1
|
El-Ghiaty MA, Alqahtani MA, El-Mahrouk SR, Isse FA, Alammari AH, El-Kadi AOS. Alteration of Hepatic Cytochrome P450 Expression and Arachidonic Acid Metabolism by Arsenic Trioxide (ATO) in C57BL/6 Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04225-1. [PMID: 38758479 DOI: 10.1007/s12011-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
The success of arsenic trioxide (ATO) in acute promyelocytic leukemia has driven a plethora studies to investigate its efficacy in other malignancies. However, the inherent toxicity of ATO limits the expansion of its clinical applications. Such toxicity may be linked to ATO-induced metabolic derangements of endogenous substrates. Therefore, the primary objective of this study was to investigate the effect of ATO on the hepatic formation of arachidonic acid (AA) metabolites, hydroxyeicosatetraenoic acids (HETEs), as well as their most notable producing machinery, cytochrome P450 (CYP) enzymes. For this purpose, C57BL/6 mice were intraperitoneally injected with 8 mg/kg ATO for 6 and 24 h. Total RNA was extracted from harvested liver tissues for qPCR analysis of target genes. Hepatic microsomal proteins underwent incubation with AA, followed by identification/quantification of the produced HETEs. ATO downregulated Cyp2e1, while induced Cyp2j9 and most of Cyp4a and Cyp4f, and this has resulted in a significant increase in 17(S)-HETE and 18(R)-HETE, while significantly decreased 18(S)-HETE. Additionally, ATO induced Cyp4a10, Cyp4a14, Cyp4f13, Cyp4f16, and Cyp4f18, resulting in a significant elevation in 20-HETE formation. In conclusion, ATO altered hepatic AA metabolites formation through modulating the underlying network of CYP enzymes. Modifying the homeostatic production of bioactive AA metabolites, such as HETEs, may entail toxic events that can, at least partly, explain ATO-induced hepatotoxicity. Such modification can also compromise the overall body tolerability to ATO treatment in cancer patients.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
3
|
Burmistrov VV, Morisseau C, Danilov DV, Gladkikh BP, D’yachenko VS, Zefirov NA, Zefirova ON, Butov GM, Hammock BD. Fluorine and chlorine substituted adamantyl-urea as molecular tools for inhibition of human soluble epoxide hydrolase with picomolar efficacy. J Enzyme Inhib Med Chem 2023; 38:2274797. [PMID: 37975322 PMCID: PMC11003477 DOI: 10.1080/14756366.2023.2274797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Series of 1,3-disubstituted ureas and diadamantyl disubstituted diureas with fluorinated and chlorinated adamantane residues were shown to inhibit human soluble epoxide hydrolase (sEH) with inhibition potency ranging from 40 pM to 9.2 nM. The measured IC50 values for some molecules were below the accuracy limit of the existing in vitro assays. Such an increase in activity was achieved by minimal structural modifications to the molecules of known inhibitors, including 4-[trans-4-(1-adamantylcarbamoylamino)cyclohexyl]oxybenzoic acid. For the chlorinated homologue of the latter the sharp jump in inhibitory activity can be (according to molecular dynamics data) the result of interactions - Cl-π interaction. Considering the extremely high inhibitory activity, acceptable solubility and partial blockage of metabolically sensitive centres in their structures, some compounds are of interest for further in vivo biotesting.
Collapse
Affiliation(s)
- Vladimir V. Burmistrov
- Volgograd State Technical University, Volgograd, Russia
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | | | | | - Vladimir S. D’yachenko
- Volgograd State Technical University, Volgograd, Russia
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nikolay A. Zefirov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga N. Zefirova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Gennady M. Butov
- Volgograd State Technical University, Volgograd, Russia
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, Russia
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Zang J, Tang X, Su X, Zhang T, Lu D, Xu A. Systematic Analysis of RNA Expression Profiles in Different Ischemic Cortices in MCAO Mice. Cell Mol Neurobiol 2023; 43:859-878. [PMID: 35449428 DOI: 10.1007/s10571-022-01220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
Abstract
The prognosis of ischemic stroke patients is highly associated with the collateral circulation. And the competing endogenous RNAs (ceRNAs) generated from different compensatory supply regions may also involve in the regulation of ischemic tissues prognosis. In this study, we found the apoptosis progress of ischemic neurons in posterior circulation-supplied regions (close to PCA, cortex2) was much slower than that in anterior circulation-supplied territory (close to ACA, cortex1) in MCAO-3-h mice. Using the RNA sequencing and functional enrichment analysis, we analyzed the difference between RNA expression profile in cortex1 and cortex2 and the related biological processes. The results indicated that the differential expressed ceRNAs in cortex1 were involved in cell process under acute injury, while the differential expressed ceRNAs in cortex2 was more likely to participate in long-term injury and repair process. Besides, by establishing the miRNA-ceRNA interaction network we further sorted out two specifically distributed miRNAs, namely mmu-miR446i-3p (in cortex1) and mmu-miR3473d (in cortex2). And the specifically increased mmu-miR3473d in cortex2 mainly involved the angiogenesis and cell proliferation after ischemic stroke, which may be the critical reason for the longer therapeutic time window in cortex2. In conclusion, the present study reported the specific changes of ceRNAs in distinct compensatory regions potentially involved in the evolution of cerebral ischemic tissues and the unbalance prognosis after stroke. It provided more evidence for the collateral compensatory effects on patients' prognosis and carried out the new targets for the ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xionglin Tang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuanlin Su
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianyuan Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China. .,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China. .,Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Huang P. Research progress on the protective mechanism of a novel soluble epoxide hydrolase inhibitor TPPU on ischemic stroke. Front Neurol 2023; 14:1083972. [PMID: 36846137 PMCID: PMC9945277 DOI: 10.3389/fneur.2023.1083972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Arachidonic Acid (AA) is the precursor of cerebrovascular active substances in the human body, and its metabolites are closely associated with the pathogenesis of cerebrovascular diseases. In recent years, the cytochrome P450 (CYP) metabolic pathway of AA has become a research hotspot. Furthermore, the CYP metabolic pathway of AA is regulated by soluble epoxide hydrolase (sEH). 1-trifluoromethoxyphenyl-3(1-propionylpiperidin-4-yl) urea (TPPU) is a novel sEH inhibitor that exerts cerebrovascular protective activity. This article reviews the mechanism of TPPU's protective effect on ischemic stroke disease.
