1
|
Deng Y, Liu C, Shen W, Zou J, Xiao Z, Zhang Q, Jiang Z, Li Y. Fullerenol as a nano-molecular sieve additive enables stable zinc metal anodes. J Colloid Interface Sci 2024; 674:345-352. [PMID: 38941928 DOI: 10.1016/j.jcis.2024.06.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Aqueous zinc batteries (AZBs) with the advantages of safety, low cost, and sustainability are promising candidates for large-scale energy storage devices. However, the issues of interface side reactions and dendrite growth at the zinc metal anode (ZMA) significantly harm the cycling lifespan of AZBs. In this study, we designed a nano-molecular sieve additive, fullerenol (C60(OH)n), which possesses a surface rich in hydroxyl groups that can be uniformly dispersed in the aqueous solution, and captures free water in the electrolyte, thereby suppressing the occurrence of interfacial corrosion. Besides, fullerenol can be further reduced to fullerene (C60) on the surface of ZMA, holding a unique self-smoothing effect that can inhibit the growth of dendritic Zn. With the synergistic action of these two effects, the fullerenol-contained electrolyte (FE) enables dendrite-free ZMAs. The Zn-Ti half-cell using FE exhibits stable cycling over 2500 times at 5 mA cm-2 with an average Coulombic efficiency as high as 99.8 %. Additionally, the Zn-NaV3O8 cell using this electrolyte displays a capacity retention rate of 100 % after 1000 cycles at -20 °C. This work provides important insights into the molecular design of multifunctional electrolyte additives.
Collapse
Affiliation(s)
- Yu Deng
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Chengkun Liu
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Wangqiang Shen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Jiahang Zou
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Zhengquan Xiao
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Qingan Zhang
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
| | - Zhipeng Jiang
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China.
| | - Yongtao Li
- School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China.
| |
Collapse
|
2
|
Koruga D, Stanković I, Matija L, Kuhn D, Christ B, Dembski S, Jevtić N, Janać J, Pavlović V, De Wever B. Comparative Studies of the Structural and Physicochemical Properties of the First Fullerene Derivative FD-C 60 (Fullerenol) and Second Fullerene Derivate SD-C 60 (3HFWC). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:480. [PMID: 38470808 DOI: 10.3390/nano14050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
In order to maximally reduce the toxicity of fullerenol (the first derivative of C60, FD-C60), and increase its biomedical efficiency, the second derivative SD-C60 (3HFWC, Hyper-Harmonized Hydroxylated Fullerene Water Complex) was created. Several different methods were applied in the comparative characterization of FD-C60 and SD-C60 with the same OH groups in their core. FD-C60 as an individual structure was about 1.3 nm in size, while SD-C60 as an individual structure was 10-30 nm in size. Based on ten physicochemical methods and techniques, FD-C60 and SD-C60 were found to be two different substances in terms of size, structure, and physicochemical properties; FD-C60, at 100 °C, had endothermic characteristics, while SD-C60, at 133 °C, had exothermic characteristics; FD-C60 did not have water layers, while SD-C60 had water layers; the zeta potential of FD-C60 was -25.85 mV, while it was -43.29 mV for SD-C60. SD-C60 is a promising substance for use in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Djuro Koruga
- NanoLab, Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Belgrade, 11220 Belgrade, Serbia
- NanoWorld, 11043 Belgrade, Serbia
| | - Ivana Stanković
- NanoLab, Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Belgrade, 11220 Belgrade, Serbia
| | - Lidija Matija
- NanoLab, Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Belgrade, 11220 Belgrade, Serbia
| | | | - Bastian Christ
- Fraunhofer, Institute for Silicate Research ISR, 97082 Würzburg, Germany
| | - Sofia Dembski
- Fraunhofer, Institute for Silicate Research ISR, 97082 Würzburg, Germany
| | | | | | - Vladimir Pavlović
- TEM Laboratory, Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
3
|
Semenov KN, Ageev SV, Kukaliia ON, Murin IV, Petrov AV, Iurev GO, Andoskin PA, Panova GG, Molchanov OE, Maistrenko DN, Sharoyko VV. Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. Nanotoxicology 2024; 18:181-213. [PMID: 38487921 DOI: 10.1080/17435390.2024.2327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/02/2024] [Indexed: 05/02/2024]
Abstract
The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Sergei V Ageev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olegi N Kukaliia
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Gleb O Iurev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Pavel A Andoskin
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Gaiane G Panova
- Light Physiology of Plants, Agrophysical Research Institute, Saint Petersburg, Russia
| | - Oleg E Molchanov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Dmitrii N Maistrenko
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
4
|
Zaremba P, Zaremba A, Naumenko K, Yelipashev M, Zahorodnia S. In vitro and in silico studies of the antiviral activity of polyhydrated fullerenes against influenza A (H1N1) virus. Sci Rep 2023; 13:10879. [PMID: 37407642 DOI: 10.1038/s41598-023-38128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023] Open
Abstract
As of today, influenza viruses remain a relevant target for the development of antiviral compounds due to their rapid evolution and acquisition of the resistance to existing drugs. Fullerene derivatives have already shown the ability to successfully interact with viruses, and polyhydrated fullerenes (or fullerenols) are particularly attractive due to their compatibility with biological fluids and low toxicity. Therefore, the goal of this work was to study the effect of two batches of a mixture of polyhydrated fullerenes with a mass ratio of 78.1% C60/C70 and 21.9% C76/C78/C84 on the influenza A (H1N1) virus. It was determined that the mixture of fullerenols, along with the low toxicity, showed high antiviral activity with a decrease in the viral infectious titer up to 4 orders of magnitude. In addition, studied fullerenols did not affect the hemagglutination process and did not show any significant prophylactic activity. With the help of molecular docking and molecular dynamics simulation, the likely target of fullerenols' action was determined-the binding site of the RNA primer of the viral RNA-dependent RNA polymerase. Therefore, we assume that the high antiviral effect of polyhydrated fullerenes on influenza A virus is related to their interaction with the viral RNA polymerase.
