1
|
Ren M, Liu D, Qin F, Chen X, Ma W, Tian R, Weng T, Wang D, Astruc D, Liang L. Single-molecule resolution of macromolecules with nanopore devices. Adv Colloid Interface Sci 2025; 338:103417. [PMID: 39889505 DOI: 10.1016/j.cis.2025.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Nanopore-based electrical detection technology holds single-molecule resolution and combines the advantages of high sensitivity, high throughput, rapid analysis, and label-free detection. It is widely applied in the determination of organic and biological macromolecules, small molecules, and nanomaterials, as well as in nucleic acid and protein sequencing. There are a wide variety of organic polymers and biopolymers, and their chemical structures, and conformation in solution directly affect their ensemble properties. Currently, there is limited approach available for the analysis of single-molecule conformation and self-assembled topologies of polymers, dendrimers and biopolymers. Nanopore single-molecule platform offers unique advantages over other sensing technologies, particularly in molecular size differentiation of macromolecules and complex conformation analysis. In this review, the classification of nanopore devices, including solid-state nanopores (SSNs), biological nanopores, and hybrid nanopores is introduced. The recent developments and applications of nanopore devices are summarized, with a focus on the applications of nanopore platform in the resolution of the structures of synthetic polymer, including dendritic, star-shaped, block copolymers, as well as biopolymers, including polysaccharides, nucleic acids and proteins. The future prospects of nanopore sensing technique are ultimately discussed.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China; Chongqing Jiaotong University, Chongqing 400014, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Xun Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Wenhao Ma
- Chongqing University, Chongqing 400044, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Ting Weng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Deqang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Didier Astruc
- University of Bordeaux, ISM UMR CNRS 5255, 33405 Talence Cedex, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China.
| |
Collapse
|
2
|
Torres-Rocha OL, Pinaud J, Lacroix-Desmazes P, Champagne P, Cunningham MF. Cellulose Nanocrystals Modified with Cationic Block Copolymers. Biomacromolecules 2025; 26:1978-1991. [PMID: 39930635 DOI: 10.1021/acs.biomac.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Cellulose nanocrystals (CNC) offer unique mechanical and optical properties but face challenges that often prevent its commercial development, foremost its high hydrophilicity, which makes it incompatible with most polymers. Covalent polymer graft modification can address this issue; however, these processes are often complex and expensive. We present a simple, inexpensive route for the noncovalent modification of a CNC surface with block copolymers. Five new block copolymers, composed of a butyl vinyl imidazolium bromide anchoring (cationic) and a nonionic stabilizing block, were synthesized via nitroxide-mediated polymerization. The degree of polymerization (DPn) of the stabilizing and anchoring blocks was systematically varied. Dispersibility of modified CNC in various organic solvents was evaluated. It was found that the DPn of both the anchoring and stabilizing blocks has a significant impact on the amount of the polymer that can be noncovalently bound to the CNC surface as well as in dispersibility in various solvents.
Collapse
Affiliation(s)
| | - Julien Pinaud
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296 Cedex 5, France
| | | | - Pascale Champagne
- Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - Michael F Cunningham
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
3
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
4
|
Xing Y, Wei Y, Ge C, Hu R, Zhang Y, Wang B, Wang Z, Jiang F. Sustainable chitin-derived elastomers via grafting strategy with tunable mechanical and adhesion properties. Int J Biol Macromol 2024; 279:135289. [PMID: 39236958 DOI: 10.1016/j.ijbiomac.2024.135289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
With increasing environmental awareness and the pursuit of sustainable development goals, environmentally friendly sustainable thermoplastic elastomers (TPEs) derived from natural resources are highly desired to replace traditional TPEs. However, preparing sustainable TPEs with high mechanical properties and multifunctionality from biobased feedstocks remains a significant challenge. In this work, a series of chitin-graft-poly(acrylamide-co-2-ethylhexyl acrylate) (Chitin-g-P(AM-co-EHA)) copolymers were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. The tensile strength of Chitin-g-P(AM-co-EHA) copolymers can be tuned over a wide range from 1.0 to 7.3 MPa by adjusting the chitin and PAM contents. Benefiting from the brush-like architecture, Chitin-g-P(AM-co-EHA) copolymer exhibits improved mechanical properties over its linear counterparts. Moreover, these Chitin-g-P(AM-co-EHA) copolymers show good adhesion performance on different substrates. The shear strength can achieve 7.5 MPa for Chitin0.8-PAM50, which is high enough for commercial applications. The combination of chitin and grafting strategy can promote the development of strong chitin-based sustainable elastomers. This approach can be further utilized to design novel high-performance biobased elastomers and adhesives derived from natural resources.
Collapse
Affiliation(s)
- Yuxian Xing
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yi Wei
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chongxiao Ge
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Hu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yaqiong Zhang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Baoxia Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhiqiang Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Feng Jiang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
5
|
Cortés-Avendaño P, Quispe-Roque J, Macavilca EA, Condezo-Hoyos L. High methoxyl pectin grafted onto gallic acid by one- and two-pot redox-pair procedures. Food Chem 2024; 455:139865. [PMID: 38823133 DOI: 10.1016/j.foodchem.2024.139865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/11/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
The aim of this research was to graft gallic acid (GA) onto high methoxyl pectin (HMP) through the redox-pair of ascorbic acid (Aa) and hydrogen peroxide (H2O2) with one- and two-pot procedures. The effectiveness of the both procedures and the chemical, physical and antioxidant properties of the obtained HMP-GA were evaluated. HMP-GAone-pot (23.3 ± 0.21 mg GA Equivalent (GAE)/g) and HMP-GAtwo-pot (32.3 ± 0.52 mg GAE/g) were best obtained at H2O2/Aa molar ratio-HMP/GA weight ratio of 9.0-0.5 and 16.0-0.5, respectively. The UV-Vis and FT-IR spectra and along with their derivative and thermal gravimetric analyses, revealed differences between HMP-GAone-pot and HMP-GAtwo-pot. The latter exhibited a greater antioxidant capacity than the former in single electron transfer (ET), hydrogen atom transfer (HAT), and ET-HAT mixed assays. The chemical differences can be attributed to side reactions that may have interfered with the grafting reaction. Consequently, HMP-GA, possessing unique antioxidant and prebiotic properties, can be synthesized through redox-pair procedures.
