1
|
Uddin MA, Yuan X, Wang L, Yu H, Wang H, Yuan X, Keshta BE, Basit A, Ouyang C, Yuan Y, Zheng Y, Hu J, Feng J. Biomass-Derived Organonanomaterials as Contrast Agents for Efficient Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2024; 7:8479-8488. [PMID: 39531633 DOI: 10.1021/acsabm.4c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Magnetic resonance imaging (MRI) is a popular imaging tool that is valuable for the early detection and monitoring of malignancies because it does not involve radiation and is noninvasive. Metal-based contrast agents (CAs) are commonly used in clinical settings despite concerns about the toxicity of free metals. Therefore, finding alternative nontoxic imaging probes is vital. In this work, we have synthesized and effectively utilized sustainable biomass lignin-based all-organic nanoconjugates linked with nitroxide radicals as MRI CAs. Lignin grafted with poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) (LPGT) exhibits a longitudinal relaxivity of 0.54 mM-1 s-1. LPGT shows exceptional characteristics, including resistance to reduction and nontoxicity toward living organisms. LPGT displays enhanced MRI contrast in the BALB/c mouse model for a duration exceeding 4.35 h. Our primary goal is to design MRI agents that are exceptionally effective sustainable biomass-derived materials and do not require the use of metals. Nicely, LPGT offers adequate contrast enhancement at 5-fold lower (0.020 mmol/kg) than the standard dose (0.1 mmol/kg), easing worries about toxic metal buildup. Consequently, LPGT shows promise as a feasible CA for metal-free MRI.
Collapse
Affiliation(s)
- Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiwang Yuan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Huanan Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xunchun Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Abdul Basit
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yizhao Yuan
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yilei Zheng
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jian Hu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Jingyi Feng
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| |
Collapse
|
2
|
Panakkal V, Havlicek D, Pavlova E, Jirakova K, Jirak D, Sedlacek O. Single-Step Synthesis of Highly Sensitive 19F MRI Tracers by Gradient Copolymerization-Induced Self-Assembly. Biomacromolecules 2024; 25:7685-7694. [PMID: 39558644 PMCID: PMC11632659 DOI: 10.1021/acs.biomac.4c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Amphiphilic gradient copolymers are promising alternatives to block copolymers for self-assembled nanomaterials due to their straightforward synthesis via statistical copolymerization of monomers with different reactivities and hydrophilicity. By carefully selecting monomers, nanoparticles can be synthesized in a single step through gradient copolymerization-induced self-assembly (gPISA). We synthesized highly sensitive 19F MRI nanotracers via aqueous dispersion gPISA of hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) with core-forming N,N-(2,2,2-trifluoroethyl)acrylamide (TFEAM). The PPEGMA-grad-PTFEAM nanoparticles were optimized to achieve spherical morphology and exceptional 19F MRI performance. Noncytotoxicity was confirmed in Panc-1 cells. In vitro 19F MR relaxometry and imaging demonstrated their diagnostic imaging potential. Notably, these gradient copolymer nanotracers outperformed block copolymer analogs in 19F MRI performance due to their gradient architecture, enhancing 19F relaxivity. The synthetic versatility and superior 19F MRI performance of gradient copolymers highlight their potential in advanced diagnostic imaging applications.
Collapse
Affiliation(s)
- Vyshakh
M. Panakkal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40 Prague 2, Czech Republic
| | - Dominik Havlicek
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
- Institute
of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121
08 Prague, Czech
Republic
| | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, v.v.i., Academy
of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Klara Jirakova
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
- Third
Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| | - Daniel Jirak
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
- Institute
of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121
08 Prague, Czech
Republic
- Faculty of
Health Studies, Technical University of
Liberec, Studentská
1402/2, 46117 Liberec, Czech Republic
| | - Ondrej Sedlacek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40 Prague 2, Czech Republic
| |
Collapse
|
3
|
Luo T, Wang B, Chen R, Qi Q, Wu R, Xie S, Chen H, Han J, Wu D, Cao S. Research progress of nitroxide radical-based MRI contrast agents: from structure design to application. J Mater Chem B 2024. [PMID: 39565110 DOI: 10.1039/d4tb02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) remains a cornerstone of diagnostic imaging, offering unparalleled insights into anatomical structures and pathological conditions. Gadolinium-based contrast agents have long been the standard in MRI enhancement, yet concerns over nephrogenic systemic fibrosis have spurred interest in metal-free alternatives. Nitroxide radical-based MRI contrast agents (NO-CAs) have emerged as promising candidates, leveraging their biocompatibility and imaging capabilities. This review summaries the latest advancements in NO-CAs, focusing on synthesis methodologies, influencing effects of structures of NO-CAs on relaxation efficiency and their applications across various clinical contexts. Comprehensive discussions encompass small molecular, polymeric, and nano-sized NO-CAs, detailing their unique properties and potential clinical utilities. Despite challenges, NO-CAs represent a dynamic area of research poised to revolutionize MRI diagnostics. This review serves as a critical resource for researchers and practitioners seeking to navigate the evolving landscape of MRI contrast agents.