Collapse
Affiliation(s)
- Polina Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny St., Kyiv, 03143, Ukraine.
| | - Andrii Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny St., Kyiv, 03143, Ukraine
| | - Krystyna Naumenko
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny St., Kyiv, 03143, Ukraine
| | - Mykhailo Yelipashev
- Private Research Laboratory "Yelipashev", 16 O. Davydova St., Kyiv, 02154, Ukraine
| | - Svitlana Zahorodnia
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny St., Kyiv, 03143, Ukraine
| |
Collapse
|
5
|
The Effect of Polyhydroxy Fullerene Derivative on Human Myeloid Leukemia K562 Cells. MATERIALS 2022; 15:ma15041349. [PMID: 35207890 PMCID: PMC8875483 DOI: 10.3390/ma15041349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
The use of nanomedicines for cancer treatment has been widespread. Fullerenes have significant effects in the treatment of solid tumors. Here, we are going to study the effects of hydroxylated fullerene C60(OH)n(n = 18–22) treatment on chronic myeloid leukemia cell proliferation and investigate its toxicity. The results showed that hydroxylated fullerene C60(OH)n (n = 18–22) at low concentrations (less than 120 μM) not only had apparent toxic side effects, but also promoted the growth of K562 cells, while a high concentration of C60(OH)n had different degrees of inhibition on K562 cells. When the concentration is higher than 160 μM, the K562 cells showed morphological changes, the mitochondrial membrane potential decreased, the cell cycle was blocked in the stage of G2-phase, and cell apoptosis occurred, which may cause apoptosis, autophagy, and a variety of other damage leading to cell death. Meanwhile, it also indicated that its inhibition of solid tumors might be related to the tumor microenvironment; we verified the safety of fullerene without apparent cellular toxicity at a specific concentration.
Collapse
|
6
|
Ghosh A, Banerjee S, Debnath T, Das AK. Dehydrogenation of ammonia-borane to functionalize neutral and Li +-encapsulated C 60, C 70 and C 36 fullerene cages: a DFT approach. Phys Chem Chem Phys 2022; 24:4022-4041. [PMID: 35103266 DOI: 10.1039/d1cp05770g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanistic investigations into the functionalization of three fullerene cages, viz. C60, C70, and C36 through dehydrogenation of ammonia-borane (AB) have been conducted using Density Functional Theory (DFT). In this process of functionalization, different ring fusions, namely (6-6), (6-5) positions for C60 and C70, and an additional (5-5) for C36 fullerene have been investigated. The optimized geometries of all the complexes and transition states have been characterized using the M06-2X functional in conjunction with the 6-31G(d) basis set. The effect of Li+-encapsulation on the energetics and activation barriers of H2 attachment has also been examined. Although the process of functionalization of neutral fullerenes proceeds extensively through concerted pathways, a step-wise route has been observed for the encapsulated systems. NPA charge analysis and Wiberg bond index (WBI) have been used in order to detect the change in the nature of participating hydrogen atoms and validate the variation in the bond order of the C-C connectivity respectively upon hydrogenation. GCRD parameters have also been calculated to explicate the electronic properties of the hydrogenated products. The (6-6) hydrogenation is observed to be favoured thermodynamically and kinetically for both neutral and Li+-encapsulated C60 and C70, while (5-5) is found to be the most preferred site for C36 systems. Our theoretical exploration suggests that the covalent functionalization of the fullerene cages can be done successfully viaAB resulting in the stabilization of these systems. In short, the present work will provide a general idea about the detailed mechanism related to the functionalization of fullerene cages, which will further motivate researchers in fullerene chemistry.
Collapse
Affiliation(s)
- Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Tanay Debnath
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
7
|
Sharoyko VV, Shemchuk OS, Meshcheriakov AA, Vasina LV, Iamalova NR, Luttsev MD, Ivanova DA, Petrov AV, Maystrenko DN, Molchanov OE, Semenov KN. Biocompatibility, antioxidant activity and collagen photoprotection properties of C 60 fullerene adduct with L-methionine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102500. [PMID: 34843985 DOI: 10.1016/j.nano.2021.102500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Functionalization of the fullerene core with amino acids has become a new and promising direction in the field of nanochemistry. The biologic activity of water-soluble fullerene derivatives is based on such properties as lipophilicity, electron deficiency and photosensitivity. The complex of above-mentioned properties can be used to develop protection of biomolecules (in particular, proteins) from external physical and chemical influences. Thus, development and up-scaling of synthesis procedures, as well as investigation of the biological properties of these derivatives, are extremely important. This paper presents new data on the biocompatibility studies of C60 fullerene adduct with L-methionine (C60[C5H11NO2S]3; C60-Met). Antiradical activity, binding to human serum albumin (HSA), collagen and deoxyribonucleic acid (DNA), hemocompatibility, photodynamic properties, genotoxicity and cytotoxicity were studied. In addition, it was found that C60-Met increases the photostability of the collagen molecule, and this effect is dose-dependent.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia; Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia.
| | - Olga S Shemchuk
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia; Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Lubov V Vasina
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Nailia R Iamalova
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Michail D Luttsev
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Daria A Ivanova
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Dmitriy N Maystrenko
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Oleg E Molchanov
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Konstantin N Semenov
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia; Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia.