Collapse
Affiliation(s)
- Paola Cortés-Avendaño
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| | - Jacqueline Quispe-Roque
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru
| | - Edwin A Macavilca
- Universidad Nacional José Faustino Sánchez Carrión, Departamento Académico de Ingeniería en Industrias Alimentarias, Huacho, Peru
| | - Luis Condezo-Hoyos
- Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru; Instituto de Investigación de Bioquímica y Biología Molecular, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Peru.
| |
Collapse
|
6
|
Li QQ, Xu D, Dong QW, Song XJ, Chen YB, Cui YL. Biomedical potentials of alginate via physical, chemical, and biological modifications. Int J Biol Macromol 2024; 277:134409. [PMID: 39097042 DOI: 10.1016/j.ijbiomac.2024.134409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Alginate is a linear polysaccharide with a modifiable structure and abundant functional groups, offers immense potential for tailoring diverse alginate-based materials to meet the demands of biomedical applications. Given the advancements in modification techniques, it is significant to analyze and summarize the modification of alginate by physical, chemical and biological methods. These approaches provide plentiful information on the preparation, characterization and application of alginate-based materials. Physical modification generally involves blending and physical crosslinking, while chemical modification relies on chemical reactions, mainly including acylation, sulfation, phosphorylation, carbodiimide coupling, nucleophilic substitution, graft copolymerization, terminal modification, and degradation. Chemical modified alginate contains chemically crosslinked alginate, grafted alginate and oligo-alginate. Biological modification associated with various enzymes to realize the hydrolysis or grafting. These diverse modifications hold great promise in fully harnessing the potential of alginate for its burgeoning biomedical applications in the future. In summary, this review provides a comprehensive discussion and summary of different modification methods applied to improve the properties of alginate while expanding its biomedical potentials.
Collapse
Affiliation(s)
- Qiao-Qiao Li
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Qin-Wei Dong
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Yi-Bing Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
7
|
Perrino C, Lee S, Spencer ND. Quantitative Comparison of the Hydration Capacity of Surface-Bound Dextran and Polyethylene Glycol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14130-14140. [PMID: 38922294 PMCID: PMC11238585 DOI: 10.1021/acs.langmuir.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
We have quantified and compared the hydration capacity (i.e., capability to incorporate water molecules) of the two surface-bound hydrophilic polymer chains, dextran (dex) and poly(ethylene glycol) (PEG), in the form of poly(l-lysine)-graft-dextran (PLL-g-dex) and poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), respectively. The copolymers were attached to a negatively charged silica-titania surface through the electrostatic interaction between the PLL backbone and the surface in neutral aqueous media. While the molecular weights of PLL and PEG were fixed, that of dex and the grafting density of PEG or dex on the PLL were varied. The hydration capacity of the polymer chains was quantified through the combined experimental approach of optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation monitoring (QCM-D) to yield a value for areal solvation (Ψ), i.e., mass of associated solvent molecules within the polymer chains per unit substrate area. For the two series of copolymers with comparable stretched chain lengths of hydrophilic polymers, namely, PLL(20)-g-PEG(5) and PLL(20)-g-dex(10), the Ψ values gradually increased as the initial grafting density on the PLL backbone increased or as g decreased. However, the rate of increase in Ψ was higher for PEG than dextran chains, which was attributed to higher stiffness of the dextran chains. More importantly, the number of water molecules per hydrophilic group was clearly higher for PEG chains. Given that the -CH2CH2O- units that make up the PEG chains form a cage-like structure with 2-3 water molecules, these "strongly bound" water molecules can account for the slightly more favorable behavior of PEG compared to dextran in both aqueous lubrication and antifouling behavior of the copolymers.
Collapse
Affiliation(s)
- Chiara Perrino
- Laboratory
for Surface Science and Technology, Department of Materials, Vladimir-Prelog-Weg
5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Seunghwan Lee
- Laboratory
for Surface Science and Technology, Department of Materials, Vladimir-Prelog-Weg
5, ETH Zurich, CH-8093 Zurich, Switzerland
- Institute
of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT Leeds, U.K.
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, Vladimir-Prelog-Weg
5, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
8
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
9
|
He Z, Zhu B, Deng L, You L. Effects of UV/H 2O 2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan. Mar Drugs 2024; 22:209. [PMID: 38786600 PMCID: PMC11123097 DOI: 10.3390/md22050209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The applications of fucoidan in the food industry were limited due to its high molecular weight and low solubility. Moderate degradation was required to depolymerize fucoidan. A few studies have reported that fucoidan has potential antibacterial activity, but its antibacterial mechanism needs further investigation. In this study, the degraded fucoidans were obtained after ultraviolet/hydrogen peroxide treatment (UV/H2O2) at different times. Their physicochemical properties and antibacterial activities against Staphylococcus aureus and Escherichia coli were investigated. The results showed that the average molecular weights of degraded fucoidans were significantly decreased (up to 22.04 times). They were mainly composed of fucose, galactose, and some glucuronic acid. Fucoidan degraded for 90 min (DFuc-90) showed the strongest antibacterial activities against Staphylococcus aureus and Escherichia coli, with inhibition zones of 27.70 + 0.84 mm and 9.25 + 0.61 mm, respectively. The minimum inhibitory concentrations (MIC) were 8 mg/mL and 4 mg/mL, respectively. DFuc-90 could inhibit the bacteria by damaging the cell wall, accumulating intracellular reactive oxygen species, reducing adenosine triphosphate synthesis, and inhibiting bacterial metabolic activity. Therefore, UV/H2O2 treatment could effectively degrade fucoidan and enhance its antibacterial activity.