Collapse
|
6
|
Burmistrov VV, Morisseau C, Shkineva TK, Danilov DV, Gladkikh B, Butov GM, Fayzullin RR, Dutova TY, Hammock BD, Dalinger IL. Adamantyl-ureas with pyrazoles substituted by fluoroalkanes as soluble epoxide hydrolase inhibitors. J Fluor Chem 2023; 266:110087. [PMID: 37638129 PMCID: PMC10457016 DOI: 10.1016/j.jfluchem.2023.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A series of soluble epoxide hydrolase (sEH) inhibitors containing halogenated pyrazoles was developed. Inhibition potency of the obtained compounds ranges from 0.8 to 27.5 nM. 1-Adamantyl-3-[(4,5-dichloro-1-methyl-1Н-pyrazol-3-yl)methyl]urea (3f, IC50 = 0.8 nM) and 1-[(Adamantan-1-yl)methyl]-3-[(4,5-dichloro-1-methyl-1Н-pyrazol-3-yl)methyl]urea (4f, IC50 = 1.2 nM) were found to be the most potent sEH inhibitors within the described series.
Collapse
Affiliation(s)
- Vladimir V. Burmistrov
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, 42a Engels Street, Volzhsky, 404121, Russia
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Tatyana K. Shkineva
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Lenin Avenue, Moscow 119991, Russia
| | - Dmitry V. Danilov
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, 42a Engels Street, Volzhsky, 404121, Russia
| | - Boris Gladkikh
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, 42a Engels Street, Volzhsky, 404121, Russia
| | - Gennady M. Butov
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, 42a Engels Street, Volzhsky, 404121, Russia
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan, 420088, Russia
| | - Tatyana Ya. Dutova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Lenin Avenue, Moscow 119991, Russia
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| | - Igor L. Dalinger
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Lenin Avenue, Moscow 119991, Russia
| |
Collapse
|
7
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Leuconostoc mesenteroides LVBH107 Antibacterial Activity against Porphyromonas gingivalis and Anti-Inflammatory Activity against P. gingivalis Lipopolysaccharide-Stimulated RAW 264.7 Cells. Nutrients 2022; 14:nu14132584. [PMID: 35807773 PMCID: PMC9268581 DOI: 10.3390/nu14132584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Probiotics, active microorganisms benefiting human health, currently serve as nutritional supplements and clinical treatments. Periodontitis, a chronic infectious oral disease caused by Porphyromonas gingivalis (P. gingivalis), activates the host immune response to release numerous proinflammatory cytokines. Here, we aimed to clarify Leuconostoc mesenterica (L. mesenteroides) LVBH107 probiotic effects based on the inhibition of P.gingivalis activities while also evaluating the effectiveness of an in vitro P.gingivalis lipopolysaccharide-stimulated RAW 264.7 cell-based inflammation mode. L. mesenteroides LVBH107 survived at acid, bile salts, lysozyme, and hydrogen peroxide conditions, auto-aggregated and co-aggregated with P. gingivalis, exhibited strong hydrophobicity and electrostatic action, and strongly adhered to gingival epithelial and HT-29 cells (thus exhibiting oral tissue adherence and colonization abilities). Moreover, L.mesenteroides LVBH107 exhibited sensitivity to antibiotics erythromycin, doxycycline, minocycline, ampicillin, and others (thus indicating it lacked antibiotic resistance plasmids), effectively inhibited P.gingivalis biofilm formation and inflammation (in vitro inflammation model), reduced the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and inflammatory mediators (NO and PGE2), and decreased the expression levels of inflammation related genes. Thus, L.mesenterica LVBH107 holds promise as a probiotic that can inhibit P.gingivalis biofilm formation and exert anti-inflammatory activity to maintain oral health.
Collapse
|
9
|
Khan H, Sharma K, Kumar A, Kaur A, Singh TG. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm Res 2022; 71:277-292. [PMID: 35175358 DOI: 10.1007/s00011-022-01546-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) is the inexplicable aggravation of cellular dysfunction that results in blood flow restoration to previously ischemic tissues. COX mediates the oxidative conversion of AA to various prostaglandins and thromboxanes, which are involved in various physiological and pathological processes. In the pathophysiology of I/R injuries, COX has been found to play an important role. I/R injuries affect most vital organs and are characterized by inflammation, oxidative stress, cell death, and apoptosis, leading to morbidity and mortality. MATERIALS AND METHODS A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the Nature and mechanistic interventions of the Cyclooxygenase modulations in ischemic injury. Here, we have discussed the COX Physiology and downstream signalling pathways modulated by COX, e.g., Camp Pathway, Peroxisome Proliferator-Activated Receptor Activity, NF-kB Signalling, PI3K/Akt Signalling in ischemic injury. CONCLUSION This review will discuss the various COX types, specifically COX-1 and COX-2, which are involved in developing I/R injury in organs such as the brain, spinal cord, heart, kidney, liver, and intestine.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kunal Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
10
|
Giurdanella G, Longo A, Distefano A, Olivieri M, Cristaldi M, Cosentino A, Agafonova A, Caporarello N, Lupo G, Anfuso CD. The Anti-Inflammatory Effect of the β1-Adrenergic Receptor Antagonist Metoprolol on High Glucose Treated Human Microvascular Retinal Endothelial Cells. Cells 2021; 11:cells11010051. [PMID: 35011613 PMCID: PMC8750370 DOI: 10.3390/cells11010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia-induced impairment of the blood-retinal barrier represents the main pathological event in diabetic retinopathy that is elicited by a reduced cellular response to an accumulation of reactive oxygen species (ROS) and increased inflammation. The purpose of the study was to evaluate whether the selective β1-adrenoreceptor (β1-AR) antagonist metoprolol could modulate the inflammatory response to hyperglycemic conditions. For this purpose, human retinal endothelial cells (HREC) were treated with normal (5 mM) or high glucose (25 mM, HG) in the presence of metoprolol (10 μM), epinephrine (1 μM), or both compounds. Metoprolol prevented both the HG-induced reduction of cell viability (MTT assays) and the modulation of the angiogenic potential of HREC (tube formation assays) reducing the TNF-α, IL-1β, and VEGF mRNA levels (qRT-PCR). Moreover, metoprolol prevented the increase in phospho-ERK1/2, phospho-cPLA2, COX2, and protein levels (Western blot) as well as counteracting the translocation of ERK1/2 and cPLA2 (high-content screening). Metoprolol reduced ROS accumulation in HG-stimulated HREC by activating the anti-oxidative cellular response mediated by the Keap1/Nrf2/HO-1 pathway. In conclusion, metoprolol exerted a dual effect on HG-stimulated HREC, decreasing the activation of the pro-inflammatory ERK1/2/cPLA2/COX2 axis, and counteracting ROS accumulation by activating the Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Giovanni Giurdanella
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Anna Longo
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Alfio Distefano
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Melania Olivieri
- U.O. Clinical Pathology, Department of Hematology, AUSL Romagna, 47522 Cesena, Italy;
| | | | - Alessia Cosentino
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Aleksandra Agafonova
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Gabriella Lupo
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
- Correspondence:
| | - Carmelina Daniela Anfuso
- Biochemistry Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (G.G.); (A.L.); (A.D.); (A.C.); (A.A.); (C.D.A.)