Collapse
Affiliation(s)
- Tao Luo
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Runxin Chen
- Shenzhen University General Hospital, Shenzhen, China
| | - Qi Qi
- Shenzhen University General Hospital, Shenzhen, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, China
| | - Shunzi Xie
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Hanbing Chen
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Shenzhen, China
| | | |
Collapse
|
4
|
Li X, Liu Q, Wu M, Wang H, Yang J, Mu X, Zhang XD. Artificially Engineered Nanoprobes for Ultrasensitive Magnetic Resonance Imaging. Adv Healthc Mater 2024:e2403099. [PMID: 39562174 DOI: 10.1002/adhm.202403099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive and radiation-free technique used for soft tissue. However, there are some limitations of the MRI modality, such as low sensitivity and poor image resolution. Artificially engineered magnetic nanoprobes have been extensively explored as a versatile platform for ultrasensitive MRI contrast agents due to their unique physiochemical characteristics and tunable magnetic properties. In this review, the emphasis is on recent progress in MRI nanoprobes with different structures and elements, including gadolinium-, iron-, manganese-based and metal-free nanoprobes. The key influencing factors and advanced engineering strategies for modulating the relaxation ratio of MRI nanoprobes are systematically condensed. Furthermore, the widespread and noninvasive visualization applications of MRI nanoprobes for real time monitoring of major organs and accurate disease diagnosing, such as cerebrovascular, ischemia, Alzheimer's disease, liver fibrosis, whole-body tumors, inflammation, as well as multi-mode imaging applications are summarized. Finally, the challenges and prospects for the future development of MRI nanoprobes are discussed, and promising strategies are specifically emphasized for improving biocompatibility, precisely engineering of optimal size, AI-driven prediction and design, and multifunctional self-assembly to enhance diagnostics. This review will provide new inspiration for artificial engineering and nanotechnology-based molecular probes for medical diagnosis and therapy with ultrasensitive MRI.
Collapse
Affiliation(s)
- Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Menglin Wu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Mollazadeh M, Fakhari A, Mortezazadeh T, Mofrad FB, Nazarie AJ. Synthesis, MTT assay, 99m-Technetium radiolabeling, biodistribution evaluation of radiotracer and in vitro magnetic resonance imaging study of P,N-doped graphene quantum dots as a new multipurpose imaging nano-agent. RADIOCHIM ACTA 2024; 112:663-677. [DOI: 10.1515/ract-2023-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Abstract
In this study, a new nano-structure, N,P-doped graphene quantum dots (N,P-GQDs), were synthesized as multipurpose imaging agent for performing scintigraphy and magnetic resonance imaging (MRI). Some standard characterization methods were used to identify the nano-structure. In vitro cytotoxicity evaluation using MTT assay revealed that N,P-GQDs nanoparticles had no significant cytotoxicity after 24 and 48 h against normal (MCF-10A) and cancerous (MCF 7) human breast cell line in concentration up to 200 μg/mL. The N,P-GQDs were radiolabeled with Technetium-99m as 99mTc-(N,P-GQDs) and the radiochemical purity was assayed by ITLC concluding RCP ≥ 95 %. The passing of 99mTc-(N,P-GQDs) through 0.1 µm filter demonstrated that 70.8 % of particles were <0.1 µm. In order to perform scintigraphy, the 99mTc-(N,P-GQDs) were injected to female healthy Wistar rats. The results showed that the radio-complex was captured and eliminated just by kidneys. Moreover, in vitro T1-weighted phantom MRI imaging showed that the N,P-GQDs have proper relaxivity in comparison to Dotarem® as a clinically available contrast agent. The results showed that the N,P-GQDs have potential to be considered as a novel and encouraging agent for both molecular MRI and nuclear medicine imagings.
Collapse
Affiliation(s)
- Morteza Mollazadeh
- Department of Medical Radiation Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ashraf Fakhari
- Medical Radiation Sciences Research Team , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farshid Babapour Mofrad
- Department of Medical Radiation Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ali Jamali Nazarie
- Department of Engineering, Shahrood Branch , Islamic Azad University , Shahrood , Iran
| |
Collapse
|
6
|
Tunca Arın TA, Sedlacek O. Stimuli-Responsive Polymers for Advanced 19F Magnetic Resonance Imaging: From Chemical Design to Biomedical Applications. Biomacromolecules 2024; 25:5630-5649. [PMID: 39151065 PMCID: PMC11388145 DOI: 10.1021/acs.biomac.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
Fluorine magnetic resonance imaging (19F MRI) is a rapidly evolving research area with a high potential to advance the field of clinical diagnostics. In this review, we provide an overview of the recent progress in the field of fluorinated stimuli-responsive polymers applied as 19F MRI tracers. These polymers respond to internal or external stimuli (e.g., temperature, pH, oxidative stress, and specific molecules) by altering their physicochemical properties, such as self-assembly, drug release, and polymer degradation. Incorporating noninvasive 19F labels enables us to track the biodistribution of such polymers. Furthermore, by triggering polymer transformation, we can induce changes in 19F MRI signals, including attenuation, amplification, and chemical shift changes, to monitor alterations in the environment of the tracer. Ultimately, this review highlights the emerging potential of stimuli-responsive fluoropolymer 19F MRI tracers in the current context of polymer diagnostics research.