| |
Collapse
|
8
|
Charykov NA, Keskinov VA, Petrov AV. Physicochemical Properties of Adducts of Light Fullerenes and Amino Acids. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Sharoyko VV, Iamalova NR, Ageev SV, Meshcheriakov AA, Iurev GO, Petrov AV, Nerukh DA, Farafonov VS, Vasina LV, Penkova AV, Semenov KN. In Vitro and In Silico Investigation of Water-Soluble Fullerenol C 60(OH) 24: Bioactivity and Biocompatibility. J Phys Chem B 2021; 125:9197-9212. [PMID: 34375109 DOI: 10.1021/acs.jpcb.1c03332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Light fullerenes, C60 and C70, have significant potential in biomedical applications due to their ability to absorb reactive oxygen species, inhibit the development of tumors, inactivate viruses and bacteria, and as the basis for developing systems for targeted drug delivery. However, the hydrophobicity of individual fullerenes complicates their practical use; therefore, creating water-soluble derivatives of fullerenes is increasingly important. Currently, the most studied soluble adducts of fullerenes are polyhydroxy fullerenes or fullerenols. Unfortunately, investigations of fullerenol biocompatibility are fragmental. They often lack reproducibility both in the synthesis of the compounds and their biological action. We here investigate the biocompatibility of a well-defined fullerenol C60(OH)24 obtained using methods that minimize the content of impurities and quantitatively characterize the product's composition. We carry out comprehensive biochemical and biophysical investigations of C60(OH)24 that include photodynamic properties, cyto- and genotoxicity, hemocompatibility (spontaneous and photo-induced hemolysis, platelet aggregation), and the thermodynamic characteristics of C60(OH)24 binding to human serum albumin and DNA. The performed studies show good biocompatibility of fullerenol C60(OH)24, which makes it a promising object for potential use in biomedicine.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg 197758, Russia
| | - Nailia R Iamalova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Agrophysical Research Institute, 14 Grazhdanskii prospect, Saint Petersburg 195220, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Almazov National Medical Research Centre, 2 Akkuratova ulitsa, Saint Petersburg 197341, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia
| | - Dmitry A Nerukh
- Department of Mathematics, Aston University, Birmingham B4 7ET, U.K
| | - Vladimir S Farafonov
- V. N. Karazin Kharkiv National University, 4 Svobody ploshchad, Kharkiv 61022, Ukraine
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia
| | - Anastasia V Penkova
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg 197022, Russia.,Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg 198504, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg 197758, Russia
| |
Collapse
|
10
|
Ye L, Kollie L, Liu X, Guo W, Ying X, Zhu J, Yang S, Yu M. Antitumor Activity and Potential Mechanism of Novel Fullerene Derivative Nanoparticles. Molecules 2021; 26:molecules26113252. [PMID: 34071369 PMCID: PMC8198614 DOI: 10.3390/molecules26113252] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The development of novel nanoparticles as a new generation therapeutic drug platform is an active field of chemistry and cancer research. In recent years, fullerene nanoparticles have received extensive attention due to their unique physical and chemical properties. Properly modified fullerene nanoparticles have excellent biocompatibility and significant anti-tumor activity, which makes them have broad application prospects in the field of cancer therapy. Therefore, understanding the anti-tumor mechanism of fullerene nanoparticles is of great significance for the design and development of anti-tumor drugs with low toxicity and high targeting. This review has focused on various anti-tumor mechanisms of fullerene derivatives and discusses their toxicity and their distribution in organisms. Finally, the review points out some urgent problems that need solution before fullerene derivatives as a new generation of anti-tumor nano-drug platform enter clinical research.
Collapse
Affiliation(s)
- Lianjie Ye
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
| | - Larwubah Kollie
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xing Liu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Wei Guo
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
| | - Xiangxian Ying
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jun Zhu
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Shengjie Yang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Hangzhou Wahaha Co., Ltd., Hangzhou 310018, China;
| | - Meilan Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (L.K.); (X.L.); (W.G.)
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312030, China;
- Correspondence:
| |
Collapse
|
11
|
Li H, Pang H, Zhang L, Mao J, Zhang W, Jiang J, Li P, Zhang Q. Ultrasensitive biosensing platform based on luminescence quenching ability of fullerenol quantum dots. RSC Adv 2021; 11:19690-19694. [PMID: 35479209 PMCID: PMC9033561 DOI: 10.1039/d1ra01680f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
An ultrasensitive biosensing platform for DNA and ochratoxin A (OTA) detection is constructed based on the luminescence quenching ability of fullerenol quantum dots (FOQDs) for the first time. As the surface of FOQDs is largely covered by hydroxyl groups, stable colloidal suspension of FOQDS in aqueous solution can be obtained, which is very advantageous for application in biosensing compared to nano-C60. FOQDs can effectively quench the fluorescence of dyes with different emission wavelengths that are tagged to bioprobes to an extent of more than 87% in aqueous buffer solution through a PET mechanism. Moreover, the nonspecific quenching of the fluorescent dyes (not bound to bioprobes) caused by FOQDs is negligible, so the background signal is extremely low which is beneficial for improving the detection sensitivity. Based on the π-π stacking interaction between FOQDs and bioprobes, such as single-stranded (ss) DNA and aptamers, a nucleic acid assay with a detection of limit of 15 pM and a highly sensitive OTA assay with a detection limit of 5 pg mL-1 in grape juice samples are developed through the simple "mix and measure" protocol based on luminescence quenching-and-recovery. This is the first demonstration of constructing biosensors utilizing the luminescence quenching ability of FOQDs through a PET mechanism, and the pronounced assay performance implies the promising potential of FOQDs in biosensing.