| |
Collapse
|
11
|
Liu Y, Lan C, Li B, Wang N, Zuo X, Huang L, Wu Y, Zhu Y. Associations of CYP2B6 genetic polymorphisms with Hirschsprung's disease in a southern Chinese population. J Clin Lab Anal 2021; 35:e24074. [PMID: 34752660 PMCID: PMC8649360 DOI: 10.1002/jcla.24074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 11/11/2022] Open
Abstract
Background Hirschsprung’s disease (HSCR) is an enteric nervous system birth defect partially caused by a genetic disorder. Single‐nucleotide polymorphisms (SNPs) of the cytochrome P450 family 2 subfamily B member 6 (CYP2B6) gene are reported to be associated with HSCR. Methods We evaluated the association of rs2054675, rs707265, and rs1042389 with HSCR susceptibility in southern Chinese children including 1470 HSCR patients and 1473 controls using the TaqMan SNP Genotyping Assay. Results rs2054675 C allele and the rs707265 G allele were risk SNPs for total colonic aganglionosis (OR = 1.82, 95% CI 1.29 ~ 2.55, P_adj < 0.001 and OR = 0.68, 95% CI 0.48 ~ 0.97, P_adj = 0.034). These results suggested that CYP2B6 rs2054675 and rs707265 polymorphisms were associated with increased susceptibility to the severe HSCR subtype in southern Chinese children. Conclusion We suggest that CYP2B6 rs2054675 and rs707265 polymorphisms are associated with increased susceptibility to the severe HSCR subtype in southern Chinese children.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaoting Lan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bingxiao Li
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ning Wang
- Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuxin Wu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Acunha T, Nardini V, Peti APF, Prado MKB, Moraes LAB, Faccioli LH. Targeted analysis of eicosanoids derived from cytochrome P450 pathway by high-resolution multiple-reaction monitoring mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4769. [PMID: 34120382 DOI: 10.1002/jms.4769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Cytochrome P450 (CYP450) pathway is one of the critical enzymatic via eicosanoid biosynthesis. Nevertheless, their metabolites are far less explored. This pathway plays a crucial role in converting arachidonic acid to hydroxyeicosatetraenoic (HETEs), epoxyeicosatrienoic (EETs), dihydroxyeicosatetraenoic acids (DiHETEs), and dihydroxyeicosatrienoic acids (DiHETrEs), which mediate several physiological and pathological functions. However, CYP450-derived eicosanoids are structurally complex, making those analyses a challenge in lipidomics studies. Herein, a high-resolution multiple-reaction monitoring (MRMHR ) method has been proposed as a powerful tool for the simultaneous analysis of CYP450-eicosanoids on different biological samples. The developed liquid chromatography (LC)-MRMHR method was partially validated according to the Food and Drug Administration (FDA) criteria, demonstrating adequate specificity, linearity, precision, and accuracy. Besides, several biological samples were analyzed to guarantee the feasibility of the method. The proposed strategy may improve the understanding of CYP450-derived eicosanoids in biological systems, which could be fundamental to reveal new aspects of those in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Tanize Acunha
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Viviani Nardini
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Ferranti Peti
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Morgana Kelly Borges Prado
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Luiz Alberto Beraldo Moraes
- Department of Chemistry, School of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Gladkikh BP, D’yachenko VS, Burmistrov VV, Butov GM. Synthesis and Properties of 1,3-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: X. 1-[1-(4-Isobutylphenyl)ethyl]-3-R-ureas. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021050043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Alves LP, da Silva Oliveira K, da Paixão Santos JA, da Silva Leite JM, Rocha BP, de Lucena Nogueira P, de Araújo Rêgo RI, Oshiro-Junior JA, Damasceno BPGDL. A review on developments and prospects of anti-inflammatory in microemulsions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Eicosanoids and Oxidative Stress in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9060520. [PMID: 32545552 PMCID: PMC7346161 DOI: 10.3390/antiox9060520] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an important factor to cause the pathogenesis of diabetic retinopathy (DR) because the retina has high vascularization and long-time light exposition. Cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes can convert arachidonic acid (AA) into eicosanoids, which are important lipid mediators to regulate DR development. COX-derived metabolites appear to be significant factors causative to oxidative stress and retinal microvascular dysfunction. Several elegant studies have unraveled the importance of LOX-derived eicosanoids, including LTs and HETEs, to oxidative stress and retinal microvascular dysfunction. The role of CYP eicosanoids in DR is yet to be explored. There is clear evidence that CYP-derived epoxyeicosatrienoic acids (EETs) have detrimental effects on the retina. Our recent study showed that the renin-angiotensin system (RAS) activation augments retinal soluble epoxide hydrolase (sEH), a crucial enzyme degrading EETs. Our findings suggest that EETs blockade can enhance the ability of RAS blockade to prevent or mitigate microvascular damage in DR. This review will focus on the critical information related the function of these eicosanoids in the retina, the interaction between eicosanoids and reactive oxygen species (ROS), and the involvement of eicosanoids in DR. We also identify potential targets for the treatment of DR.
Collapse
|
16
|
Wang MH, Ibrahim AS, Hsiao G, Tawfik A, Al-Shabrawey M. A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage. Prostaglandins Other Lipid Mediat 2020; 148:106449. [PMID: 32360774 PMCID: PMC7728430 DOI: 10.1016/j.prostaglandins.2020.106449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Clinical studies have suggested that the renin-angiotensin system (RAS) may be a promising therapeutic target in treating diabetic retinopathy (DR). While AT1 receptor blockade decreased the incidence of DR in the DIRECT trial, it did not reduce the DR progression. Lack of understanding of the molecular mechanism of retinal microvascular damage induced by RAS is a critical barrier to the use of RAS blockade in preventing or treating DR. The purpose of this study is to investigate the interaction between soluble epoxide hydrolase (sEH) and the AT1 receptor in Angiotensin II (Ang II)- and diabetes-induced retinal microvascular damage. We demonstrate that Ang II increases retinal sEH levels, which is blunted by an AT1 blocker; administration of 11,12-epoxyeicosatrienoic acid (EET) exacerbates intravitreal Ang II-induced retinal albumin leakage; while sEH knockout (KO) and blockade reduce Ang II-induced retinal vascular remodeling, sEH KO causes retinal vascular leakage in Ang II-sEH KO mice; and sEH KO potentiates diabetes-induced retinal damage via promoting retinal vascular endothelial growth factor (VEGF) but reducing expression of tight junction proteins (ZO-1 and occludin). Our studies hold the promise of providing a new strategy, the use of combined EETs blockade with AT1 blocker, to prevent or reduce DR.
