increased the film's tensile strength from 11.43 to 28.69 MPa. This demonstrates a simple, universal and effective way to improve the resistance of biopolymer-derived materials to water and various chemicals.
Collapse
|
38
|
Interaction Effect of Scomberomorus Guttatus-Derived Hydroxyapatite and Montmorillonite on the Characteristics of Polylactic Acid Blends for Biomedical Application. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02138-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
|
40
|
Carretier V, Delcroix J, Pucci MF, Rublon P, Lopez-Cuesta JM. Influence of Sepiolite and Lignin as Potential Synergists on Flame Retardant Systems in Polylactide (PLA) and Polyurethane Elastomer (PUE). MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2450. [PMID: 32481499 PMCID: PMC7321226 DOI: 10.3390/ma13112450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022]
Abstract
A comparison of the influence of sepiolite and lignin as potential synergists for fire retardant (FR) systems based on ammonium polyphosphate (APP) has been carried out in polyurethane elastomer and polylactide. Different ratios of kraft lignin and sepiolite were tested in combination with APP in both polymers. The thermal stability and the fire behavior of the corresponding composites were evaluated using Thermogravimetric Analysis (TGA), a Pyrolysis Combustion Flow Calorimeter (PCFC) and Cone Calorimeter (CC). The mechanisms of flame retardancy imparted by APP and other components were investigated. Synergistic effects were highlighted but only for specific ratios between APP and sepiolite in polyurethane elastomer (PUE) and polylactide (PLA) on one hand, and between APP and lignin in PLA on the other hand. Sepiolite acts as char reinforcement but through the formation of new phosphorus compounds it is also able to form a protective layer. Conversely, only complementary effects on fire performance were noted for lignin in PUE due to a dramatic influence on thermal stability despite its action on char formation.
Collapse
Affiliation(s)
- Valentin Carretier
- Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319 Alès Cedex, France; (J.D.); (M.F.P.); (J.-M.L.-C.)
| | - Julien Delcroix
- Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319 Alès Cedex, France; (J.D.); (M.F.P.); (J.-M.L.-C.)
- Centre d’expertise des Structures et Matériaux Navals (CESMAN), Naval Group Research, Technocampus Océan, 6 rue de l’Halbrane, 44340 Bouguenais, France;
| | - Monica Francesca Pucci
- Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319 Alès Cedex, France; (J.D.); (M.F.P.); (J.-M.L.-C.)
| | - Pierre Rublon
- Centre d’expertise des Structures et Matériaux Navals (CESMAN), Naval Group Research, Technocampus Océan, 6 rue de l’Halbrane, 44340 Bouguenais, France;
| | - José-Marie Lopez-Cuesta
- Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Alès, Université de Montpellier, 6 Avenue de Clavières, 30319 Alès Cedex, France; (J.D.); (M.F.P.); (J.-M.L.-C.)
| |
Collapse
|
41
|
Belmessaoud NB, Bouslah N, Haddadine N. Clay/(PEG-CMC) biocomposites as a novel delivery system for ibuprofen. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study we report on the preparation and characterization of biocomposites based on a sodium montmorillonite-ibuprofen (MtIb) hybrid and neat poly(ethylene glycol), neat sodium carboxymethylcellulose or poly(ethylene glycol)-carboxymethylcellulose blend 50/50 biocomposites as drug carriers. Ib, a poorly soluble drug, was first intercalated into sodium Mt and then the resulting hybrid was compounded with the different polymeric matrices. Ib incorporation efficiency in Mt was determined by UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermal analysis. Both X-ray diffraction and differential scanning calorimetric studies revealed that the intercalation of Ib between the clay layers induced amorphization of the drug. Differential scanning calorimetry and Fourier transform infrared spectroscopy revealed the development of strong interactions between Ib and the polymer matrix. A study of the release of Ib from the synthesized biocomposites in simulated intestinal fluid (pH 7.4) was investigated. To better understand the release mechanism of drug molecules from the different carriers, several kinetic models have been applied.