Collapse
Affiliation(s)
- Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan 430062 China +86-27-8681-2943 +86-27-8671-1839
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China
- National Reference Laboratory for Agricultural Testing (Biotoxin) Wuhan 430062 China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture Wuhan 430062 China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture Wuhan 430062 China
| | - Hua Pang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan 430062 China +86-27-8681-2943 +86-27-8671-1839
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan 430062 China +86-27-8681-2943 +86-27-8671-1839
- National Reference Laboratory for Agricultural Testing (Biotoxin) Wuhan 430062 China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture Wuhan 430062 China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan 430062 China +86-27-8681-2943 +86-27-8671-1839
- National Reference Laboratory for Agricultural Testing (Biotoxin) Wuhan 430062 China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan 430062 China +86-27-8681-2943 +86-27-8671-1839
- National Reference Laboratory for Agricultural Testing (Biotoxin) Wuhan 430062 China
| | - Jun Jiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan 430062 China +86-27-8681-2943 +86-27-8671-1839
- National Reference Laboratory for Agricultural Testing (Biotoxin) Wuhan 430062 China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan 430062 China +86-27-8681-2943 +86-27-8671-1839
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China
- National Reference Laboratory for Agricultural Testing (Biotoxin) Wuhan 430062 China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture Wuhan 430062 China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture Wuhan 430062 China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan 430062 China +86-27-8681-2943 +86-27-8671-1839
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture Wuhan 430062 China
- National Reference Laboratory for Agricultural Testing (Biotoxin) Wuhan 430062 China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture Wuhan 430062 China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture Wuhan 430062 China
| |
Collapse
|
12
|
Sharoyko VV, Iurev GO, Postnov VN, Meshcheriakov AA, Ageev SV, Ivanova DA, Petrov AV, Luttsev MD, Nashchekin AV, Iamalova NR, Vasina LV, Solovtsova IL, Murin IV, Semenov KN. Biocompatibility of a nanocomposite based on Aerosil 380 and carboxylated fullerene C 60[C(COOH) 2] 3. J Biotechnol 2021; 331:83-98. [PMID: 33727085 DOI: 10.1016/j.jbiotec.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/09/2021] [Indexed: 11/29/2022]
Abstract
Silica is silicon dioxide, which, depending on the production method, can exist in various amorphous forms with varying specific surface area, particle size, pore volume and size, and, as a result, with different physicochemical and sorption characteristics. The presence of silanol groups on the surface of silicas provides the possibility of its further functionalisation. In addition, the developed specific surface of Aerosil allows to obtain composites with a high content of biologically active substances. In this work, we studied the biocompatibility of a composite based on Aerosil 380 and carboxylated fullerene C60[C(COOH)2]3, namely: haemolysis (spontaneous and photoinduced), platelet aggregation, binding to HSA, cyto- and genotoxicity, antiradical activity. Interest in the creation of this nanomaterial is due to the fact that carboxylated fullerenes have potential applications in various fields of biomedicine, including the ability to bind reactive oxygen species, inhibition of tumour development, inactivation of viruses and bacteria. The obtained composite can be used for the immobilisation of various drugs and the further development of drugs for theranostics.
Collapse
Affiliation(s)
- Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Almazov National Medical Research Centre, 2 Akkuratova ulitsa, Saint Petersburg, 197341, Russia
| | - Viktor N Postnov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Michail D Luttsev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Alexei V Nashchekin
- Ioffe Institute, 26 Politekhnicheskaya ulitsa, Saint Petersburg, 194021, Russia
| | - Nailia R Iamalova
- Agrophysical Research Institute, 14 Grazhdanskii prospect, Saint Petersburg, 195220, Russia
| | - Lubov V Vasina
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Irina L Solovtsova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospekt, Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg, 197758, Russia.
| |
Collapse
|
13
|
|
14
|
Song X, Mao R, Wang Z, Qi J. Structural and spectral properties of a non-classical C 58 isomer and its fluorinated derivatives in theory. RSC Adv 2021; 11:1472-1481. [PMID: 35424081 PMCID: PMC8693631 DOI: 10.1039/d0ra08215e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022] Open
Abstract
The traditional classical fullerene is only composed of pentagons and hexagons, with many different topologies, of which only a few structures conform to the isolated pentagon rule (IPR), which means all five-membered rings are separated by hexagons, whereas isomers that violate the rule are called non-IPR isomers. In contrast, the non-classical fullerene consists of other kinds of polygons such as squares and heptagons in addition to pentagons and hexagons. X-ray photoelectron spectra (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectra and X-ray emission spectra (XES), as well as the ground-state electronic/geometrical structures of the important non-IPR isomers C 3v-#1205C58 and C 2-#1078C58, and the remarkable non-classical isomer C s-C58(NC) with its two fluorides C s-C58(NC)F18(A) and C s-C58(NC)F18(B), have been computed at the density functional theory (DFT) level. Significant differences in the electronic structures and simulated X-ray spectra have been observed after fluorination. Meanwhile, strong isomer dependence has been shown in these spectra, which means the "fingerprint" in the X-ray spectra can effectively identify the above-mentioned fullerene isomers. As a consequence, the work can provide useful information especially isomer identification for experimental and theoretical research in fullerene science.
Collapse
Affiliation(s)
- Xiaoxi Song
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 People's Republic of China
| | - Renfeng Mao
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 People's Republic of China
| | - Ziwei Wang
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 People's Republic of China
| | - Jiayuan Qi
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 People's Republic of China
| |
Collapse
|
15
|
Gerasimova LV, Charykov NA, Semenov KN, Keskinov VV, Kulenova AA, Shaimardanov ZK, Shaimardanova BK, Ayat K, Letenko DG. Volume Properties of Aqueous Solutions of Light Fullerene С60 and Its Association in Binary C60(OH)24–H2O System at 25°С. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
|
17
|
Jović D, Jaćević V, Kuča K, Borišev I, Mrdjanovic J, Petrovic D, Seke M, Djordjevic A. The Puzzling Potential of Carbon Nanomaterials: General Properties, Application, and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1508. [PMID: 32752020 PMCID: PMC7466546 DOI: 10.3390/nano10081508] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Being a member of the nanofamily, carbon nanomaterials exhibit specific properties that mostly arise from their small size. They have proved to be very promising for application in the technical and biomedical field. A wide spectrum of use implies the inevitable presence of carbon nanomaterials in the environment, thus potentially endangering their whole nature. Although scientists worldwide have conducted research investigating the impact of these materials, it is evident that there are still significant gaps concerning the knowledge of their mechanisms, as well as the prolonged and chronic exposure and effects. This manuscript summarizes the most prominent representatives of carbon nanomaterial groups, giving a brief review of their general physico-chemical properties, the most common use, and toxicity profiles. Toxicity was presented through genotoxicity and the activation of the cell signaling pathways, both including in vitro and in vivo models, mechanisms, and the consequential outcomes. Moreover, the acute toxicity of fullerenol, as one of the most commonly investigated members, was briefly presented in the final part of this review. Thinking small can greatly help us improve our lives, but also obliges us to deeply and comprehensively investigate all the possible consequences that could arise from our pure-hearted scientific ambitions and work.