Collapse
Affiliation(s)
- Tuba Ayça Tunca Arın
- Department of Physical and
Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and
Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| |
Collapse
|
7
|
Han J, Duan Z, Liu C, Liu Y, Zhao X, Wang B, Cao S, Wu D. Hyperbranched Polymeric 19F MRI Contrast Agents with Long T2 Relaxation Time Based on β-Cyclodextrin and Phosphorycholine. Biomacromolecules 2024; 25:5860-5872. [PMID: 39113312 DOI: 10.1021/acs.biomac.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
19F magnetic resonance imaging (19F MRI) is gaining attention as an emerging diagnostic technology. Effective 19F MRI contrast agents (CAs) for in vivo applications require a long transverse (or spin-spin) relaxation time (T2), short longitudinal (or spin-lattice) relaxation time (T1), high fluorine content, and excellent biocompatibility. Here, we present a novel hyperbranched polymeric 19F MRI CA based on β-cyclodextrin and phosphorylcholine. The influence of the branching degree and fluorine content on T2 was thoroughly investigated. Results demonstrated a maximum fluorine content of 11.85% and a T2 of 612 ms. This hyperbranched polymeric 19F MRI CA exhibited both great biocompatibility against cells and organs of mice and high-performance imaging capabilities both in vitro and in vivo. The research provides positive insights into the synthesis strategies, topological design, and selection of fluorine tags for 19F MRI CAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Xinyu Zhao
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Shuaishuai Cao
- Shenzhen University General Hospital, Shenzhen 518055, China
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| |
Collapse
|
8
|
Chen Y, Zhang Z, Chen Z, Jiang S, Reheman A, Ouyang Y, Yu B, Chen Q, Wei D. Iron gallic acid biomimetic nanoparticles for targeted magnetic resonance imaging. PLoS One 2024; 19:e0306142. [PMID: 38954698 PMCID: PMC11218937 DOI: 10.1371/journal.pone.0306142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Developing T1-weighted magnetic resonance imaging (MRI) contrast agents with enhanced biocompatibility and targeting capabilities is crucial owing to concerns over current agents' potential toxicity and suboptimal performance. Drawing inspiration from "biomimetic camouflage," we isolated cell membranes (CMs) from human glioblastoma (T98G) cell lines via the extrusion method to facilitate homotypic glioma targeting. At an 8:1 mass ratio of ferric chloride hexahydrate to gallic acid (GA), the resulting iron (Fe)-GA nanoparticles (NPs) proved effective as a T1-weighted MRI contrast agent. T98G CM-coated Fe-GA NPs demonstrated improved homotypic glioma targeting, validated through Prussian blue staining and in vitro MRI. This biomimetic camouflage strategy holds promise for the development of targeted theranostic agents in a safe and effective manner.
Collapse
Affiliation(s)
- Yan Chen
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Ningde Normal University, Ningde, Fujian, China
- Medical School, Ningde Normal University, Ningde, Fujian, China
| | - Zhaohui Zhang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Ningde Normal University, Ningde, Fujian, China
- Medical School, Ningde Normal University, Ningde, Fujian, China
- Department of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Zhijian Chen
- Functional and Molecular Imaging Laboratory for Cerebral Vascular Diseases, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
- Radiology Department, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Shiqing Jiang
- Pharmacy Department, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Ningde Normal University, Ningde, Fujian, China
- Medical School, Ningde Normal University, Ningde, Fujian, China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Ningde Normal University, Ningde, Fujian, China
- Medical School, Ningde Normal University, Ningde, Fujian, China
| | - Bo Yu
- Functional and Molecular Imaging Laboratory for Cerebral Vascular Diseases, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
- Radiology Department, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Qiuyan Chen
- Functional and Molecular Imaging Laboratory for Cerebral Vascular Diseases, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
- Radiology Department, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Dingtai Wei
- Functional and Molecular Imaging Laboratory for Cerebral Vascular Diseases, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
- Radiology Department, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| |
Collapse
|
9
|
Havlicek D, Panakkal VM, Voska L, Sedlacek O, Jirak D. Self-Assembled Fluorinated Nanoparticles as Sensitive and Biocompatible Theranostic Platforms for 19F MRI. Macromol Biosci 2024; 24:e2300510. [PMID: 38217510 DOI: 10.1002/mabi.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Theranostics is a novel paradigm integrating therapy and diagnostics, thereby providing new prospects for overcoming the limitations of traditional treatments. In this context, perfluorocarbons (PFCs) are the most widely used tracers in preclinical fluorine-19 magnetic resonance (19F MR), primarily for their high fluorine content. However, PFCs are extremely hydrophobic, and their solutions often display reduced biocompatibility, relative instability, and subpar 19F MR relaxation times. This study aims to explore the potential of micellar 19F MR imaging (MRI) tracers, synthesized by polymerization-induced self-assembly (PISA), as alternative theranostic agents for simultaneous imaging and release of the non-steroidal antileprotic drug clofazimine. In vitro, under physiological conditions, these micelles demonstrate sustained drug release. In vivo, throughout the drug release process, they provide a highly specific and sensitive 19F MRI signal. Even after extended exposure, these fluoropolymer tracers show biocompatibility, as confirmed by the histological analysis. Moreover, the characteristics of these polymers can be broadly adjusted by design to meet the wide range of criteria for preclinical and clinical settings. Therefore, micellar 19F MRI tracers display physicochemical properties suitable for in vivo imaging, such as relaxation times and non-toxicity, and high performance as drug carriers, highlighting their potential as both diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Dominik Havlicek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, Prague, 121 08, Czech Republic
| | - Vyshakh M Panakkal
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 00, Czech Republic
| | - Ludek Voska
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 00, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, Prague, 121 08, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, 1402/2 Studentská, Liberec, 46117, Czech Republic
| |
Collapse
|
10
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Wang X, Zhang J, Li H, Zhang R, Yang X, Li W, Li Z, Gu Z, Li Y. Quaternary Ammonium Assisted Synthesis of Melanin-like Poly(l-DOPA) Nanoparticles with a Boosted Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22493-22503. [PMID: 38647220 DOI: 10.1021/acsami.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Poly(levodopa) nanoparticles (P(l-DOPA) NPs) are another kind of melanin mimetic besides well-established polydopamine nanoparticles (PDA NPs). Due to the presence of carboxyl groups, the oxidative polymerization of l-DOPA to obtain particles was not as efficient as that of dopamine. Several established methods toward P(l-DOPA) NP fabrication do not combine convenience, morphological regularity, size controllability, low cost, and adaptability to metal-free application scenarios. In this work, P(l-DOPA) NPs were successfully prepared in hot water with the assistant of organic quaternary ammonium, due to the extra physical cross-linking mediated by cations. The employed physical interactions could also be affected by quaternary ammonium structure (i.e., number of cation heads, length of alkyl chain) to achieve different polymerization acceleration effects. The obtained P(l-DOPA) NPs retained superior photothermal properties and outperformed PDA-based melanin materials. Furthermore, P(l-DOPA) NPs were used in photothermal tumor therapy and showed better efficacy. This study offers new insights into the synthesis of melanin-like materials, as well as new understanding of the interaction between quaternary ammonium and bioinspired polyphenolic materials.