Collapse
Affiliation(s)
| | | | | | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Z.H.); (B.Z.); (L.D.)
| |
Collapse
|
10
|
Chen S, Feng J, Jiang F, Briber RM, Wang H. Facile preparation of near-monodisperse oligocellulose and its elastomeric derivatives with tunable mechanical properties. Carbohydr Polym 2024; 324:121493. [PMID: 37985085 DOI: 10.1016/j.carbpol.2023.121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Oligocellulose (OC) with low polydispersity indices has been produced in large quantities using an improved method of acid-assisted hydrolysis, in which long cellulose chains disintegrate in concentrated phosphoric acid at moderately elevated temperatures. The hydrolysis time has been reduced by three orders of magnitude without compromising the overall yield of the process or the quality of OC products. The efficient production of high-quality OCs in large quantities allows for developing OC-derived elastomeric materials. A series of OC-graft-poly(isobornyl methacrylate-random-n-butyl acrylate) [OC-g-P(IBOMA-r-BA)] elastomers have been synthesized via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP). OC-g-P(IBOMA-r-BA) elastomers have tunable molecular architectures and phase morphologies toward desirable mechanical properties and thermal stability suitable for various applications. The methodologies of the OC production and the graft-polymers synthesis in this study would help advance technologies for broader applications of bio-based elastomers.
Collapse
Affiliation(s)
- Shuaishuai Chen
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajun Feng
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Howard Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA; Spallation Neutron Source Science Center, Dongguan, Guangdong 523803, China.
| |
Collapse
|
11
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
12
|
Candra A, Darge HF, Ahmed YW, Saragi IR, Kitaw SL, Tsai HC. Eco-benign synthesis of nano‑gold chitosan-bacterial cellulose in spent ground coffee kombucha consortium: Characterization, microbiome community, and biological performance. Int J Biol Macromol 2023; 253:126869. [PMID: 37703976 DOI: 10.1016/j.ijbiomac.2023.126869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Biomaterials that are mediocre for cell adhesion have been a concern for medical purposes. In this study, we fabricated nano‑gold chitosan-bacterial cellulose (CBC-Au) via a facile in-situ method using spent ground coffee (SGC) in a kombucha consortium. The eco-benign synthesis of monodispersed gold nanoparticles (Au NPs) in modified bacterial cellulose (BC) was successfully achieved in the presence of chitosan (CHI) and a symbiotic culture of bacteria and yeast (SCOBY). The dominant microbiome community in SGC kombucha were Lactobacillaceae and Saccharomycetes. Chitosan-bacterial cellulose (CBC) and CBC-Au affected the microfibril networks in the nano cellulose structures and decreased the porosity. The modified BC maintained its crystallinity up to 80 % after incorporating CHI and Au NPs. Depth profiling using X-ray photoelectron spectroscopy (XPS) indicated that the Au NPs were distributed in the deeper layers of the scaffolds and a limited amount on the surface of the scaffold. Aspergillus niger fungal strains validated the biodegradability of each scaffold as a decomposer. Bacteriostatically CBC-Au showed better antimicrobial activity than BC, in line with the adhesion of NIH-3T3 fibroblast cells and red blood cells (RBCs), which displayed good biocompatibility performance, indicating its potential use as a medical scaffold.
Collapse
Affiliation(s)
- Andy Candra
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada; College of Medicine and Health Science, Bahir Dar University, Bahir Dar 79, Ethiopia
| | - Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Indah Revita Saragi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| |
Collapse
|
13
|
Yavuzturk Gul B, Pekgenc E, Vatanpour V, Koyuncu I. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges. Carbohydr Polym 2023; 321:121296. [PMID: 37739529 DOI: 10.1016/j.carbpol.2023.121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
Due to low-cost, sustainability and good mechanical stability, cellulose-based materials are frequently used in fabrication of polymeric gas separation membrane as potential carbohydrate polymers to substitute traditional petrochemical-based materials. In this review, the performance of cellulose-based polymeric membranes i.e. cellulose acetate, cellulose diacetate, cellulose triacetate, ethyl cellulose and carboxymethyl cellulose in the separation of different gases were investigated. This review paper provides the main features and advantages in the fabrication of cellulose-based gas separation membranes. The influence of the functionalization of cellulose on gas separation and permeability performance of related membranes is considered. Influence of different modification procedures such as blending with polymers, nanomaterials and ionic liquids on the gas separation ability of cellulose-based membranes were reviewed. Moreover, a brief inquiry of the potential of cellulose-based gas separation membranes for industrial applications, by examining the performance of different cellulose derivatives and identifying potential strategies for membrane modification and optimization are given, along with the current restrictions and the future perspectives are discussed.
Collapse
Affiliation(s)
- Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Enise Pekgenc
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
14
|
Smirnov MA, Vorobiov VK, Fedotova VS, Sokolova MP, Bobrova NV, Smirnov NN, Borisov OV. A Polyelectrolyte Colloidal Brush Based on Cellulose: Perspectives for Future Applications. Polymers (Basel) 2023; 15:4526. [PMID: 38231953 PMCID: PMC10708233 DOI: 10.3390/polym15234526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
This feature article is devoted to the evaluation of different techniques for producing colloidal polyelectrolyte brushes (CPEBs) based on cellulose nanofibers modified with grafted polyacrylates. The paper also reviews the potential applications of these CPEBs in designing electrode materials and as reinforcing additives. Additionally, we discuss our own perspectives on investigating composites with CPEBs. Herein, polyacrylic acid (PAA) was grafted onto the surface of cellulose nanofibers (CNFs) employing a "grafting from" approach. The effect of the PAA shell on the morphological structure of a composite with polypyrrole (PPy) was investigated. The performance of as-obtained CNF-PAA/PPy as organic electrode material for supercapacitors was examined. Furthermore, this research highlights the ability of CNF-PAA filler to act as an additional crosslinker forming a physical sub-network due to the hydrogen bond interaction inside chemically crosslinked polyacrylamide (PAAm) hydrogels. The enhancement of the mechanical properties of the material with a concomitant decrease in its swelling ratio compared to a pristine PAAm hydrogel was observed. The findings were compared with the recent theoretical foundation pertaining to other similar materials.