Collapse
Affiliation(s)
- Mong-Heng Wang
- Department of Physiology, Augusta University, Augusta, GA, USA.
| | - Ahmed S Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Cellular Biology and Anatomy, USA; Culver Vision Discovery Institute and Ophthalmology, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Department of Cellular Biology and Anatomy, USA; Culver Vision Discovery Institute and Ophthalmology, USA.
| |
Collapse
|
17
|
Kloska A, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipids and Lipid Mediators Associated with the Risk and Pathology of Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21103618. [PMID: 32443889 PMCID: PMC7279232 DOI: 10.3390/ijms21103618] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Stroke is a severe neurological disorder in humans that results from an interruption of the blood supply to the brain. Worldwide, stoke affects over 100 million people each year and is the second largest contributor to disability. Dyslipidemia is a modifiable risk factor for stroke that is associated with an increased risk of the disease. Traditional and non-traditional lipid measures are proposed as biomarkers for the better detection of subclinical disease. In the central nervous system, lipids and lipid mediators are essential to sustain the normal brain tissue structure and function. Pathways leading to post-stroke brain deterioration include the metabolism of polyunsaturated fatty acids. A variety of lipid mediators are generated from fatty acids and these molecules may have either neuroprotective or neurodegenerative effects on the post-stroke brain tissue; therefore, they largely contribute to the outcome and recovery from stroke. In this review, we provide an overview of serum lipids associated with the risk of ischemic stroke. We also discuss the role of lipid mediators, with particular emphasis on eicosanoids, in the pathology of ischemic stroke. Finally, we summarize the latest research on potential targets in lipid metabolic pathways for ischemic stroke treatment and on the development of new stroke risk biomarkers for use in clinical practice.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| |
Collapse
|
18
|
Gao N, Tang H, Gao L, Tu G, Luo H, Xia Y. CYP3A4 and CYP11A1 variants are risk factors for ischemic stroke: a case control study. BMC Neurol 2020; 20:77. [PMID: 32126981 PMCID: PMC7055027 DOI: 10.1186/s12883-020-1628-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/23/2020] [Indexed: 01/11/2023] Open
Abstract
Background This study aimed to investigate the roles of CYP3A4 and CYP11A1 variants in ischemic stroke (IS) susceptibility among the Han Chinese population. Methods Four hundred seventy-seven patients with IS and 493 healthy controls were enrolled. Seven single-nucleotide polymorphisms (SNPs) of CYP3A4 and CYP11A1 were genotyped by Agena MassARRAY. Odds ratio (OR) and 95% confidence intervals (CI) were calculated by logistic regression adjusted for age and gender. Results We found that CYP3A4 rs3735451 (OR = 0.81, p = 0.039) and rs4646440 (OR = 0.72, p = 0.021) polymorphisms decreased the risk of IS. CYP3A4 rs4646440 (OR = 0.74, p = 0.038) and CYP11A1 rs12912592 (OR = 1.58, p = 0.034) polymorphisms were correlated with IS risk in males. CYP3A4 rs3735451 (OR = 0.63, p = 0.031) and rs4646440 (OR = 0.57, p = 0.012) possibly weaken the IS susceptibility at age > 61 years. Besides, CYP3A4 rs4646437 (OR = 0.59, p = 0.029), CYP11A1 rs12912592 (OR = 1.84, p = 0.017) and rs28681535 (OR = 0.66, p = 0.038) were associated with IS risk at age ≤ 61 years. CYP11A1 rs28681535 TT genotype was higher high-density lipoprotein cholesterol level than the GT and GG genotype (p = 0.027). Conclusions Our findings indicated that rs3735451, rs4646440, rs4646437 in CYP3A4 and rs28681535 in CYP11A1 might be protective factors for IS, while CYP11A1 rs12912592 polymorphism be a risk factor for IS in Chinese Han population.
Collapse
Affiliation(s)
- Ning Gao
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou People's Hospital, #43, People's Avenue, Haidian Island, Haikou, 570208, Hainan, China
| | - Hong Tang
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou People's Hospital, #43, People's Avenue, Haidian Island, Haikou, 570208, Hainan, China
| | - Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou People's Hospital, #43, People's Avenue, Haidian Island, Haikou, 570208, Hainan, China
| | - Guolong Tu
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou People's Hospital, #43, People's Avenue, Haidian Island, Haikou, 570208, Hainan, China
| | - Han Luo
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou People's Hospital, #43, People's Avenue, Haidian Island, Haikou, 570208, Hainan, China
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou People's Hospital, #43, People's Avenue, Haidian Island, Haikou, 570208, Hainan, China.
| |
Collapse
|
19
|
Solar P, Mackerle Z, Joukal M, Jancalek R. Non-steroidal anti-inflammatory drugs in the pathophysiology of vasospasms and delayed cerebral ischemia following subarachnoid hemorrhage: a critical review. Neurosurg Rev 2020; 44:649-658. [PMID: 32124117 DOI: 10.1007/s10143-020-01276-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition associated with the development of early brain injury (EBI) and delayed cerebral ischemia (DCI). Pharmacological treatment of vasospasm following aSAH currently mainly comprises nimodipine administration. In the past few years, many drugs that can potentially benefit cases of subarachnoid hemorrhage have become available. The objective of this review is to critically assess the effects of non-steroidal anti-inflammatory drugs (NSAIDs) following aSAH. A systematic literature review was conducted following PRISMA guidelines. The search was aimed at studies addressing aSAH and NSAIDs during the 2010 to 2019 period, and it yielded 13 articles. Following the application of search criteria, they were divided into two groups, one containing 6 clinical articles and the other containing 7 experimental articles on animal models of aSAH. Inflammatory cerebral changes after aneurysm rupture contribute to the development of EBI, DCI and cerebral vasospasm. It appears that NSAIDs (especially coxibs) are even more effective in reducing vasospasm than nimodipine. Other beneficial effects of NSAIDs include reduction in mortality, improved functional outcome and increased hypoaggregability. However, despite these positive effects, there is only one randomized, double-blind, placebo-controlled trial showing a tendency towards a better outcome with lower incidence of vasospasm or mortality in patients following aSAH.
Collapse
Affiliation(s)
- Peter Solar
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Mackerle
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
| | - Marek Joukal
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
20
|
Trostchansky A, Moore-Carrasco R, Fuentes E. Oxidative pathways of arachidonic acid as targets for regulation of platelet activation. Prostaglandins Other Lipid Mediat 2019; 145:106382. [PMID: 31634570 DOI: 10.1016/j.prostaglandins.2019.106382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
Platelet activation plays an important role in acute and chronic cardiovascular disease states. Multiple pathways contribute to platelet activation including those dependent upon arachidonic acid. Arachidonic acid is released from the platelet membrane by phospholipase A2 action and is then metabolized in the cytosol by specific arachidonic acid oxidation enzymes including prostaglandin H synthase, 12-lipoxygenase, and cytochrome P450 to produce pro- and anti-inflammatory eicosanoids. This review aims to analyze the role of arachidonic acid oxidation on platelet activation, the enzymes that use it as a substrate associated as novel therapeutics target for antiplatelet drugs.