Collapse
Affiliation(s)
- Xianheng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Haotian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xianxian Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Wenjing Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Mitin D, Bullinger F, Dobrynin S, Engelmann J, Scheffler K, Kolokolov M, Krumkacheva O, Buckenmaier K, Kirilyuk I, Chubarov A. Contrast Agents Based on Human Serum Albumin and Nitroxides for 1H-MRI and Overhauser-Enhanced MRI. Int J Mol Sci 2024; 25:4041. [PMID: 38612851 PMCID: PMC11012161 DOI: 10.3390/ijms25074041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In cancer diagnostics, magnetic resonance imaging (MRI) uses contrast agents to enhance the distinction between the target tissue and background. Several promising approaches have been developed to increase MRI sensitivity, one of which is Overhauser dynamic nuclear polarization (ODNP)-enhanced MRI (OMRI). In this study, a macromolecular construct based on human serum albumin and nitroxyl radicals (HSA-NIT) was developed using a new synthesis method that significantly increased the modification to 21 nitroxide residues per protein. This was confirmed by electron paramagnetic resonance (EPR) spectroscopy and matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF) mass spectrometry. Gel electrophoresis and circular dichroism showed no significant changes in the structure of HSA-NITs, and no oligomers were formed during modification. The cytotoxicity of HSA-NITs was comparable to that of native albumin. HSA-NITs were evaluated as potential "metal-free" organic radical relaxation-based contrast agents for 1H-MRI and as hyperpolarizing contrast agents for OMRI. Relaxivities (longitudinal and transversal relaxation rates r1 and r2) for HSA-NITs were measured at different magnetic field strengths (1.88, 3, 7, and 14 T). Phantoms were used to demonstrate the potential use of HSA-NIT as a T1- and T2-weighted relaxation-based contrast agent at 3 T and 14 T. The efficacy of 1H Overhauser dynamic nuclear polarization (ODNP) in liquids at an ultralow magnetic field (ULF, B0 = 92 ± 0.8 μT) was investigated for HSA-NIT conjugates. The HSA-NITs themselves did not show ODNP enhancement; however, under the proteolysis conditions simulating cancer tissue, HSA-NIT conjugates were cleaved into lower-molecular-weight (MW) protein fragments that activate ODNP capabilities, resulting in a maximum achievable enhancement |Emax| of 40-50 and a radiofrequency power required to achieve half of Emax, P1/2, of 21-27 W. The HSA-NIT with a higher degree of modification released increased the number of spin probes upon biodegradation, which significantly enhanced the Overhauser effect. Thus, HSA-NITs may represent a new class of MRI relaxation-based contrast agents as well as novel cleavable conjugates for use as hyperpolarizing contrast agents (HCAs) in OMRI.
Collapse
Affiliation(s)
- Dmitry Mitin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Friedemann Bullinger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Sergey Dobrynin
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Jörn Engelmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University, 72076 Tuebingen, Germany
| | - Mikhail Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (M.K.); (O.K.)
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; (F.B.); (J.E.); (K.S.); (K.B.)
| | - Igor Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Alexey Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
13
|
Li J, Wang Y, Distefano MD, Wagner CR, Pomerantz WCK. Multivalent Fluorinated Nanorings for On-Cell 19F NMR. Biomacromolecules 2024; 25:1330-1339. [PMID: 38254252 PMCID: PMC11375447 DOI: 10.1021/acs.biomac.3c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The design of imaging agents with a high fluorine content is necessary for overcoming the challenges of low sensitivity in 19F magnetic resonance imaging (MRI)-based molecular imaging. Chemically self-assembled nanorings (CSANs) provide a strategy to increase the fluorine content through multivalent display. We previously reported an 19F NMR-based imaging tracer, in which case a CSAN-compatible epidermal growth factor receptor (EGFR)-targeting protein E1-dimeric dihydrofolate (E1-DD) was bioconjugated to a highly fluorinated peptide. Despite good 19F NMR performance in aqueous solutions, a limited signal was observed in cell-based 19F NMR using this monomeric construct, motivating further design. Here, we design several new E1-DD proteins bioconjugated to peptides of different fluorine contents. Flow cytometry analysis was used to assess the effect of variable fluorinated peptide sequences on the cellular binding characteristics. Structure-optimized protein, RTC-3, displayed an optimal spectral performance with high affinity and specificity for EGFR-overexpressing cells. To further improve the fluorine content, we next engineered monomeric RTC-3 into CSAN, η-RTC-3. With an approximate eightfold increase in the fluorine content, multivalent η-RTC-3 maintained high cellular specificity and optimal 19F NMR spectral behavior. Importantly, the first cell-based 19F NMR spectra of η-RTC-3 were obtained bound to EGFR-expressing A431 cells, showing a significant amplification in the signal. This new design illustrated the potential of multivalent fluorinated CSANs for future 19F MRI molecular imaging applications.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Franco L, Isse AA, Barbon A, Altomare L, Hyppönen V, Rosa J, Olsson V, Kettunen M, Melone L. Redox Properties and in Vivo Magnetic Resonance Imaging of Cyclodextrin-Polynitroxides Contrast Agents. Chemphyschem 2023; 24:e202300100. [PMID: 37431722 DOI: 10.1002/cphc.202300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
This paper reports the synthesis, characterization and in vivo application of water-soluble supramolecular contrast agents (Mw: 5-5.6 kDa) for MRI obtained from β-cyclodextrin functionalized with different kinds of nitroxide radicals, both with piperidine structure (CD2 and CD3) and with pyrrolidine structure (CD4 and CD5). As to the stability of the radicals in presence of ascorbic acid, CD4 and CD5 have low second order kinetic constants (≤0.05 M-1 s-1 ) compared to CD2 (3.5 M-1 s-1 ) and CD3 (0.73 M-1 s-1 ). Relaxivity (r1 ) measurements on compounds CD3-CD5 were carried out at different magnetic field strength (0.7, 3, 7 and 9.4 T). At 0.7 T, r1 values comprised between 1.5 mM-1 s-1 and 1.9 mM-1 s-1 were found while a significant reduction was observed at higher fields (r1 ≈0.6-0.9 mM-1 s-1 at 9.4 T). Tests in vitro on HEK293 human embryonic kidney cells, L929 mouse fibroblasts and U87 glioblastoma cells indicated that all compounds were non-cytotoxic at concentrations below 1 μmol mL-1 . MRI in vivo was carried out at 9.4 T on glioma-bearing rats using the compounds CD3-CD5. The experiments showed a good lowering of T1 relaxation in tumor with a retention of the contrast for at least 60 mins confirming improved stability also in vivo conditions.