Collapse
Affiliation(s)
- Danica Jović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11040 Belgrade, Serbia
- Department of Pharmacological Science, Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jasminka Mrdjanovic
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Danijela Petrovic
- Department of Natural Sciences and Management in Education, Faculty of Education Sombor, University of Novi Sad, Podgorička 4, 25101 Sombor, Serbia
| | - Mariana Seke
- Institute of Nuclear Sciences "Vinca", University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
18
|
Heidari SM, Anctil A. Identifying alternative solvents for C 60 manufacturing using singular and combined toxicity assessments. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122337. [PMID: 32172058 DOI: 10.1016/j.jhazmat.2020.122337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Linseed oil, olive oil, and sunflower oil were selected based on green chemistry principles and C60 solubility as alternative solvents to replace 1,2,4-trimethylbenzene (TMB) for C60 manufacturing. Singular acute toxicity experiments of C60 and the four solvents was performed using Daphnia magna to identify the solvent with the lowest toxicity and estimate the toxicity of C60. The EC50 for C60 was estimated to be higher than 176 ppm. The toxicity of the solvents increased from sunflower oil to olive oil, linseed oil, and TMB. Combined toxicity tests were conducted to investigate the interaction between C60 and the solvent since essential oils can be nanocarriers and facilitate the transport of C60 into the cell membranes, which would increase its toxicity. Various concentrations of C60 (0, 11, 22, 44, 88, and 176 mg/L) were mixed with solvents at their EC50 concentrations. The toxicity of linseed oil increased with increasing C60 concentrations. For olive and sunflower oil, the toxicity was lowered with low concentrations of C60. Olive oil was determined to be a suitable solvent for C60 manufacturing based on singular and combined toxicity assessments. This study showed the importance of considering combined toxicity for solvent selection.
Collapse
Affiliation(s)
- Seyed M Heidari
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, United States.
| | - Annick Anctil
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
19
|
The reactivity enhancement in Diels–Alder cycloaddition of 1,3-diene by cation encapsulation to C60: a computational insight. Struct Chem 2020. [DOI: 10.1007/s11224-020-01538-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Pochkaeva EI, Podolsky NE, Zakusilo DN, Petrov AV, Charykov NA, Vlasov TD, Penkova AV, Vasina LV, Murin IV, Sharoyko VV, Semenov KN. Fullerene derivatives with amino acids, peptides and proteins: From synthesis to biomedical application. PROG SOLID STATE CH 2020. [DOI: 10.1016/j.progsolidstchem.2019.100255] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Zaibaq NG, Pollard AC, Collins MJ, Pisaneschi F, Pagel MD, Wilson LJ. Evaluation of the Biodistribution of Serinolamide-Derivatized C 60 Fullerene. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E143. [PMID: 31941058 PMCID: PMC7023239 DOI: 10.3390/nano10010143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Carbon nanoparticles have consistently been of great interest in medicine. However, there are currently no clinical materials based on carbon nanoparticles, due to inconsistent biodistribution and excretion data. In this work, we have synthesized a novel C60 derivative with a metal chelating agent (1,4,7-Triazacyclononane-1,4,7-triacetic acid; NOTA) covalently bound to the C60 cage and radiolabeled with copper-64 (t1/2 = 12.7 h). Biodistribution of the material was assessed in vivo using positron emission tomography (PET). Bingel-Hirsch chemistry was employed to functionalize the fullerene cage with highly water-soluble serinolamide groups allowing this new C60 conjugate to clear quickly from mice almost exclusively through the kidneys. Comparing the present results to the larger context of reports of biocompatible fullerene derivatives, this work offers an important evaluation of the in vivo biodistribution, using experimental evidence to establish functionalization guidelines for future C60-based biomedical platforms.
Collapse
Affiliation(s)
- Nicholas G. Zaibaq
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
| | - Alyssa C. Pollard
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA;
| | - Michael J. Collins
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA;
| | - Mark D. Pagel
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX 77054, USA;
| | - Lon J. Wilson
- Department of Chemistry and Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA; (N.G.Z.); (A.C.P.); (M.J.C.)