Collapse
Affiliation(s)
- Michael A. Smirnov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Vitaly K. Vorobiov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Veronika S. Fedotova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Maria P. Sokolova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Natalya V. Bobrova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Nikolay N. Smirnov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254 CNRS/UPPA, 64053 Pau, France
| |
Collapse
|
15
|
Wu C, Li J, Zhang YQ, Li X, Wang SY, Li DQ. Cellulose Dissolution, Modification, and the Derived Hydrogel: A Review. CHEMSUSCHEM 2023; 16:e202300518. [PMID: 37501498 DOI: 10.1002/cssc.202300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The cellulose-based hydrogel has occupied a pivotal position in almost all walks of life. However, the native cellulose can not be directly used for preparing hydrogel due to the complex non-covalent interactions. Some literature has discussed the dissolution and modification of cellulose but has yet to address the influence of the pretreatment on the as-prepared hydrogels. Firstly, the "touching" of cellulose by derived and non-derived solvents was introduced, namely, the dissolution of cellulose. Secondly, the "conversion" of functional groups on the cellulose surface by special routes, which is the modification of cellulose. The above-mentioned two parts were intended to explain the changes in physicochemical properties of cellulose by these routes and their influences on the subsequent hydrogel preparation. Finally, the "reinforcement" of cellulose-based hydrogels by physical and chemical techniques was summarized, viz., improving the mechanical properties of cellulose-based hydrogels and the changes in the multi-level structure of the interior of cellulose-based hydrogels.
Collapse
Affiliation(s)
- Chao Wu
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Jun Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Yu-Qing Zhang
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Shu-Ya Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China
| | - De-Qiang Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052, Xinjiang, People's Republic of China
| |
Collapse
|
16
|
Sela A, Shkuri N, Tish N, Vinokur Y, Rodov V, Poverenov E. Carboxymethyl chitosan-quercetin conjugate: A sustainable one-step synthesis and use for food preservation. Carbohydr Polym 2023; 316:121084. [PMID: 37321704 DOI: 10.1016/j.carbpol.2023.121084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Bioactive polysaccharide, carboxymethyl chitosan-quercetin (CMCS-q) was prepared by a one-step reaction utilizing Schiff base chemistry. Notably, the presented conjugation method involves neither radical reactions nor auxiliary coupling agents. Physicochemical properties and bioactivity of the modified polymer were studied and compared to those of the pristine carboxymethyl chitosan, CMCS. The modified CMCS-q demonstrated antioxidant activity by TEAC assay and antifungal activity by inhibiting spore germination of plant pathogen Botrytis cynerea. Then, CMCS-q was applied as an active coating on fresh-cut apples. The treatment resulted in enhanced firmness, inhibited browning and improved microbiological quality of the food product. The presented conjugation method allows retaining antimicrobial and antioxidant activity of quercetin moiety in the modified biopolymer. This method can be further used as a platform for binding ketone/aldehyde-containing polyphenols and other natural compounds to form various bioactive polymers.
Collapse
Affiliation(s)
- Aviad Sela
- Agro-Nanotechnology and Advanced Materials Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Noa Shkuri
- Agro-Nanotechnology and Advanced Materials Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Nimrod Tish
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Yakov Vinokur
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| | - Victor Rodov
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
17
|
Wang Z, Tang P, Chen S, Xing Y, Yin C, Feng J, Jiang F. Fully biobased sustainable elastomers derived from chitin, lignin, and plant oil via grafting strategy and Schiff-base chemistry. Carbohydr Polym 2023; 305:120577. [PMID: 36737210 DOI: 10.1016/j.carbpol.2023.120577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
With the dramatically increased environmental problems, the rational design of sustainable polymers from renewable feedstocks opens new avenues to reduce the huge pollution impact. The major challenge for sustainable polymers is the decreased mechanical performance compared to that of petroleum-based materials. In this work, fully biobased sustainable elastomers were developed by integrating renewable chitin, lignin, and plant oil into one macromolecule, in which chitin was chosen as the rigid backbone, while a lignin-derived monomer vanillin acrylate (VA) and a plant oil-based monomer lauryl acrylate (LA) were selected as the hard and soft segments for the grafted side chains. A series of Chitin-graft-poly(vanillin acrylate-co-lauryl acrylate) (Chitin-g-P(VA-co-LA)) copolymers with varied feed ratios and chitin contents were synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization as an effective grafting strategy. In addition, a dynamic cross-linked network was incorporated via Schiff-base reaction to improve the macroscopic behavior of such kind of chitin graft elastomers. These sustainable elastomers are mechanically strong and show excellent reprocessablity, as well as outstanding UV-blocking property. This strategy is versatile and can inspire the further development of fully biobased sustainable materials from natural resources.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengfei Tang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuaishuai Chen
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuxian Xing
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chuantao Yin
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajun Feng
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
18
|
Song H, Liu C, Gui D, Sha Y, Song Q, Jia P, Gao J, Lin Y. Sustainable and mechanically robust epoxy resins derived from chitosan and tung oil with proton conductivity. J Appl Polym Sci 2023. [DOI: 10.1002/app.53857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hong Song
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Chaofan Liu
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Daxiang Gui
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Qingping Song
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Puyou Jia
- Jiangsu Key Laboratory for Biomass Energy and Material, Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing People's Republic of China
| | - Jiangang Gao
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
| | - Ying Lin
- Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu People's Republic of China
- Jiangsu Key Laboratory for Biomass Energy and Material, Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) Nanjing People's Republic of China
| |
Collapse
|
19
|
Geyik G, Işıklan N. Chemical modification of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) through microwave induced graft copolymerization: Characterization and swelling features. Int J Biol Macromol 2023; 235:123888. [PMID: 36870636 DOI: 10.1016/j.ijbiomac.2023.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
In the last decade, interest in the development of new graft copolymers based on natural polysaccharides has grown remarkably due to their potential applications in the wastewater treatment, biomedical, nanomedicine, and pharmaceutical fields. Herein, a novel graft copolymer of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) (κ-Crg-g-PHPMA) was synthesized using a 'microwave induced' technique. The synthesized novel graft copolymer has been well characterized in terms of FTIR, 13C NMR, molecular weight determination, TG, DSC, XRD, SEM, and elemental analyses, taking κ-carrageenan as a reference. The graft copolymers' swelling characteristics were investigated at pH 1.2 and 7.4. The results of swelling studies displayed that the incorporation of PHPMA groups on κ-Crg provides increasing hydrophilicity. The effect of PHPMA percentage in the graft copolymers and pH of the medium on the swelling percentage was studied and the findings exhibited that swelling ability increased with the increment in PHPMA percentage and pH of the medium. The best swelling percentage was attained at pH = 7.4 and a grafting percentage of 81 % reaching 1007 % at the end of 240 min. Moreover, cytotoxicity of the synthesized κ-Crg-g-PHPMA copolymer was assessed on the L929 fibroblast cell line and obtained to be non-toxic.