Collapse
Affiliation(s)
- Lorenzo Franco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering "G.Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Viivi Hyppönen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Jessica Rosa
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Venla Olsson
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Mikko Kettunen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lucio Melone
- Department of Chemistry, Materials and Chemical Engineering "G.Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
- Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Via Isimbardi 10, 22060, Novedrate, Italy
| |
Collapse
|
15
|
Lu C, Chai Y, Xu X, Wang Z, Bao Y, Fei Z. Large-scale in situ self-assembly and doping engineering of zinc ferrite nanoclusters for high performance bioimaging. Colloids Surf B Biointerfaces 2023; 229:113473. [PMID: 37517338 DOI: 10.1016/j.colsurfb.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Iron oxide nanomaterials has good biocompatibility and safety, and has been used as contrast agents for magnetic resonance imaging (MRI). However, its clinical usefulness is hampered by its difficult preparation on large scale, its rapid clearance in vivo and low target tissue enrichment efficiency. Here, we report the synthesis of water-soluble, biocompatible, superparamagnetic non-stoichiometric zinc ferrite nanoclusters (nZFNCs) of approximately 50 g in a single batch using a one-pot synthesis technique. nZFNCs is a secondary cluster structure with a size of about 40 nm composed of zinc-doped iron oxide nanoparticles with a size of about 6 nm. The surface of nZFNCS is endowed with a large number of carboxyl groups as active sites. By simply controlling the synthesis process and adjusting the proportion of metal precursors, the amount of zinc doping can be controlled, while maintaining the same size to ensure similar pharmacokinetics. Compared with undoped, the magnetic responsiveness and relaxation efficiency of nZFNCs are significantly improved, and the transverse relaxation efficiency (r2) can reach 425.5 mM-1 s-1 (doping amount x = 0.25), which is 7 times higher than that of commercial Resovist and 10 times higher than that of Feridex. In vivo imaging results also further confirmed the excellent contrast enhancement performance of the nanoclusters, which can achieve high contrast for more than 2 h in the liver. The advantage of this platform over comparable systems is that the contrast enhancement features are derived from simple techniques that do not require complex physical and chemical methods.
Collapse
Affiliation(s)
- Chichong Lu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yuyun Chai
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xue Xu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhijie Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yingjie Bao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zihan Fei
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
16
|
Nie Z, Zhang K, Chen X, Wang J, Gao H, Zheng B, Wu Q, Guo Y, Liu X, Wang X. A Multifunctional Integrated Metal-Free MRI Agent for Early Diagnosis of Oxidative Stress in a Mouse Model of Diabetic Cardiomyopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206171. [PMID: 36596646 PMCID: PMC9982554 DOI: 10.1002/advs.202206171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are closely associated with the progression of diabetic cardiomyopathy (DCM) and can be regarded as one of its early biomarkers. Magnetic resonance imaging (MRI) is emerging as a powerful tool for the detection of cardiac abnormalities, but the sensitive and direct ROS-response MRI probe remains to be developed. This restricts the early diagnosis of DCM and prevents timely clinical interventions, resulting in serious and irreversible pathophysiological abnormalities. Herein, a novel ROS-response contrast-enhanced MRI nanoprobe (RCMN) is developed by multi-functionalizing fluorinated carbon nanosheets (FCNs) with multi-hydroxyl and 2,2,6,6-tetramethylpiperidin-1-oxyl groups. RCMNs capture ROS and then gather in the heart provisionally, which triggers MRI signal changes to realize the in vivo detection of ROS. In contrast to the clinical MRI agents, the cardiac abnormalities of disease mice is detected 8 weeks in advance with the assistance of RCMNs, which greatly advances the diagnostic window of DCM. To the best of the knowledge, this is the first ROS-response metal-free T2 -weighted MRI probe for the early diagnosis of DCM mice model. Furthermore, RCMNs can timely scavenge excessively produced ROS to alleviate oxidative stress.