Collapse
Affiliation(s)
- Andres Trostchansky
- Departamento de Bioquimica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca, Chile.
| |
Collapse
|
21
|
Dakarapu R, Errabelli R, Manthati VL, Michael Adebesin A, Barma DK, Barma D, Garcia V, Zhang F, Laniado Schwartzman M, Falck JR. 19-Hydroxyeicosatetraenoic acid analogs: Antagonism of 20-hydroxyeicosatetraenoic acid-induced vascular sensitization and hypertension. Bioorg Med Chem Lett 2019; 29:126616. [PMID: 31439380 DOI: 10.1016/j.bmcl.2019.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022]
Abstract
19-Hydroxyeicosatetraenoic acid (19-HETE, 1), a metabolically and chemically labile cytochrome P450 eicosanoid, has diverse biological activities including antagonism of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE, 2). A SAR study was conducted to develop robust analogs of 1 with improved in vitro and in vivo efficacy. Analogs were screened in vitro for inhibition of 20-HETE-induced sensitization of rat renal preglomerular microvessels toward phenylephrine and demonstrated to normalize the blood pressure of male Cyp4a14(-/-) mice that display androgen-driven, 20-HETE-dependent hypertension.
Collapse
Affiliation(s)
- Rambabu Dakarapu
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ramu Errabelli
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vijaya L Manthati
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adeniyi Michael Adebesin
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deb K Barma
- CRO Laboratories, 9995 Monroe Drive, Suite 119, Dallas, TX 75220, USA
| | - Deepan Barma
- CRO Laboratories, 9995 Monroe Drive, Suite 119, Dallas, TX 75220, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595, USA
| | - Fan Zhang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595, USA
| | | | - John R Falck
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Baram SM, Karima S, Shateri S, Tafakhori A, Fotouhi A, Lima BS, Rajaei S, Mahdavi M, Tehrani HS, Aghamollaii V, Aghamiri SH, Mansouri B, Gharahje S, Kabiri S, Hosseinizadeh M, Shahamati SZ, Alborzi AT. Functional improvement and immune-inflammatory cytokines profile of ischaemic stroke patients after treatment with boswellic acids: a randomized, double-blind, placebo-controlled, pilot trial. Inflammopharmacology 2019; 27:1101-1112. [DOI: 10.1007/s10787-019-00627-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
|
23
|
Malone K, Amu S, Moore AC, Waeber C. Immunomodulatory Therapeutic Strategies in Stroke. Front Pharmacol 2019; 10:630. [PMID: 31281252 PMCID: PMC6595144 DOI: 10.3389/fphar.2019.00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
The role of immunity in all stages of stroke is increasingly being recognized, from the pathogenesis of risk factors to tissue repair, leading to the investigation of a range of immunomodulatory therapies. In the acute phase of stroke, proposed therapies include drugs targeting pro-inflammatory cytokines, matrix metalloproteinases, and leukocyte infiltration, with a key objective to reduce initial brain cell toxicity. Systemically, the early stages of stroke are also characterized by stroke-induced immunosuppression, where downregulation of host defences predisposes patients to infection. Therefore, strategies to modulate innate immunity post-stroke have garnered greater attention. A complementary objective is to reduce longer-term sequelae by focusing on adaptive immunity. Following stroke onset, the integrity of the blood–brain barrier is compromised, exposing central nervous system (CNS) antigens to systemic adaptive immune recognition, potentially inducing autoimmunity. Some pre-clinical efforts have been made to tolerize the immune system to CNS antigens pre-stroke. Separately, immune cell populations that exhibit a regulatory phenotype (T- and B- regulatory cells) have been shown to ameliorate post-stroke inflammation and contribute to tissue repair. Cell-based therapies, established in oncology and transplantation, could become a strategy to treat the acute and chronic stages of stroke. Furthermore, a role for the gut microbiota in ischaemic injury has received attention. Finally, the immune system may play a role in remote ischaemic preconditioning-mediated neuroprotection against stroke. The development of stroke therapies involving organs distant to the infarct site, therefore, should not be overlooked. This review will discuss the immune mechanisms of various therapeutic strategies, surveying published data and discussing more theoretical mechanisms of action that have yet to be exploited.
Collapse
Affiliation(s)
- Kyle Malone
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Sylvie Amu
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Anne C Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Sun D, Tiedt S, Yu B, Jian X, Gottesman RF, Mosley TH, Boerwinkle E, Dichgans M, Fornage M. A prospective study of serum metabolites and risk of ischemic stroke. Neurology 2019; 92:e1890-e1898. [PMID: 30867269 PMCID: PMC6550501 DOI: 10.1212/wnl.0000000000007279] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To identify promising blood-based biomarkers and novel etiologic pathways of disease risk, we applied an untargeted serum metabolomics profiling in a community-based prospective study of ischemic stroke (IS). METHODS In 3,904 men and women from the Atherosclerosis Risk In Communities study, Cox proportional hazard models were used to estimate the association of incident IS with the standardized level of 245 fasting serum metabolites individually, adjusting for age, sex, race, field center, batch, diabetes, hypertension, current smoking status, body mass index, and estimated glomerular filtration rate. Validation of results was carried out in an independent sample of 114 IS cases and 112 healthy controls. RESULTS Serum levels of 2 long-chain dicarboxylic acids, tetradecanedioate and hexadecanedioate, were strongly correlated (r = 0.88) and were associated with incident IS after adjusting for covariates (hazard ratio [95% confidence interval (CI)] 1.11 [1.06-1.16] and 1.12 [1.07-1.17], respectively; p < 0.0001). Analyses by IS subtypes suggested that these associations were specific to cardioembolic stroke (CES). Associations of tetradecanedioate and hexadecanedioate with IS were independently confirmed (odds ratio [95% CI] 1.76 [1.21; 2.56] and 1.60 [1.11; 2.32], respectively). CONCLUSION Two serum long-chain dicarboxylic acids, metabolic products of ω-oxidation of fatty acids, were associated with IS and CES independently of known risk factors. Pathways related to intracellular hexadecanedioate synthesis or those involved in its clearance from the circulation may mediate IS risk. These results highlight the potential of metabolomics to discover novel circulating biomarkers for stroke and to unravel novel pathways for IS and its subtypes.