Collapse
Affiliation(s)
- Gülcan Geyik
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan 71450, Kırıkkale, Turkey; Alaca Avni Çelik Vocational School, Hitit University, Çorum, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan 71450, Kırıkkale, Turkey.
| |
Collapse
|
20
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
21
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
22
|
Chen S, Li D, Song F, Wang XL, Wang YZ. Thermoformable and transparent one-component nanocomposites based on surface grafted cellulose nanofiber. Int J Biol Macromol 2022; 223:213-222. [PMID: 36347373 DOI: 10.1016/j.ijbiomac.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
One-component nanocomposites based on poly(methyl methacrylate)(PMMA) and polystyrene (PS) grafted cellulose nanofiber (CNF) with high polymer graft percentage were fabricated. At relative ambient conditions, less active vinyl monomer, MMA, and styrene were grafted from CNF via surface-initiated Cu(0)-mediated reversible deactivation radical polymerizations (RDRP), and PMMA/PS grafted CNFs could reach a graft percentage as high as 7550 % and 3530 %, respectively. The one-component composite films were manufactured by simple hot-pressing subsequentially. Optical transparency, thermal stability, and glass transition temperature of one-component nanocomposites were enhanced dramatically in contrast with the bicomponent nanocomposite. The uniform fracture surface confirmed the uniform dispersity by morphological observation. Mechanical tests indicated that break elongation and tensile strength ascended notably, and tensile modulus slightly descended as the graft percentage increased for PS and PMMA grafted CNF one-component composite. It was concluded that for glassy graft chains, obtaining one-component nanocomposites with high enough graft chain length was essential to achieve moderated mechanical performance without compromising optical properties and thermal manufacturing ability.
Collapse
Affiliation(s)
- Sikai Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Dong Li
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Scaling-Up an Aqueous Self-Degassing Electrochemically Mediated ATRP in Dispersion for the Preparation of Cellulose-Polymer Composites and Films. Polymers (Basel) 2022; 14:polym14224981. [PMID: 36433108 PMCID: PMC9692721 DOI: 10.3390/polym14224981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Electrochemically mediated atom transfer radical polymerization (eATRP) is developed in dispersion conditions to assist the preparation of cellulose-based films. Self-degassing conditions are achieved by the addition of sodium pyruvate (SP) as a ROS scavenger, while an aluminum counter electrode provides a simplified and more cost-effective electrochemical setup. Different polyacrylamides were grown on a model cellulose substrate which was previously esterified with 2-bromoisobutyrate (-BriB), serving as initiator groups. Small-scale polymerizations (15 mL) provided optimized conditions to pursue the scale-up up to 1000 mL (scale-up factor ~67). Cellulose-poly(N-isopropylacrylamide) was then chosen to prepare the tunable, thermoresponsive, solvent-free, and flexible films through a dissolution/regeneration method. The produced films were characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), dynamic scanning calorimetry (DSC), and thermogravimetric analysis (TGA).
Collapse
|
24
|
Gomri C, Cretin M, Semsarilar M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review. Carbohydr Polym 2022; 294:119790. [DOI: 10.1016/j.carbpol.2022.119790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
|
25
|
Wang L, Hao F, Tian S, Dong H, Nie J, Ma G. Targeting polysaccharides such as chitosan, cellulose, alginate and starch for designing hemostatic dressings. Carbohydr Polym 2022; 291:119574. [DOI: 10.1016/j.carbpol.2022.119574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
|
26
|
Wang Z, Zhang L, Feng J, Tang P, Chen S, Yu H, Hu Y, Wang Z, Jiang F. Ultra-stretchable chitin-based branched elastomers with enhanced mechanical properties via RAFT polymerization. Carbohydr Polym 2022; 288:119381. [PMID: 35450643 DOI: 10.1016/j.carbpol.2022.119381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 01/08/2023]
Abstract
In this work, a chitin-based macromolecular chain transfer agent (Chitin-CTA) was designed to graft polymers from chitin at the molecular level. Homogeneous reversible addition-fragmentation chain transfer (RAFT) polymerization was performed to prepare branched MA elastomers, chitin-graft-poly(methyl acrylate) (Chitin-g-PMA) copolymers, which were thermally stable and showed tunable glass transition temperatures. These ultra-stretchable branched MA elastomers exhibit unique strain-hardening behavior and significantly enhanced mechanical properties. Mechanical tests indicate that the chitin backbones in branched MA elastomers can act as cross-linking points to improve the tensile strength, toughness, and elasticity simultaneously. The macroscopic performance of branched MA elastomers c be further promoted by introducing hydrogen bonding as non-covalent interaction to form an additional reversible physical network. This robust and versatile grafting strategy can provide new opportunities to prepare chitin-based branched MA elastomers with extraordinary mechanical properties.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Lujun Zhang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajun Feng
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengfei Tang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuaishuai Chen
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hanqing Yu
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yueyao Hu
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Feng Jiang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
27
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
28
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
29
|
Lin J, Jiao G, Kermanshahi-pour A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar Drugs 2022; 20:306. [PMID: 35621958 PMCID: PMC9146341 DOI: 10.3390/md20050306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked hydrophilic polymer networks with great potential in drug delivery, tissue engineering, wound dressing, agrochemicals application, food packaging, and cosmetics. However, conventional synthetic polymer hydrogels may be hazardous and have poor biocompatibility and biodegradability. Algal polysaccharides are abundant natural products with biocompatible and biodegradable properties. Polysaccharides and their derivatives also possess unique features such as physicochemical properties, hydrophilicity, mechanical strength, and tunable functionality. As such, algal polysaccharides have been widely exploited as building blocks in the fabrication of polysaccharide-based hydrogels through physical and/or chemical crosslinking. In this review, we discuss the extraction and characterization of polysaccharides derived from algae. This review focuses on recent advances in synthesis and applications of algal polysaccharides-based hydrogels. Additionally, we discuss the techno-economic analyses of chitosan and acrylic acid-based hydrogels, drawing attention to the importance of such analyses for hydrogels. Finally, the future prospects of algal polysaccharides-based hydrogels are outlined.