Collapse
Affiliation(s)
- Zhuang Nie
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Kun Zhang
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Xinyu Chen
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Jingxin Wang
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610064P. R. China
| | - Bingwen Zheng
- Time Medical Ltd., Hong Kong Science & Technology ParkHong Kong999077P. R. China
| | - Qihong Wu
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Yingkun Guo
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Xiangyang Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xu Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
17
|
Pranav U, Malhotra M, Pathan S, Jayakannan M. Structural Engineering of Star Block Biodegradable Polymer Unimolecular Micelles for Drug Delivery in Cancer Cells. ACS Biomater Sci Eng 2023; 9:743-759. [PMID: 36579913 DOI: 10.1021/acsbiomaterials.2c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present investigation reports the structural engineering of biodegradable star block polycaprolactone (PCL) to tailor-make aggregated micelles and unimolecular micelles to study their effect on drug delivery aspects in cancer cell lines. Fully PCL-based star block copolymers were designed by varying the arm numbers from two to eight while keeping the arm length constant throughout. Multifunctional initiators were exploited for stepwise solvent-free melt ring-opening polymerization of ε-caprolactone and γ-substituted caprolactone to construct star block copolymers having a PCL hydrophobic core and a carboxylic PCL hydrophilic shell, respectively. A higher arm number and a higher degree of branching in star polymers facilitated the formation of unimolecular micelles as opposed to the formation of conventional multimicellar aggregates in lower arm analogues. The dense core of the unimolecular micelles enabled them to load high amounts of the anticancer drug doxorubicin (DOX, ∼12-15%) compared to the aggregated micelles (∼3-4%). The star unimolecular micelle completely degraded leading to 90% release of the loaded drug upon treatment with the lysosomal esterase enzyme in vitro. The anticancer efficacies of these DOX-loaded unimolecular micelles were tested in a breast cancer cell line (MCF-7), and their IC50 values were found to be much lower compared to those of aggregated micelles. Time-dependent cellular uptake studies by confocal microscopy revealed that unimolecular micelles were readily taken up by the cells, and enhancement of the drug concentration was observed at the intracellular level up to 36 h. The present work opens new synthetic strategies for building a next-generation biodegradable unimolecular micellar nanoplatform for drug delivery in cancer research.
Collapse
Affiliation(s)
- Upendiran Pranav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Mehak Malhotra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| |
Collapse
|
18
|
Panakkal V, Havlicek D, Pavlova E, Filipová M, Bener S, Jirak D, Sedlacek O. Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)acrylamide in Water. Biomacromolecules 2022; 23:4814-4824. [PMID: 36251480 PMCID: PMC10797588 DOI: 10.1021/acs.biomac.2c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Indexed: 11/29/2022]
Abstract
19F magnetic resonance imaging (MRI) using fluoropolymer tracers has recently emerged as a promising, non-invasive diagnostic tool in modern medicine. However, despite its potential, 19F MRI remains overlooked and underused due to the limited availability or unfavorable properties of fluorinated tracers. Herein, we report a straightforward synthetic route to highly fluorinated 19F MRI nanotracers via aqueous dispersion polymerization-induced self-assembly of a water-soluble fluorinated monomer. A polyethylene glycol-based macromolecular chain-transfer agent was extended by RAFT-mediated N-(2,2,2-trifluoroethyl)acrylamide (TFEAM) polymerization in water, providing fluorine-rich self-assembled nanoparticles in a single step. The resulting nanoparticles had different morphologies and sizes ranging from 60 to 220 nm. After optimizing their structure to maximize the magnetic relaxation of the fluorinated core, we obtained a strong 19F NMR/MRI signal in an aqueous environment. Their non-toxicity was confirmed on primary human dermal fibroblasts. Moreover, we visualized the nanoparticles by 19F MRI, both in vitro (in aqueous phantoms) and in vivo (after subcutaneous injection in mice), thus confirming their biomedical potential.
Collapse
Affiliation(s)
- Vyshakh
M. Panakkal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| | - Dominik Havlicek
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, AS CR, Prague 6 162 06, Czech
Republic
| | - Marcela Filipová
- Institute
of Macromolecular Chemistry, AS CR, Prague 6 162 06, Czech
Republic
| | - Semira Bener
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| | - Daniel Jirak
- Department
of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
- Faculty
of Health Studies, Technical University
of Liberec, Studentská
1402/2, Liberec 461 17, Czech Republic
| | - Ondrej Sedlacek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2 128 40, Czech Republic
| |
Collapse
|
19
|
Wang Y, Tan X, Usman A, Zhang Y, Sawczyk M, Král P, Zhang C, Whittaker AK. Elucidating the Impact of Hydrophilic Segments on 19F MRI Sensitivity of Fluorinated Block Copolymers. ACS Macro Lett 2022; 11:1195-1201. [DOI: 10.1021/acsmacrolett.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michał Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Song H, Pietrasiak E, Lee E. Persistent Radicals Derived from N-Heterocyclic Carbenes for Material Applications. Acc Chem Res 2022; 55:2213-2223. [PMID: 35849761 DOI: 10.1021/acs.accounts.2c00222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Persistent radicals are potential building blocks of novel materials in many fields. Recently, highly stable persistent radicals are considered to be within reach, thanks to several radical stabilization strategies such as spin delocalization and steric protection. N-Heterocyclic carbene (NHC)-derived substituents can be attached to a radical center for these purposes, as illustrated by numerous NHC-stabilized radicals reported in the last two decades.This Account describes our recent work on developing NHC-derived persistent radicals, as well as their prospective applications. Considering that NHCs not only stabilize radicals but also reversibly interact with gas molecules, in 2015 our