Collapse
Affiliation(s)
- Daokun Sun
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Steffen Tiedt
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Bing Yu
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Xueqiu Jian
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Rebecca F Gottesman
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Thomas H Mosley
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Eric Boerwinkle
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Martin Dichgans
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany
| | - Myriam Fornage
- From the Brown Foundation Institute of Molecular Medicine, McGovern Medical School (D.S., X.J., M.F.), and School of Public Health (B.Y., E.B., M.F.), The University of Texas Health Science Center at Houston; Institute for Stroke and Dementia Research (S.T., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany; Johns Hopkins University School of Medicine (R.F.G.), Baltimore, MD; The University of Mississippi Medical Center (T.H.M.), Jackson; German Center for Neurodegenerative Diseases (DZNE, Munich) (M.D.); and Munich Cluster for Systems Neurology (SyNergy) (S.T., M.D.), Germany.
| |
Collapse
|
25
|
Ferdouse A, Leng S, Winter T, Aukema HM. The Brain Oxylipin Profile Is Resistant to Modulation by Dietary n-6 and n-3 Polyunsaturated Fatty Acids in Male and Female Rats. Lipids 2019; 54:67-80. [DOI: 10.1002/lipd.12122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Afroza Ferdouse
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Shan Leng
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Harold M. Aukema
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| |
Collapse
|
26
|
Elmasry K, Ibrahim AS, Abdulmoneim S, Al-Shabrawey M. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol 2019; 176:93-109. [PMID: 30276789 PMCID: PMC6284336 DOI: 10.1111/bph.14507] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis, disruption of the retinal barrier, leukocyte-adhesion and oedema are cardinal signs of proliferative retinopathies that are associated with vision loss. Therefore, identifying factors that regulate these vascular dysfunctions is critical to target pathological angiogenesis. Given the conflicting role of bioactive lipids reported in the current literature, the goal of this review is to provide the reader a clear road map of what has been accomplished so far in the field with specific focus on the role of polyunsaturated fatty acids (PUFAs)-derived metabolites in proliferative retinopathies. This necessarily entails a description of the different retina cells, blood retina barriers and the role of (PUFAs)-derived metabolites in diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration as the most common types of proliferative retinopathies.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Schepens Eye Research Institute/Massachusetts Eye and Ear & Department of ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ahmed S Ibrahim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| | - Samer Abdulmoneim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| |
Collapse
|
27
|
Profiling inflammatory markers in patients with pneumonia on intensive care. Sci Rep 2018; 8:14736. [PMID: 30283005 PMCID: PMC6170441 DOI: 10.1038/s41598-018-32938-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Clinical investigations lack predictive value when diagnosing pneumonia, especially when patients are ventilated and develop ventilator associated pneumonia (VAP). New tools to aid diagnosis are important to improve outcomes. This pilot study examines the potential for a panel of inflammatory mediators to aid in the diagnosis. Forty-four ventilated patients, 17 with pneumonia and 27 with brain injuries, eight of whom developed VAP, were recruited. 51 inflammatory mediators, including cytokines and oxylipins, were measured in patients’ serum using flow cytometry and mass spectrometry. The mediators could separate patients admitted to ICU with pneumonia compared to brain injury with an area under the receiver operating characteristic curve (AUROC) 0.75 (0.61–0.90). Changes in inflammatory mediators were similar in both groups over the course of ICU stay with 5,6-dihydroxyeicosatrienoic and 8,9-dihydroxyeicosatrienoic acids increasing over time and interleukin-6 decreasing. However, brain injured patients who developed VAP maintained inflammatory profiles similar to those at admission. A multivariate model containing 5,6-dihydroxyeicosatrienoic acid, 8,9-dihydroxyeicosatrienoic acid, intercellular adhesion molecule-1, interleukin-6, and interleukin-8, could differentiate patients with VAP from brain injured patients without infection (AUROC 0.94 (0.80–1.00)). The use of a selected group of markers showed promise to aid the diagnosis of VAP especially when combined with clinical data.
Collapse
|
28
|
Neuroprotective effects of epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2018; 138:9-14. [DOI: 10.1016/j.prostaglandins.2018.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022]
|
29
|
Yu K, Zhang T, Li X. Genetic role of CYP4A11 polymorphisms in the risk of developing cardiovascular and cerebrovascular diseases. Ann Hum Genet 2018; 82:370-381. [PMID: 30132788 DOI: 10.1111/ahg.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/14/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND We are interested in comprehensively evaluating the potential genetic influence of rs9332978 A/G, rs1126742 T/C, and rs9333025 G/A polymorphisms of CYP4A11 (cytochrome P450 family 4, subfamily A, member 11) in the risk of developing cardiovascular and cerebrovascular diseases. METHODS A meta-analysis was carried out using articles obtained from online databases and Stata/SE 12.0 software. We primarily used a P value of association test (Passociation ) and odds ratios (OR) to assess the genetic relationships. RESULTS We included 22 eligible case-control articles for our meta-analysis. For the overall meta-analysis of the rs9332978 A/G polymorphism, there was an increased risk of cardiovascular and cerebrovascular diseases in cases under the models of allele G vs. A (Passociation = 0.001, OR = 1.16), AG vs. AA (Passociation < 0.001, OR = 1.22), and AG+GG vs. AA (Passociation < 0.001, OR = 1.22) compared with the controls. There were similar results in the subgroup analysis of "hypertension" (Passociation = 0.024 for the allele model; Passociation = 0.003 for the heterozygote model; and Passociation = 0.005 for the dominant model). For rs1126742, there was a significant difference between cases and controls in the overall meta-analysis and subgroup of "Caucasian," "hypertension," and "population-based (PB)" under all of the genetic models (all Passociation < 0.05, OR > 1). Furthermore, a decreased risk was detected in the overall and "PB" subgroup meta-analysis of rs9333025 under the models of A vs. G, AA vs. GG, and AA vs. GG+GA (all Passociation < 0.05, OR < 1). CONCLUSION The rs1126742 T/C polymorphism of CYP4A11 is more likely to be a genetic risk factor for the hypertension cases in the Caucasian population. Moreover, whereas the AG genotype of CYP4A11 rs9332978 may be associated with an increased risk of hypertension, the AA genotype of rs9333025 may be linked to a decreased risk of cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Kuiying Yu
- First Department of Neurology, The First Hospital of Zibo, Zibo City, Shandong, 255200, People's Republic of China
| | - Tao Zhang
- First Department of Neurology, The First Hospital of Zibo, Zibo City, Shandong, 255200, People's Republic of China
| | - Xuhua Li
- China Medical University Hospital of Boshan District, Zibo City, Shandong, 255200, People's Republic of China
| |
Collapse
|
30
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
31
|
Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 2018; 833:531-544. [PMID: 29935175 DOI: 10.1016/j.ejphar.2018.06.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Ischemic stroke is a devastating and debilitating medical condition with limited therapeutic options. However, accumulating evidence indicates a central role of inflammation in all aspects of stroke including its initiation, the progression of injury, and recovery or wound healing. A central target of inflammation is disruption of the blood brain barrier or neurovascular unit. Here we discuss recent developments in identifying potential molecular targets and immunomodulatory approaches to preserve or protect barrier function and limit infarct damage and functional impairment. These include blocking harmful inflammatory signaling in endothelial cells, microglia/macrophages, or Th17/γδ T cells with biologics, third generation epoxyeicosatrienoic acid (EET) analogs with extended half-life, and miRNA antagomirs. Complementary beneficial pathways may be enhanced by miRNA mimetics or hyperbaric oxygenation. These immunomodulatory approaches could be used to greatly expand the therapeutic window for thrombolytic treatment with tissue plasminogen activator (t-PA). Moreover, nanoparticle technology allows for the selective targeting of endothelial cells for delivery of DNA/RNA oligonucleotides and neuroprotective drugs. In addition, although likely detrimental to the progression of ischemic stroke by inducing inflammation, oxidative stress, and neuronal cell death, 20-HETE may also reduce susceptibility of onset of ischemic stroke by maintaining autoregulation of cerebral blood flow. Although the interaction between inflammation and stroke is multifaceted, a better understanding of the mechanisms behind the pro-inflammatory state at all stages will hopefully help in developing novel immunomodulatory approaches to improve mortality and functional outcome of those inflicted with ischemic stroke.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA; Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
32
|
Costa TJ, Ceravolo GS, Echem C, Hashimoto CM, Costa BP, Santos-Eichler RA, Oliveira MA, Jiménez-Altayó F, Akamine EH, Dantas AP, Carvalho MHC. Detrimental Effects of Testosterone Addition to Estrogen Therapy Involve Cytochrome P-450-Induced 20-HETE Synthesis in Aorta of Ovariectomized Spontaneously Hypertensive Rat (SHR), a Model of Postmenopausal Hypertension. Front Physiol 2018; 9:490. [PMID: 29867542 PMCID: PMC5952044 DOI: 10.3389/fphys.2018.00490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/17/2018] [Indexed: 12/02/2022] Open
Abstract
Postmenopausal period has been associated to different symptoms such as hot flashes, vulvovaginal atrophy, hypoactive sexual desire disorder (HSDD) and others. Clinical studies have described postmenopausal women presenting HSDD can benefit from the association of testosterone to conventional hormonal therapy. Testosterone has been linked to development of cardiovascular diseases including hypertension and it also increases cytochrome P-450-induced 20-HETE synthesis which in turn results in vascular dysfunction. However, the effect of testosterone plus estrogen in the cardiovascular system is still very poorly studied. The aim of the present study is to evaluate the role of cytochrome P-450 pathway in a postmenopausal hypertensive female treated with testosterone plus estrogen. For that, hypertensive ovariectomized rats (OVX-SHR) were used as a model of postmenopausal hypertension and four groups were created: SHAM-operated (SHAM), ovariectomized SHR (OVX), OVX treated for 15 days with conjugated equine estrogens [(CEE) 9.6 μg/Kg/day/po] or CEE associated to testosterone [(CEE+T) 2.85 mg/kg/weekly/im]. Phenylephrine-induced contraction and generation of reactive oxygen species (ROS) were markedly increased in aortic rings from OVX-SHR compared to SHAM rats which were restored by CEE treatment. On the other hand, CEE+T abolished vascular effects by CEE and augmented both systolic and diastolic blood pressure of SHR. Treatment of aortic rings with the CYP/20-HETE synthesis inhibitor HET0016 (1 μM) reduced phenylephrine hyperreactivity and the augmented ROS generation in the CEE+T group. These results are paralleled by the increased CYP4F3 protein expression and activity in aortas of CEE+T. In conclusion, we showed that association of testosterone to estrogen therapy produces detrimental effects in cardiovascular system of ovariectomized hypertensive females via CYP4F3/20-HETE pathway. Therefore, our findings support the standpoint that the CYP/20-HETE pathway is an important therapeutic target for the prevention of cardiovascular disease in menopausal women in the presence of high levels of testosterone.
Collapse
Affiliation(s)
- Tiago J Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Facultat de Medicina, Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Group of Atherosclerosis and Coronary Disease, Institut Clinic del Torax, Institut d'Investigacions Biomédiques August Pi I Sunyer, Barcelona, Spain
| | - Graziela S Ceravolo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Cinthya Echem
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carolina M Hashimoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosangela A Santos-Eichler
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Aparecida Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Facultat de Medicina, Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eliana H Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Dantas
- Group of Atherosclerosis and Coronary Disease, Institut Clinic del Torax, Institut d'Investigacions Biomédiques August Pi I Sunyer, Barcelona, Spain
| | - Maria Helena C Carvalho
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Liu P, Zhang S, Gao J, Lin Y, Shi G, He W, Touyz RM, Yan L, Huang H. Downregulated Serum 14, 15-Epoxyeicosatrienoic Acid Is Associated With Abdominal Aortic Calcification in Patients With Primary Aldosteronism. Hypertension 2018; 71:592-598. [PMID: 29440332 DOI: 10.1161/hypertensionaha.117.10644] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/16/2017] [Accepted: 01/17/2018] [Indexed: 01/02/2023]
Abstract
Patients with primary aldosteronism (PA) have increased risk of target-organ damage, among which vascular calcification is an important indicator of cardiovascular mortality. 14, 15-Epoxyeicosatrienoic acid (14, 15-EET) has been shown to have beneficial effects in vascular remodeling. However, whether 14, 15-EET associates with vascular calcification in PA is unknown. Thus, we aimed to investigate the association between 14, 15-EET and abdominal aortic calcification (AAC) in patients with PA. Sixty-nine patients with PA and 69 controls with essential hypertension, matched for age, sex, and blood pressure, were studied. 14, 15-Dihydroxyeicosatrienoic acid (14, 15-DHET), the inactive metabolite from 14, 15-EET, was estimated to reflect serum 14, 15-EET levels. AAC was assessed by computed tomographic scanning. Compared with matched controls, the AAC prevalence was almost 1-fold higher in patients with PA (27 [39.1%] versus 14 [20.3%]; P=0.023), accompanied by significantly higher serum 14, 15-DHET levels (7.18±4.98 versus 3.50±2.07 ng/mL; P<0.001). Plasma aldosterone concentration was positively associated with 14, 15-DHET (β=0.444; P<0.001). Multivariable logistic analysis revealed that lower 14, 15-DHET was an independent risk factor for AAC in PA (odds ratio, 1.371; 95% confidence interval, 1.145-1.640; P<0.001), especially in young patients with mild hypertension and normal body mass index. In conclusion, PA patients exibited more severe AAC, accompanied by higher serum 14, 15-DHET levels. On the contrary, decreased 14, 15-EET was significantly associated with AAC prevalence in PA patients, especially in those at low cardiovascular risk.