| |
Collapse
|
22
|
Keskinov VA, Semenov KN, Gol’tsov TS, Charykov NA, Podol’skii NE, Kurilenko AV, Shaimardanov ZK, Shaimardanova BK, Kulenova NA. Phase Diagrams of Fullerenol-d–LaCl3–H2O and Fullerenol-d–GdCl3–H2O Systems at 25°С. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419120124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Zhang X, Ma Y, Fu S, Zhang A. Facile Synthesis of Water-Soluble Fullerene (C 60) Nanoparticles via Mussel-Inspired Chemistry as Efficient Antioxidants. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1647. [PMID: 31756936 PMCID: PMC6955807 DOI: 10.3390/nano9121647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022]
Abstract
Rational design and modification of the all-carbon fullerene cages to meliorate their nature of hydrophobicity is critical for biomedical applications. The outstanding electron affinity of fullerenes enables them to effectively eliminate reactive oxygen species (ROS), the excess of which may lead to health hazards or biological dysfunction. Herein reported is a facile, mild, and green approach to synthesizing the favorable water-soluble C60 nanoparticles capable of ROS-scavenging by combining the mussel-inspired chemistry with the Michael addition reaction. Various characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA), transmission electron cryomicroscopy (Cryo-TEM), and dynamic laser scattering (DLS) were carried out to confirm the satisfactory preparation of the hybrid C60-PDA-GSH nanoparticles, which exhibited apparent scavenging capacity of DPPH and hydroxyl radicals in vitro. Additionally, the biocompatible C60-PDA-GSH nanoparticles entered into cells and displayed a universal cytoprotective effect against oxidative press induced by H2O2 in four kinds of human cells at a low concentration of 2 μg/mL. The ease and versatility of the strategy present in this work will not only trigger more fullerene-based materials by the immobilization of diverse functional molecules, but will also extend their possible applications.
Collapse
Affiliation(s)
| | | | | | - Aiqing Zhang
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; (X.Z.); (S.F.)
| |
Collapse
|
24
|
Lee CW, Chi MC, Peng KT, Chiang YC, Hsu LF, Yan YL, Li HY, Chen MC, Lee IT, Lai CH. Water-Soluble Fullerenol C 60(OH) 36 toward Effective Anti-Air Pollution Induced by Urban Particulate Matter in HaCaT Cell. Int J Mol Sci 2019; 20:ijms20174259. [PMID: 31480310 PMCID: PMC6747515 DOI: 10.3390/ijms20174259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Particulate matter (PM), a widespread air pollutant, consists of a complex mixture of solid and liquid particles suspended in air. Many diseases have been linked to PM exposure, which induces an imbalance in reactive oxygen species (ROS) generated in cells, and might result in skin diseases (such as aging and atopic dermatitis). New techniques involving nanomedicine and nano-delivery systems are being rapidly developed in the medicinal field. Fullerene, a kind of nanomaterial, acts as a super radical scavenger. Lower water solubility levels limit the bio-applications of fullerene. Hence, to improve the water solubility of fullerene, while retaining its radical scavenger functions, a fullerene derivative, fullerenol C60(OH)36, was synthesized, to examine its biofunctions in PM-exposed human keratinocyte (HaCaT) cells. The PM-induced increase in ROS levels and expression of phosphorylated mitogen-activated protein kinase and Akt could be inhibited via fullerenol pre-treatment. Furthermore, the expression of inflammation-related proteins, cyclooxygenase-2, heme oxygenase-1, and prostaglandin E2 was also suppressed. Fullerenol could preserve the impaired state of skin barrier proteins (filaggrin, involucrin, repetin, and loricrin), which was attributable to PM exposure. These results suggest that fullerenol could act against PM-induced cytotoxicity via ROS scavenging and anti-inflammatory mechanisms, and the maintenance of expression of barrier proteins, and is a potential candidate compound for the treatment of skin diseases.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan District, Taoyuan City 333, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - Miao-Ching Chi
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - Lee-Fen Hsu
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - Yi-Ling Yan
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsing-Yen Li
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Chun Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
25
|
Serebryakov EB, Zakusilo DN, Semenov KN, Charykov NA, Akentiev AV, Noskov BA, Petrov AV, Podolsky NE, Mazur AS, Dul'neva LV, Murin IV. Physico-chemical properties of C70-l-threonine bisadduct (C70(C4H9NO2)2) aqueous solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Noskov BA, Timoshen KA, Akentiev AV, Chirkov NS, Dubovsky IM, Lebedev VT, Lin SY, Loglio G, Miller R, Sedov VP, Borisenkova AA. Dynamic Surface Properties of Fullerenol Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3773-3779. [PMID: 30762366 DOI: 10.1021/acs.langmuir.8b04152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Application of dilational surface rheology, surface tensiometry, ellipsometry, Brewster angle, and transmission electron and atomic force microscopies allowed the estimation of the structure of the adsorption layer of a fullerenol with a large number of hydroxyl groups, C60(OH) X ( X = 30 ± 2). The surface properties of fullerenol solutions proved to be similar to the properties of dispersions of solid nanoparticles and differ from those of the solutions of conventional surfactants and amphiphilic macromolecules. Although the surface activity of fullerenol is not high, it forms adsorption layers of high surface elasticity up to 170 mN/m. The layer consists of small interconnected surface aggregates with the thickness corresponding to two-three layers of fullerenol molecules. The aggregates are not adsorbed from the bulk phase but formed at the interface. The adsorption kinetics is controlled by an electrostatic adsorption barrier at the interface.