group reported NHC-nitric oxide (NHC-NO) radicals produced by reversibly trapping nitric oxide (NO) radical gas in NHCs. The resultant compounds were loaded into biocompatible poly(ethylene glycol)-block-poly(caprolactone) (PEG-b-PCL) micelles and injected into tumor-bearing mice. Then, NO release was triggered by high-intensity focused ultrasound irradiation of the tumor tissue. Furthermore, the NHC-NO radicals could also serve as a platform to generate other organic radicals such as oxime ether or iminyl radicals. Apart from medicine-related applications, radicals stabilized by NHCs can be used as energy storage materials. In this context, the triazenyl radical containing two NHC units reported by our laboratory could be a cathode active material in batteries, as an organic alternative to LiCoO2. The subsequently prepared unsymmetrical triazenyl radical derivatives were applied as anolytes in nonaqueous all-organic redox flow batteries. In addition, a ferrocene-based redox flow battery anolyte was obtained by introducing NHC-derived substituents that effectively stabilize the ferrocenate derivatives previously reported only at low temperatures. The batteries containing NHC-supported radicals exhibited high energy efficiency and insignificant radical decomposition over multiple cycles. Finally, toward developing air-persistent organic radicals for flexible devices and MRI contrasting agents, we also highlight our recent air- and physiologically stable organic radicals derived from NHCs. Coordination of tris(pentafluorophenyl)borane to the NHC-NO radical produced a new radical cation that is stable in an organic solvent under air for several months. The readily accessible 1,2-dicarbonyl radical cations generated by the reaction of NHCs with oxalyl chloride are remarkably persistent even in an aqueous solution for several months. They are also highly stable even under physiological conditions, making them particularly attractive potential candidates for organic MRI contrast agents. We hope that this Account will serve as a guide for the future development of stable NHC-derived organic radicals and draw the attention of the synthetic community to their potential applications in material science.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology. Pohang, 37673, Republic of Korea
| | - Ewa Pietrasiak
- Department of Chemistry, Pohang University of Science and Technology. Pohang, 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology. Pohang, 37673, Republic of Korea
| |
Collapse
|
21
|
Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1791. [PMID: 35338603 PMCID: PMC9540470 DOI: 10.1002/wnan.1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Inspired by the development of nanomedicine and nanotechnology, more and more possibilities in cancer theranostic have been provided in the last few years. Emerging therapeutic modalities like starvation therapy, chemodynamic therapy, and tumor oxygenation have been integrated with diagnosis, giving a plethora of theranostic nanoagents. Among all of them, nanogels (NGs) show superiority benefiting from their unique attributes: high stability, high water-absorption, large specific surface area, mechanical strength, controlled responsiveness, and high encapsulation capacity. There have been a vast number of investigations supporting various NGs combining drug delivery and multiple bioimaging techniques, encompassing photothermal imaging, photoacoustic imaging, fluorescent imaging, ultrasound imaging, magnetic resonance imaging, and computed tomography. This review summarizes recent advances in functional NGs for theranostic nanomedicine and discusses the challenges and future perspectives of this fast-growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Huiyi Wang
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Matias L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Zhang S, Lloveras V, Lope-Piedrafita S, Calero-Pérez P, Wu S, Candiota AP, Vidal-Gancedo J. Metal-Free Radical Dendrimers as MRI Contrast Agents for Glioblastoma Diagnosis: Ex Vivo and In Vivo Approaches. Biomacromolecules 2022; 23:2767-2777. [PMID: 35749573 PMCID: PMC9277593 DOI: 10.1021/acs.biomac.2c00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Simultaneously being
a nonradiative and noninvasive technique makes
magnetic resonance imaging (MRI) one of the highly required imaging
approaches for the early diagnosis and follow-up of tumors, specifically
for brain cancer. Paramagnetic gadolinium (Gd)-based contrast agents
(CAs) are the most widely used ones in brain MRI acquisitions with
special interest when assessing blood–brain barrier (BBB) integrity,
a characteristic of high-grade tumors. However, alternatives to Gd-based
contrast agents (CAs) are highly required to overcome their established
toxicity. Organic radicals anchored on a dendrimer macromolecule surface
(radical dendrimers) are promising alternatives since they also exhibit
paramagnetic properties and can act as T1 CAs like Gd-based CAs while being organic species (mitigating concerns
about toxic metal accumulation). Here, we studied the third generation
of a water-soluble family of poly(phosphorhydrazone) radical dendrimers,
with 48 PROXYL radical units anchored on their branches, exploring
their potential of ex vivo and in vivo contrast enhancement in brain tumors (in particular, of immunocompetent,
orthotopic GL261 murine glioblastoma (GB)). Remarkably, this radical
species provides suitable contrast enhancement on murine GL261 GB
tumors, which was comparable to that of commercial Gd-based CAs (at
standard dose 0.1 mmol/kg), even at its 4 times lower administered
dose (0.025 mmol/kg). Importantly, no signs of toxicity were detected in vivo. In addition, it showed a selective accumulation
in brain tumor tissues, exhibiting longer retention within the tumor,
which allows performing imaging acquisition over longer time frames
(≥2.5 h) as opposed to Gd chelates. Finally, we observed high
stability of the radicals in biological media, on the order of hours
instead of minutes, characteristic of the isolated radicals. All of
these features allow us to suggest that the G3-Tyr-PROXYL-ONa radical
dendrimer could be a viable alternative to metal-based MRI contrast
agents, particularly on MRI analysis of GB, representing, to the best
of our knowledge, the first case of organic radical species used for
this purpose and one of the very few examples of these types of radical
species working as MRI CAs in vivo.