Collapse
Affiliation(s)
- Jianan Lin
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| | - Guangling Jiao
- AKSO Marine Biotech Inc., Suite 3, 1697 Brunswick St., Halifax, NS B3J 2G3, Canada;
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| |
Collapse
|
30
|
Yu H, Feng J, Tang P, Chen S, Wang Z, Wang Z, Jiang F. Combination of cellulose and plant oil toward sustainable bottlebrush copolymer elastomers with tunable mechanical performance. Int J Biol Macromol 2022; 209:1848-1857. [PMID: 35487380 DOI: 10.1016/j.ijbiomac.2022.04.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022]
Abstract
In this work, sustainable cellulose-g-poly(lauryl acrylate-co-acrylamide) [Cell-g-P(LA-co-AM)] bottlebrush copolymer elastomers derived from cellulose and plant oil were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Differential scanning calorimeter (DSC) results indicate that these thermally stable Cell-g-P(LA-co-AM) bottlebrush copolymer elastomers show adjustable melting temperatures. Monotonic and cyclic tensile tests suggest that the mechanical properties, including tensile strength, extensibility, Young's modulus, and elasticity, can be conveniently controlled by changing the LA/AM feed ratio and cellulose content. In such kind of bottlebrush copolymer elastomers, the rigid cellulose backbones act as cross-linking points to provide tensile strength. The incorporated PAM segments can form additional network structure via hydrogen bonding, resulting in enhanced tensile strength but decreased extensibility when more PAM segments are introduced. This versatile strategy can promote the development of sustainable cellulose-based bottlebrush copolymer elastomers from renewable resources.
Collapse
Affiliation(s)
- Hanqing Yu
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajun Feng
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengfei Tang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuaishuai Chen
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhiqiang Wang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Feng Jiang
- Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
31
|
Gao YZ, Chen JC, Cui Z, Zhao CL, Wu YX. Biocompatible propylene glycol alginate-g-polytetrahydrofuran amphiphilic graft copolymers for highly effective drug carriers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 2022; 278:118952. [PMID: 34973769 DOI: 10.1016/j.carbpol.2021.118952] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
Polysaccharide hydrogels have been widely utilized in tissue engineering. They interact with the organismal environments, modulating the cargos release and realizing of long-term survival and activations of living cells. In this review, the potential strategies for modification of polysaccharides were introduced firstly. It is not only used to functionalize the polysaccharides for the consequent formation of hydrogels, but also used to introduce versatile side groups for the regulation of cell behavior. Then, techniques and underlying mechanisms in inducing the formation of hydrogels by polysaccharides or their derivatives are briefly summarized. Finally, the applications of polysaccharide hydrogels in vivo, mainly focus on the performance for alleviation of foreign-body response (FBR) and as cell scaffolds for tissue regeneration, are exemplified. In addition, the perspectives and challenges for further research are addressed. It aims to provide a comprehensive framework about the potentials and challenges that the polysaccharide hydrogels confronting in tissue engineering.
Collapse
|
33
|
Torres‐Rocha OL, Campbell S, Woodcock N, Pinaud J, Lacroix‐Desmazes P, Champagne P, Cunningham MF. Non‐Covalent Polymer Surface Modification of Cellulose Nanocrystals Using Block Copolymers. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Olga Lidia Torres‐Rocha
- Department of Chemical Engineering Queen's University 19 Division Street Kingston Ontario K7L 3N6 Canada
| | - Sophie Campbell
- Department of Chemical Engineering Queen's University 19 Division Street Kingston Ontario K7L 3N6 Canada
| | - Nicole Woodcock
- Department of Civil Engineering Queen's University 58 University Avenue Kingston Ontario K7M 9H7 Canada
| | - Julien Pinaud
- ICGM University Montpellier CNRS, ENSCM Montpellier France
| | | | - Pascale Champagne
- Department of Chemical Engineering Queen's University 19 Division Street Kingston Ontario K7L 3N6 Canada
- Department of Civil Engineering Queen's University 58 University Avenue Kingston Ontario K7M 9H7 Canada
| | - Michael F. Cunningham
- Department of Chemical Engineering Queen's University 19 Division Street Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
34
|
Wu K, Chai K, Zhou L, Duan Z, Wu H, Huang Z, Li D, Tan Z, Shen F, Wei Z, Ji H. Cellulose based hyper-crosslinked polymer for efficiently recovering valuable materials from PO/SM wastewater. Int J Biol Macromol 2021; 193:71-80. [PMID: 34637817 DOI: 10.1016/j.ijbiomac.2021.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Herein, a TEMPO-oxidized cellulose-grafted-polystyrene hypercrosslinked polymer (TOC-PS-HCP) was synthesized facilely by TEMPO oxidation, grafting copolymerization and post crosslinking route. Based on the structural characterization, it was confirmed that TOC-PS-HCP mainly consisted of polystyrene chain on cellulose and rigid crosslinked bridge. Additionally, the as-prepared TOC-PS-HCP displayed appropriate hydrophobicity (water contact angle = 102.44°) and high specific surface area (SBET = 601.20 m2·g--1), which could efficiently recover ethylbenzene and styrene from PO/SM wastewater. The adsorption experiment was conducted to study the recovery performance for ethylbenzene and styrene in the aqueous phase. The results showed that TOC-PS-HCP could recover ethylbenzene and styrene quickly by adsorption process, and maintain a stable recovery rate both in different aqueous conditions and recycle experiments. The adsorption experiment in the simulated wastewater solution showed that TOC-PS-HCP exhibited the greater affinity for ethylbenzene and styrene than other substrates. Furthermore, a possible mechanism for the efficient recovery of ethylbenzene and styrene was suggested on the basis of experimental and theoretical results, which may be associated with van der Waals force and π-π stacking.