Collapse
Affiliation(s)
- Boris A Noskov
- St. Petersburg State University , 7/9 Universitetskaya nab. , St. Petersburg 199034 , Russia
| | - Kirill A Timoshen
- St. Petersburg State University , 7/9 Universitetskaya nab. , St. Petersburg 199034 , Russia
| | - Alexander V Akentiev
- St. Petersburg State University , 7/9 Universitetskaya nab. , St. Petersburg 199034 , Russia
| | - Nikolay S Chirkov
- St. Petersburg State University , 7/9 Universitetskaya nab. , St. Petersburg 199034 , Russia
| | - Ignat M Dubovsky
- B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute , 188300 Gatchina, Leningrad , Russia
| | - Vasyli T Lebedev
- B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute , 188300 Gatchina, Leningrad , Russia
| | - Shi-Yow Lin
- Chemical Engineering Department , National Taiwan University of Science and Technology , 43 Keelung Road, Section 4 , 106 Taipei , Taiwan
| | - Giuseppe Loglio
- Institute of Condensed Matter Chemistry and Technologies for Energy , 16149 Genoa , Italy
| | - Reinhard Miller
- MPI für Kolloid- und Grenzflächenforschung , Wissenschaftspark Golm, D-14424 Golm , Germany
| | - Victor P Sedov
- B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute , 188300 Gatchina, Leningrad , Russia
| | - Alina A Borisenkova
- B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute , 188300 Gatchina, Leningrad , Russia
| |
Collapse
|
27
|
Podolsky NE, Marcos MA, Cabaleiro D, Semenov KN, Lugo L, Petrov AV, Charykov NA, Sharoyko VV, Vlasov TD, Murin IV. Physico-chemical properties of C60(OH)22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Salehi E, Heidary F, Daraei P, Keyhani M, Behjomanesh M. Carbon nanostructures for advanced nanocomposite mixed matrix membranes: a comprehensive overview. REV CHEM ENG 2019. [DOI: 10.1515/revce-2017-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
The highly progressive membrane separation technology challenges conventional separation processes such as ion exchange, distillation, precipitation, solvent extraction, and adsorption. The integration of many desired properties such as low energy consumption, high removal efficiency, affordable costs, suitable selectivity, acceptable productivity, ease of scale-up, and being environmentally friendly have made the membranes capable of being replaced with other separation technologies. Combination of membrane technology and nanoscience has revolutionized the nano-engineered materials, e.g. nanocomposites applied in advanced membrane processes. Polymer composites containing carbon nanostructures are promising choices for membrane fabrication owing to their enhanced chemistry, morphology, electromagnetic properties, and physicochemical stability. Carbon nanostructures such as carbon nanotubes (CNTs), nano graphene oxides (NGOs), and fullerenes are among the most popular nanofillers that have been successfully applied in modification of polymer membranes. Literature review shows that there is no comprehensive overview reporting the modification of mixed matrix membranes (MMMs) using carbon nanofibers, nano-activated carbons, and carbon nanospheres. The present overview focuses on the applications of carbon nanostructures mainly CNTs and NGOs in the modification of MMMs and emphasizes on the application of CNTs and NGO particles.
Collapse
Affiliation(s)
- Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering , Arak University , Arak 38156-8-8349 , Iran , e-mail:
| | - Farhad Heidary
- Department of Chemistry, Faculty of Science , Arak University , Arak 38156-8-8349 , Iran
| | - Parisa Daraei
- Department of Chemical Engineering , Kermanshah University of Technology , 67156 Kermanshah , Iran
| | - Mohammad Keyhani
- Department of Chemical Engineering, Faculty of Engineering , Razi University , Kermanshah , Iran
| | - Milad Behjomanesh
- Department of Chemical Engineering , Petroleum University of Technology , Ahwaz , Iran
| |
Collapse
|
29
|
Kouloumpis A, Vourdas N, Zygouri P, Chalmpes N, Potsi G, Kostas V, Spyrou K, Stathopoulos VN, Gournis D, Rudolf P. Controlled deposition of fullerene derivatives within a graphene template by means of a modified Langmuir-Schaefer method. J Colloid Interface Sci 2018; 524:388-398. [PMID: 29674283 DOI: 10.1016/j.jcis.2018.04.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Antonios Kouloumpis
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands.
| | - Nikolaos Vourdas
- School of Technological Applications, Technological Educational Institute of Sterea Ellada, 34400 Psachna, Evia, Greece
| | - Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands
| | - Nikolaos Chalmpes
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
| | - Georgia Potsi
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands
| | - Vasilios Kostas
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
| | - Vassilis N Stathopoulos
- School of Technological Applications, Technological Educational Institute of Sterea Ellada, 34400 Psachna, Evia, Greece
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece.
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen, The Netherlands.
| |
Collapse
|
30
|
Plisko TV, Liubimova AS, Bildyukevich AV, Penkova AV, Dmitrenko ME, Mikhailovskii VY, Melnikova GB, Semenov KN, Doroshkevich NV, Kuzminova AI. Fabrication and characterization of polyamide-fullerenol thin film nanocomposite hollow fiber membranes with enhanced antifouling performance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Serebryakov EB, Semenov KN, Stepanyuk IV, Charykov NA, Mescheryakov AN, Zhukov AN, Chaplygin AV, Murin IV. Physico-chemical properties of the C 70 - l -lysine aqueous solutions. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Charykov NA, Semenov KN, López ER, Fernández J, Serebryakov EB, Keskinov VA, Murin IV. Excess thermodynamic functions in aqueous systems containing soluble fullerene derivatives. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Kraevaya OA, Peregudov AS, Martynenko VM, Troshin PA. Facile synthesis of isomerically pure fullerenols C 60 (OH) 5 Br and 1,4-C 60 (OH) 2 from chlorofullerene C 60 Cl 6. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.10.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Vraneš M, Borišev I, Tot A, Armaković S, Armaković S, Jović D, Gadžurić S, Djordjevic A. Self-assembling, reactivity and molecular dynamics of fullerenol nanoparticles. Phys Chem Chem Phys 2018; 19:135-144. [PMID: 27905595 DOI: 10.1039/c6cp06847b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work structuring of water and insight into intermolecular interactions between water and fullerenol are studied throughout the process of forming nanoagglomerates at different temperatures applying both experimental and computational approaches. The obtained fullerenol nanoparticles (FNPs) are firstly characterized using dynamic light scattering, atomic force microscopy and transmission electron microscopy. The density, electrical conductivity and dynamic viscosity of aqueous fullerenol solutions are measured in the temperature range of 293.15 to 315.15 K. From the experimental density results other important thermodynamic values, such as apparent molar volumes and the partial molar volumes of water and fullerenol, are also calculated. To support the conclusion derived from the experimental density and calculated volumetric parameters, and to better understand the nature of the interactions with water, molecular dynamics simulations and radial distribution functions are also employed.