Collapse
Affiliation(s)
- Nesma Baa Belmessaoud
- USTHB, Laboratoire de Synthèse Macromoléculaire et Thioorganique Macromoléculaire (LSMTM), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| | - Naima Bouslah
- USTHB, Laboratoire de Synthèse Macromoléculaire et Thioorganique Macromoléculaire (LSMTM), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| | - Nabila Haddadine
- USTHB, Laboratoire de Synthèse Macromoléculaire et Thioorganique Macromoléculaire (LSMTM), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, El Alia, BP 32, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
42
|
Asensio M, Herrero M, Núñez K, Merino JC, Pastor JM. The Influence of Sepiolite Orientation and Concentration, on the Morphological, Thermal and Mechanical Properties of Bio‐Polyamide 4.10 Nanocomposites. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- María Asensio
- Department of Condensed Matter Physics, Escuela de Ingenierías IndustrialesUniversity of Valladolid Valladolid Spain
| | - Manuel Herrero
- Foundation for Research and Development in Transport and Energy (CIDAUT)Parque Tecnológico de Boecillo Valladolid Spain
| | - Karina Núñez
- Foundation for Research and Development in Transport and Energy (CIDAUT)Parque Tecnológico de Boecillo Valladolid Spain
| | - Juan Carlos Merino
- Department of Condensed Matter Physics, Escuela de Ingenierías IndustrialesUniversity of Valladolid Valladolid Spain
- Foundation for Research and Development in Transport and Energy (CIDAUT)Parque Tecnológico de Boecillo Valladolid Spain
| | - José María Pastor
- Department of Condensed Matter Physics, Escuela de Ingenierías IndustrialesUniversity of Valladolid Valladolid Spain
- Foundation for Research and Development in Transport and Energy (CIDAUT)Parque Tecnológico de Boecillo Valladolid Spain
| |
Collapse
|
43
|
Raza A, Tahir M, Nasir A, Yasin T, Nadeem M. Sepiolite grafted polypyrrole: Influence of degree of grafting on structural, thermal, and impedance properties of nanohybrid. J Appl Polym Sci 2020. [DOI: 10.1002/app.49085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asif Raza
- Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | - Mehwish Tahir
- Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | - Amara Nasir
- Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | - Tariq Yasin
- Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad Pakistan
| | - Muhammad Nadeem
- Physics Division, Directorate of SciencePakistan Institute of Nuclear Science and Technology (PINSTECH) Islamabad Pakistan
| |
Collapse
|
44
|
Boumhidi B, Katir N, El Haskouri J, Draoui K, El Kadib A. Phosphorylation triggered growth of metal phosphate on halloysite and sepiolite nanoparticles: preparation, entrapment in chitosan hydrogels and application as recyclable scavengers. NEW J CHEM 2020. [DOI: 10.1039/d0nj03191g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surprising growth of crystalline metal phosphate during clay phosphorylation. When entangled in chitosan beads, good adsorption performance could be reached.
Collapse
Affiliation(s)
- Boutaina Boumhidi
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Rond-Point de Bensouda
| | - Nadia Katir
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Rond-Point de Bensouda
| | - Jamal El Haskouri
- Instituto de Ciència de los Materials de la Universidad de Valencia
- Calle catedratico José Beltran
- Paterna
- Spain
| | - Khalid Draoui
- Laboratory MSI
- Faculty of Sciences
- Abdel Malek Essaadi University
- Tetouan
- Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Rond-Point de Bensouda
| |
Collapse
|
45
|
de Melo Barbosa R, Ferreira MA, Araújo Meirelles LM, Zorato N, Raffin FN. Nanoclays in drug delivery systems. CLAY NANOPARTICLES 2020:185-202. [DOI: 10.1016/b978-0-12-816783-0.00008-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Lisuzzo L, Wicklein B, Lo Dico G, Lazzara G, Del Real G, Aranda P, Ruiz-Hitzky E. Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications. Dalton Trans 2019; 49:3830-3840. [PMID: 31834335 DOI: 10.1039/c9dt03804c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biohybrid materials were prepared by co-assembling the three following components: nanotubular halloysite, microfibrous sepiolite, and cellulose nanofibers dispersed in water, in order to exploit the most salient features of each individual component and to render homogeneous, flexible, yet strong films. Indeed, the incorporation of halloysite improves the mechanical performance of the resulting hybrid nanopapers and the assembly of the three components modifies the surface features concerning wetting properties compared to pristine materials, so that the main characteristics of the resulting materials become tunable with regard to certain properties. Owing to their hierarchical porosity together with their diverse surface characteristics, these hybrids can be used in diverse biomedical/pharmaceutical applications. Herein, for instance, loading with two model drugs, salicylic acid and ibuprofen, allows controlled and sustained release as deduced from antimicrobial assays, opening a versatile path for developing other related organic-inorganic materials of potential interest in diverse application fields.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Sabzi M, Shafagh N, Mohammadi M. Assembly of gelatin biopolymer to fibrous sepiolite clay for efficient dye removal from wastewater. J Appl Polym Sci 2019. [DOI: 10.1002/app.48266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mohammad Sabzi
- Department of Chemical Engineering, Faculty of EngineeringUniversity of Maragheh Maragheh 55181‐83111 Iran
| | - Nima Shafagh
- Department of Chemical Engineering, Faculty of EngineeringUniversity of Maragheh Maragheh 55181‐83111 Iran
| | - Mohsen Mohammadi
- Department of Polymer Engineering, Faculty of EngineeringQom University of Technology Qom 37195‐1519 Iran
| |
Collapse
|
48
|
Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Tanc B, Orakdogen N. Insight into (alkyl)methacrylate-based copolymer/sepiolite nanocomposite cryogels containing amino and sulfonic acid groups: Optimization of network properties and elasticity via cryogelation process. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Ding J, Huang D, Wang W, Wang Q, Wang A. Effect of removing coloring metal ions from the natural brick-red palygorskite on properties of alginate/palygorskite nanocomposite film. Int J Biol Macromol 2019; 122:684-694. [DOI: 10.1016/j.ijbiomac.2018.10.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023]
|