Collapse
Affiliation(s)
- Pinming Liu
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Shaoling Zhang
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Jingwei Gao
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Ying Lin
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Guangzi Shi
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Wanbing He
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Rhian M Touyz
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Li Yan
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.)
| | - Hui Huang
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology (P.L., J.G., W.H., H.H.), RNA Biomedical Institute (P.L., J.G., W.H., H.H.), Department of Endocrinology (S.Z., Y.L., L.Y.), and Department of Radiology (G.S.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T.).
| |
Collapse
|
34
|
Eicosanoid Diversity of Stony Corals. Mar Drugs 2018; 16:md16010010. [PMID: 29301345 PMCID: PMC5793058 DOI: 10.3390/md16010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
Oxylipins are well-established lipid mediators in plants and animals. In mammals, arachidonic acid (AA)-derived eicosanoids control inflammation, fever, blood coagulation, pain perception and labor, and, accordingly, are used as drugs, while lipoxygenases (LOX), as well as cyclooxygenases (COX) serve as therapeutic targets for drug development. In soft corals, eicosanoids are synthesized on demand from AA by LOX, COX, and catalase-related allene oxide synthase-lipoxygenase (cAOS-LOX) and hydroperoxide lyase-lipoxygenase (cHPL-LOX) fusion proteins. Reef-building stony corals are used as model organisms for the stress-related genomic studies of corals. Yet, the eicosanoid synthesis capability and AA-derived lipid mediator profiles of stony corals have not been determined. In the current study, the genomic and transcriptomic data about stony coral LOXs, AOS-LOXs, and COXs were analyzed and the eicosanoid profiles and AA metabolites of three stony corals, Acropora millepora, A. cervicornis, and Galaxea fascicularis, were determined by reverse-phase high-performance liquid chromatography (RP-HPLC) coupled with MS-MS and a radiometric detector. Our results confirm that the active LOX and AOS-LOX pathways are present in Acropora sp., which correspond to the genomic/sequence data reported earlier. In addition, LOX, AOS-LOX, and COX products were detected in the closely related species G. fascicularis. In conclusion, the functional 8R-LOX and/or AOS-LOX pathways are abundant among corals, while COXs are restricted to certain soft and stony coral lineages.
Collapse
|
35
|
Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis. Int J Mol Sci 2017; 18:ijms18122661. [PMID: 29292756 PMCID: PMC5751263 DOI: 10.3390/ijms18122661] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Metastatic breast cancer (BC) (also referred to as stage IV) spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4) family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE), an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis.
Collapse
|
36
|
Kong F, Zhang R, Zhao X, Zheng G, Wang Z, Wang P. Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:465-474. [PMID: 28883751 PMCID: PMC5587597 DOI: 10.4196/kjpp.2017.21.5.465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/09/2016] [Accepted: 02/26/2017] [Indexed: 12/24/2022]
Abstract
The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The 10 µg/ml of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or 10 µg/ml of PA also had no effect on MRC-5 normal cells. PA-L (5 µg/ml) and PA-H (10 µg/ml) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res (5 µg/ml)+PA-H (10 µg/ml) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, NF-κB, Bcl-2, Bcl-xL, procollagen I, collagen I, collagen III and CTGF, TNF-α, IL-1β, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, IκB-α, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA.
Collapse
Affiliation(s)
- Fanhua Kong
- School of Medicine, Shandong University, Jinan 250000, Shandong, China.,Department of Thoracic Surgery, Taian City Central Hospital, Taian 271000, Shandong, China.,Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250000, Shandong, China
| | - Runqi Zhang
- Department of Thoracic Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Xudong Zhao
- Department of Gynaecology and Obstetrics, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Guanlin Zheng
- Taian Vocational College of Nursing, Taian 271000, Shandong, China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250000, Shandong, China
| | - Peng Wang
- Department of Thoracic Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| |
Collapse
|
37
|
El-Sherbeni AA, El-Kadi AOS. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev 2016; 49:1-17. [DOI: 10.1080/03602532.2016.1257021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Katary MM, Pye C, Elmarakby AA. Meloxicam fails to augment the reno-protective effects of soluble epoxide hydrolase inhibition in streptozotocin-induced diabetic rats via increased 20-HETE levels. Prostaglandins Other Lipid Mediat 2016; 132:3-11. [PMID: 27596333 DOI: 10.1016/j.prostaglandins.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/24/2016] [Accepted: 08/25/2016] [Indexed: 01/11/2023]
Abstract
The pro-inflammatory cyclooxygenase (COX)-derived prostaglandins and the anti-inflammatory cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) play an important role in the regulation of renal injury. The current study examined whether COX inhibition augments the reno-protective effects of increased EETs levels via inhibiting EETs degradation by soluble epoxide hydrolase (sEH) in diabetic rats. Streptozotocin (50mg/kg, i.v) was used to induce diabetes in male Sprague Dawley rats. Rats were then divided into 5 groups (n=6-8); control non diabetic, diabetic, diabetic treated with the sEH inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), diabetic treated with the COX inhibitor meloxicam and diabetic treated with meloxicam plus t-AUCB for 2 months. Glomerular albumin permeability and urinary albumin and nephrin excretion levels were significantly elevated in diabetic rats together with decreased glomerular α3 integrin and nephrin expression levels. Inhibition of sEH reduced glomerular albumin permeability, albumin and nephrin excretion levels and restored the decrease in glomerular α3 integrin and nephrin expression in diabetic rats. Meloxicam failed to reduce renal injury or even to synergize the reno-protective effects of sEH inhibition in diabetic rats. Furthermore, inhibition of sEH reduced the elevation in renal collagen deposition and urinary MCP-1 excretion levels together with a reduction in the number of renal TUNEL positive cells in diabetic vs. control rats (P<0.05). Meloxicam did not reduce renal inflammation or apoptosis in diabetic rats or even exacerbate the anti-inflammatory and anti-apoptotic effects of sEH inhibition. Renal 20-hydroxyeicosatetranoic acid (20-HETE) levels were elevated in diabetic rats and meloxicam further exacerbated this elevation. In conclusion, our study suggests that inhibition of COX failed to provide renal protection or to augment the reno-protective effects of sEH inhibition in diabetic rats, at least in part, via increased inflammatory 20-HETE levels.
Collapse
Affiliation(s)
- Mohamed M Katary
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States; Department of Pharmacology, Faculty of Pharmacy, Damanhur University, Egypt
| | - Chelsey Pye
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States
| | - Ahmed A Elmarakby
- Department of Oral Biology & Pharmacology, Augusta University, Augusta, GA, United States.
| |
Collapse
|
39
|
The Coxib case: Are EP receptors really guilty? Atherosclerosis 2016; 249:164-73. [DOI: 10.1016/j.atherosclerosis.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 04/05/2016] [Indexed: 01/08/2023]
|