Collapse
Affiliation(s)
- Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Ivana Borišev
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Aleksandar Tot
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Stevan Armaković
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sanja Armaković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Danica Jović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Slobodan Gadžurić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Aleksandar Djordjevic
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| |
Collapse
|
35
|
Ma Y, Zhang X, Cheng Y, Chen X, Li Y, Zhang A. Mussel-inspired preparation of C60 nanoparticles as photo-driven DNA cleavage reagents. NEW J CHEM 2018. [DOI: 10.1039/c8nj03970d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Designing and constructing favorable water-dispersible fullerenes and their derivatives are of huge importance for biological applications addressing DNA-cleavage and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Yihan Ma
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| | - Xiaoyan Zhang
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| | - Yinjia Cheng
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| | - Xiaosui Chen
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| | - Yong Li
- College of Life Sciences
- South-Central University for Nationalities
- Wuhan
- China
| | - Aiqing Zhang
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| |
Collapse
|
36
|
Adnadjevic B, Gigov M, Jovanovic J. The effects of external physical fields on the isothermal kinetics of fullerol formation. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1326-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
|
38
|
Lv X, Huang B, Zhu X, Jiang Y, Chen B, Tao Y, Zhou J, Cai Z. Mechanisms underlying the acute toxicity of fullerene to Daphnia magna: Energy acquisition restriction and oxidative stress. WATER RESEARCH 2017; 123:696-703. [PMID: 28715779 DOI: 10.1016/j.watres.2017.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of fullerene (C60) to Daphnia magna has been a subject with increasing concerns. Nevertheless, the underlying mechanisms are still poorly understood. In the present study, we evaluated various aspects of the toxicological impacts of C60 on daphnia. After a 72-h exposure, the 50% effective concentration of C60 was 14.9 mg/L for immobilization, and 16.3 mg/L for mortality. Daphnia exhibited a quick uptake of C60 with a body burden value of 413 μg/g in wet weight in the 1 mg/L C60 treatment group. Transmission electron microscopy observations revealed that C60 had mainly accumulated in the guts of organisms. The feeding rate, gut ultra-structural alterations, and digestive enzyme activities of daphnia in response to C60 treatment were evaluated. The results revealed a significant reduction in the digestion and filtration rates, as well as gut impairment and inhibition of digestive enzymes (cellulose, amylase, trypsin, and β-galactosidase) activity of C60 exposed daphnia. In addition, the changes in superoxide dismutase (SOD) and malondialdehyde (MDA) levels in daphnia under C60 exposures were also discovered. These results, for the first time, provide systematic evidence that C60 caused a restriction in energy acquisition and increased oxidative damage in daphnia, which might be related to the bioaccumulation of C60 and finally led to the immobility and mortality.
Collapse
Affiliation(s)
- Xiaohui Lv
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, PR China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Boming Huang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Yuelu Jiang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Baiyang Chen
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, PR China
| | - Yi Tao
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Jin Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| |
Collapse
|
39
|
Isothermal kinetics of C60 polyhydroxylation in a two-phase system in the presence of tetrabutylammonium hydroxide. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1268-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Semenov KN, Charykov NA, Meshcheriakov AA, Lahderanta E, Chaplygin AV, Anufrikov YA, Murin IV. Physico-chemical properties of the C 60 - l -threonine water solutions. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Castro E, Hernandez Garcia A, Zavala G, Echegoyen L. Fullerenes in Biology and Medicine. J Mater Chem B 2017; 5:6523-6535. [PMID: 29225883 PMCID: PMC5716489 DOI: 10.1039/c7tb00855d] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fullerenes and related carbon based derivatives have shown a growing relevance in biology and medicine, mainly due to the unique electronic and structural properties that make them excellent candidates for multiple functionalization. This review focuses on the most recent developments of fullerene derivatives for different biological applications.
Collapse
Affiliation(s)
- Edison Castro
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Andrea Hernandez Garcia
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Gerardo Zavala
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| |
Collapse
|
42
|
Yang LY, Hua SY, Zhou ZQ, Wang GC, Jiang FL, Liu Y. Characterization of fullerenol-protein interactions and an extended investigation on cytotoxicity. Colloids Surf B Biointerfaces 2017; 157:261-267. [PMID: 28601754 DOI: 10.1016/j.colsurfb.2017.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
Fullerenols, known as polyhydroxylated derivatives of fullerene, have attracted great attention due to their distinctive material properties and potential applications in biology and medicine. As a step toward the elucidation of basic behavior in biological systems, a variety of spectroscopic measurements as well as isothermal titration calorimetry (ITC) were applied to study the interaction between fullerenol (C60(OH)44) and serum proteins (bovine serum albumin (BSA) and γ-globulins). The results of fluorescence spectra indicated that the intrinsic fluorescence of proteins could be effectively quenched by the dynamic mechanism. The affinity values of both proteins bound to fullerenol were of the same order of magnitude. Meanwhile, ITC results showed that the interaction between fullerenol and BSA was enthalpy favorable, while the interaction with γ-globulins was enthalpy unfavorable. Furthermore, fullerenol had little influence on the secondary structure of both proteins. Additional cytotoxicity tests showed that the presence of proteins attenuated the toxic effect of fullerenol on human normal gastric epithelial cell line (GES-1). Thus, the interaction between fullerenol and proteins is indispensable to evaluate the biosafety of fullerenol, which may in turn promotes the development of its biological applications.
Collapse
Affiliation(s)
- Li-Yun Yang
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Si-Yu Hua
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Qiang Zhou
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Guan-Chao Wang
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
43
|
An investigation on dispersion and stability of water‐soluble fullerenol (C60OH) in water via UV–Visible spectroscopy. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|