Collapse
Affiliation(s)
- Songbai Zhang
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC; Campus UAB, 08193 Bellaterra, Spain
| | - Vega Lloveras
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC; Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain
| | - Silvia Lope-Piedrafita
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain.,Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Pilar Calero-Pérez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Shuang Wu
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Paula Candiota
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José Vidal-Gancedo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC; Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain
| |
Collapse
|
23
|
Zalewski M, Janasik D, Kapała A, Minoshima M, Sugihara F, Raj W, Pietrasik J, Kikuchi K, Krawczyk T. Ph‐Sensitive Polymethacrylates as Potential Contrast Agents in
19
F MRI. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mariusz Zalewski
- Department of Chemical Organic Technology and Petrochemistry Silesian University of Technology Krzywoustego 4 Gliwice 44–100 Poland
| | - Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry Silesian University of Technology Krzywoustego 4 Gliwice 44–100 Poland
| | - Anna Kapała
- Department of Chemical Organic Technology and Petrochemistry Silesian University of Technology Krzywoustego 4 Gliwice 44–100 Poland
| | - Masafumi Minoshima
- Graduate School of Engineering Osaka University Yamadaoka 2‐1 Suita Osaka 565–0871 Japan
| | - Fuminori Sugihara
- Immunology Frontier Research Center Osaka University Yamadaoka 3‐1 Suita Osaka 565–0871 Japan
| | - Wojciech Raj
- Institute of Polymer and Dye Technology Lodz University of Technology Stefanowskiego 16 Lodz 90–537 Poland
| | - Joanna Pietrasik
- Institute of Polymer and Dye Technology Lodz University of Technology Stefanowskiego 16 Lodz 90–537 Poland
| | - Kazuya Kikuchi
- Graduate School of Engineering Osaka University Yamadaoka 2‐1 Suita Osaka 565–0871 Japan
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry Silesian University of Technology Krzywoustego 4 Gliwice 44–100 Poland
| |
Collapse
|
24
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Švec P, Petrov OV, Lang J, Štěpnička P, Groborz O, Dunlop D, Blahut J, Kolouchová K, Loukotová L, Sedláček O, Heizer T, Tošner Z, Šlouf M, Beneš H, Hoogenboom R, Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel Švec
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Oleg V. Petrov
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Jan Lang
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | | | - Ondřej Groborz
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - David Dunlop
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, CAS, Dolejškova 2155/3, Prague 8 182 23, Czech Republic
| | | | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Sedláček
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | | | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
26
|
Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Guo S, Wang X, Li Z, Pan D, Dai Y, Ye Y, Tian X, Gu Z, Gong Q, Zhang H, Luo K. A nitroxides-based macromolecular MRI contrast agent with an extraordinary longitudinal relaxivity for tumor imaging via clinical T1WI SE sequence. J Nanobiotechnology 2021; 19:244. [PMID: 34391417 PMCID: PMC8364710 DOI: 10.1186/s12951-021-00990-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Macromoleculization of nitroxides has been an effective strategy to improve low relaxivities and poor in vivo stability, however, nitroxides-based metal-free magnetic resonance imaging (MRI) macromolecular contrast agents (mCAs) are still under-performed. These mCAs do not possess a high nitroxides content sufficient for a cumulative effect. Amphiphilic nanostructures in these mCAs are not stable enough for highly efficient protection of nitroxides and do not have adequate molecular flexibility for full contact of the paramagnetic center with the peripheral water molecules. In addition, these mCAs still raise the concerns over biocompatibility and biodegradability due to the presence of macromolecules in these mCAs. RESULTS Herein, a water-soluble biodegradable nitroxides-based mCA (Linear pDHPMA-mPEG-Ppa-PROXYL) was prepared via covalent conjugation of a nitroxides (2,2,5,5-tetramethyl-1-pyrrolidinyl-N-oxyl, PROXYL) onto an enzyme-sensitive linear di-block poly[N-(1, 3-dihydroxypropyl) methacrylamide] (pDHPMA). A high content of PROXYL up to 0.111 mmol/g in Linear pDHPMA-mPEG-Ppa-PROXYL was achieved and a stable nano-sized self-assembled aggregate in an aqueous environment (ca. 23 nm) was formed. Its longitudinal relaxivity (r1 = 0.93 mM- 1 s- 1) was the highest compared to reported nitroxides-based mCAs. The blood retention time of PROXYL from the prepared mCA in vivo was up to ca. 8 h and great accumulation of the mCA was realized in the tumor site due to its passive targeting ability to tumors. Thus, Linear pDHPMA-mPEG-Ppa-PROXYL could provide a clearly detectable MRI enhancement at the tumor site of mice via the T1WI SE sequence conventionally used in clinical Gd3+-based contrast agents, although it cannot be compared with DTPA-Gd in the longitudinal relaxivity and the continuous enhancement time at the tumor site of mice. Additionally, it was demonstrated to have great biosafety, hemocompatibility and biocompatibility. CONCLUSIONS Therefore, Linear pDHPMA-mPEG-Ppa-PROXYL could be a potential candidate as a substitute of metal-based MRI CAs for clinical application.
Collapse
Affiliation(s)
- Shiwei Guo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, People's Republic of China
| | - Xiaoming Wang
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences (UCAS), No.104 Pipashan Main Street, Yuzhong District, Chongqing, 400014, China
| | - Zhiqian Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Yan Dai
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yun Ye
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaohe Tian
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
28
|
Usman A, Zhang C, Zhao J, Peng H, Kurniawan ND, Fu C, Hill DJT, Whittaker AK. Tuning the thermoresponsive properties of PEG-based fluorinated polymers and stimuli responsive drug release for switchable 19F magnetic resonance imaging. Polym Chem 2021. [DOI: 10.1039/d1py00602a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switching on of the 19F MRI signal via stimuli-responsive release of hydrophobic drug from PEG-based partly-fluorinated polymers due to change in thermoresponsive properties.
Collapse
Affiliation(s)
- Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David J. T. Hill
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|