Collapse
Affiliation(s)
- Kongyou Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Liqin Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zhiliang Duan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Haibo Wu
- Research Institute of Sun Yat-sen University in Huizhou, Huizhou 516081, PR China.
| | - Zhenghui Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Dongli Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zhongwei Tan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Fang Shen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China; Research Institute of Sun Yat-sen University in Huizhou, Huizhou 516081, PR China; Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
35
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Shen JL, Zhang BP, Zhou D, Xu ZK, Wan LS. Rapid formation of metal−monophenolic networks on polymer membranes for oil/water separation and dye adsorption. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Drira M, Hentati F, Babich O, Sukhikh S, Larina V, Sharifian S, Homai A, Fendri I, Lemos MFL, Félix C, Félix R, Abdelkafi S, Michaud P. Bioactive Carbohydrate Polymers-Between Myth and Reality. Molecules 2021; 26:7068. [PMID: 34885655 PMCID: PMC8659292 DOI: 10.3390/molecules26237068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
Polysaccharides are complex macromolecules long regarded as energetic storage resources or as components of plant and fungal cell walls. They have also been described as plant mucilages or microbial exopolysaccharides. The development of glycosciences has led to a partial and difficult deciphering of their other biological functions in living organisms. The objectives of glycobiochemistry and glycobiology are currently to correlate some structural features of polysaccharides with some biological responses in the producing organisms or in another one. In this context, the literature focusing on bioactive polysaccharides has increased exponentially during the last two decades, being sometimes very optimistic for some new applications of bioactive polysaccharides, notably in the medical field. Therefore, this review aims to examine bioactive polysaccharide, taking a critical look of the different biological activities reported by authors and the reality of the market. It focuses also on the chemical, biochemical, enzymatic, and physical modifications of these biopolymers to optimize their potential as bioactive agents.
Collapse
Affiliation(s)
- Maroua Drira
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Faiez Hentati
- INRAE, URAFPA, Université de Lorraine, F-54000 Nancy, France;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Stanislas Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Ahmad Homai
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Marco F. L. Lemos
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Carina Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Rafael Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
38
|
Zhang X, Jiang F, Torres-Luna C, Nishiyama Y, Briber RM, Wang H. Solvent-Assisted Fractionation of Oligomeric Cellulose and Reversible Transformation of Cellulose II and IV. ACS Biomater Sci Eng 2021; 7:4792-4797. [PMID: 34491726 DOI: 10.1021/acsbiomaterials.1c00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligomeric cellulose with an average degree of polymerization of 7.68 and a polydispersity of 1.04 has been fractionated using solution processes. Three fractions have been obtained through initial dissolution, subsequent crystallization, and solvent precipitation, respectively. The resulting oligocellulose fraction has an average degree of polymerization of 7.70 and a polydispersity of 1.01, respectively. Cellulose IV2 crystals form in the oligocellulose fraction, and reversibly transform to II and back to IV using simple solvents.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Feng Jiang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.,Biomass Molecular Engineering Center, Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Cesar Torres-Luna
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | | | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Howard Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.,Neutron Science Platform, Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
39
|
Chen S, Zhang ZL, Song F, Wang XL, Wang YZ. Rapid Synthesis of Polymer-Grafted Cellulose Nanofiber Nanocomposite via Surface-Initiated Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sikai Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ze-Lian Zhang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
40
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
41
|
Maraveas C, Bayer IS, Bartzanas T. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers (Basel) 2021; 13:polym13152465. [PMID: 34372069 PMCID: PMC8347842 DOI: 10.3390/polym13152465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Advances in technology have led to the production of sustainable antioxidants and natural monomers for food packaging and targeted drug delivery applications. Of particular importance is the synthesis of lignin polymers, and graft polymers, dopamine, and polydopamine, inulin, quercetin, limonene, and vitamins, due to their free radical scavenging ability, chemical potency, ideal functional groups for polymerization, abundance in the natural environment, ease of production, and activation of biological mechanisms such as the inhibition of the cellular activation of various signaling pathways, including NF-κB and MAPK. The radical oxygen species are responsible for oxidative damage and increased susceptibility to cancer, cardiovascular, degenerative musculoskeletal, and neurodegenerative conditions and diabetes; such biological mechanisms are inhibited by both synthetic and naturally occurring antioxidants. The orientation of macromolecules in the presence of the plasticizing agent increases the suitability of quercetin in food packaging, while the commercial viability of terpenes in the replacement of existing non-renewable polymers is reinforced by the recyclability of the precursors (thyme, cannabis, and lemon, orange, mandarin) and marginal ecological effect and antioxidant properties. Emerging antioxidant nanoparticle polymers have a broad range of applications in tumor-targeted drug delivery, food fortification, biodegradation of synthetic polymers, and antimicrobial treatment and corrosion inhibition. The aim of the review is to present state-of-the-art polymers with intrinsic antioxidant properties, including synthesis scavenging activity, potential applications, and future directions. This review is distinct from other works given that it integrates different advances in antioxidant polymer synthesis and applications such as inulin, quercetin polymers, their conjugates, antioxidant-graft-polysaccharides, and polymerization vitamins and essential oils. One of the most comprehensive reviews of antioxidant polymers was published by Cirillo and Iemma in 2012. Since then, significant progress has been made in improving the synthesis, techniques, properties, and applications. The review builds upon existing research by presenting new findings that were excluded from previous reviews.
Collapse
Affiliation(s)
- Chrysanthos Maraveas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
- Correspondence: (C.M.); (I.S.B.)
| | - Ilker S. Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Correspondence: (C.M.); (I.S.B.)
| | - Thomas Bartzanas
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
42
|
Fritz AT, Cazotti JC, Garcia‐Valdez O, Smeets NMB, Dubé MA, Cunningham MF. Grafting pH‐Responsive Copolymers to Cold Water‐Soluble Starch Using Nitroxide‐Mediated Polymerization. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alexander T. Fritz
- Department of Chemical Engineering Queen's University, 19 Division St. Kingston Ontario K7L 2N9 Canada
| | - Jaime C. Cazotti
- Department of Chemical Engineering Queen's University, 19 Division St. Kingston Ontario K7L 2N9 Canada
| | - Omar Garcia‐Valdez
- Department of Chemical Engineering Queen's University, 19 Division St. Kingston Ontario K7L 2N9 Canada
| | | | - Marc A. Dubé
- Department of Chemical and Biological Engineering University of Ottawa 161 Louis Pasteur Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Michael F. Cunningham
- Department of Chemical Engineering Queen's University, 19 Division St. Kingston Ontario K7L 2N9 Canada
| |
Collapse
|
43
|
Amphiphilic Graft Copolymers of Hydroxypropyl Cellulose Backbone with Nonpolar Polyisobutylene Branches. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2546-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Promising grafting strategies on cellulosic backbone through radical polymerization processes – A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Garcia‐Valdez O, Champagne P, Cunningham MF. Perspective on the controlled polymer‐modification of chitosan and cellulose nanocrystals: Towards the design of functional materials. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Omar Garcia‐Valdez
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - Pascale Champagne
- Department of Civil Engineering Queen's University Kingston Ontario Canada
- Institut national de la recherche scientifique, Centre Eau, Terre, Environment Québec City Québec Canada
| | | |
Collapse
|
46
|
Affiliation(s)
- Milan Marić
- Department of Chemical Engineering McGill University Montreal Quebec Canada
| |
Collapse
|
47
|
Abstract
A critical review on the synthesis, characterization, and modeling of polymer grafting is presented. Although the motivation stemmed from grafting synthetic polymers onto lignocellulosic biopolymers, a comprehensive overview is also provided on the chemical grafting, characterization, and processing of grafted materials of different types, including synthetic backbones. Although polymer grafting has been studied for many decades—and so has the modeling of polymer branching and crosslinking for that matter, thereby reaching a good level of understanding in order to describe existing branching/crosslinking systems—polymer grafting has remained behind in modeling efforts. Areas of opportunity for further study are suggested within this review.
Collapse
|
48
|
Zhang C, Li Y, Zhang T, Zhao H. Increasing chitosanase production in Bacillus cereus by a novel mutagenesis and screen method. Bioengineered 2021; 12:266-277. [PMID: 33356788 PMCID: PMC8806256 DOI: 10.1080/21655979.2020.1869438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chitosan hydrolysis by chitosanase is one of the most effective methods to produce chitosan oligosaccharides. One of the prerequisites of enzyme fermentation production is to select and breed enzyme-producing cells with good performance. So in the process of fermentation production, the low yield of chitosanase cannot meet the current requirement. In this paper, a strain producing chitosanase was screened and identified, and a novel mutagenesis system (Atmospheric and Room Temperature Plasma (ARTP)) was selected to increase the yield of chitosanase. Then, the fermentation medium was optimized to further improve the enzyme activity of the strain. A strain of Bacillus cereus capable of producing chitosanase was screened and identified from soil samples. A mutant strain of B.cereus was obtained by Atmospheric and Room Temperature Plasma mutagenesis and bioscreening method, and chitosanase activity was 2.49 folds that of the original bacterium. After an optimized fermentation medium, the enzyme activity of the mutant strain was 1.47 folds that of the original bacterium. Combined with all the above optimization experiments, the enzyme activity of mutant strain increased by 3.66 times. The results showed that the Atmospheric and Room Temperature Plasma mutagenesis and bioscreening method could significantly increase the yield of chitosanase in B.cereus, and had little effect on the properties of the enzyme. These findings have potential applications in the mutagenesis of other enzyme-producing microorganisms.
Collapse
Affiliation(s)
- Chaozheng Zhang
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Yi Li
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Tianshuang Zhang
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Hua Zhao
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| |
Collapse
|
49
|
Versatile Types of Polysaccharide-Based Drug Delivery Systems: From Strategic Design to Cancer Therapy. Int J Mol Sci 2020; 21:ijms21239159. [PMID: 33271967 PMCID: PMC7729619 DOI: 10.3390/ijms21239159] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.
Collapse
|
50
|
Racovita S, Baranov N, Macsim AM, Lionte C, Cheptea C, Sunel V, Popa M, Vasiliu S, Desbrieres J. New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems. Molecules 2020; 25:E5451. [PMID: 33233752 PMCID: PMC7699957 DOI: 10.3390/molecules25225451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
New grafted copolymers possessing structural units of 1-vinyl-3-(1-carboxymethyl) imidazolium betaine were obtained by graft copolymerization of N-vinylimidazole onto gellan gum followed by the polymer-analogous reactions on grafted polymer with the highest grafting percentage using sodium chloroacetate as the betainization agent. The grafted copolymers were prepared using ammonium persulfate/N,N,N',N' tetramethylethylenediamine in a nitrogen atmosphere. The grafting reaction conditions were optimized by changing one of the following reaction parameters: initiator concentration, monomer concentration, polymer concentration, reaction time or temperature, while the other parameters remained constant. The highest grafting yield was obtained under the following reaction conditions: ci = 0.08 mol/L, cm = 0.8 mol/L, cp = 8 g/L, tr = 4 h and T = 50 °C. The kinetics of the graft copolymerization of N-vinylimidazole onto gellan was discussed and a suitable reaction mechanism was proposed. The evidence of the grafting reaction was confirmed through FTIR spectroscopy, X-ray diffraction, 1H-NMR spectroscopy and scanning electron microscopy. The grafted copolymer with betaine structure was obtained by a nucleophilic substitution reaction where the betainization agent was sodium chloroacetate. Preliminary results prove the ability of the grafted copolymers to bind amphoteric drugs (cefotaxime) and, therefore, the possibility of developing the new sustained drug release systems.
Collapse
Affiliation(s)
- Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Nicolae Baranov
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engienering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (N.B.); (M.P.)
- Faculty of Chemistry, “Al. I. Cuza” University, Carol 1 Bvd., No. 11, 700506 Iasi, Romania;
| | - Ana Maria Macsim
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Catalina Lionte
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, Universitatii Street, No.16, 700115 Iasi, Romania;
| | - Corina Cheptea
- Department of Biomedical Sciences, Faculty of Biomedical Bioengineering, “Gr. T. Popa” University of Medicine and Pharmacy, Kogalniceanu Street No. 9-13, 700454 Iasi, Romania;
| | - Valeriu Sunel
- Faculty of Chemistry, “Al. I. Cuza” University, Carol 1 Bvd., No. 11, 700506 Iasi, Romania;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engienering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (N.B.); (M.P.)
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucuresti, Romania
| | - Silvia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.); (S.V.)
| | - Jacques Desbrieres
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM), Pau and Pays de l’Adour University (UPPA), UMR CNRS 5254, Helioparc Pau Pyrenees, 2, av. President Angot, 64053 Pau CEDEX 09, France
| |
Collapse
|