1
|
Peng D, Liang M, Li L, Yang H, Fang D, Chen L, Guan B. Circ_BBS9 as an early diagnostic biomarker for lung adenocarcinoma: direct interaction with IFIT3 in the modulation of tumor immune microenvironment. Front Immunol 2024; 15:1344954. [PMID: 39139574 PMCID: PMC11320841 DOI: 10.3389/fimmu.2024.1344954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Background Introduction: Circular RNAs (circRNAs) have been identified as significant contributors to the development and advancement of cancer. The objective of this study was to examine the expression and clinical implications of circRNA circ_BBS9 in lung adenocarcinoma (LUAD), as well as its potential modes of action. Methods The expression of Circ_BBS9 was examined in tissues and cell lines of LUAD through the utilization of microarray profiling, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. In this study, we assessed the impact of circ_BBS9 on the proliferation of LUAD cells, as well as its influence on ferroptosis and tumor formation. To analyze these effects, we employed CCK-8 assays and ferroptosis assays. The identification of proteins that interact with Circ_BBS9 was achieved through the utilization of RNA pull-down and mass spectrometry techniques. A putative regulatory network comprising circ_BBS9, miR-7150, and IFIT3 was established using bioinformatics study. The investigation also encompassed the examination of the correlation between the expression of IFIT3 and the invasion of immune cells. Results Circ_BBS9 was significantly downregulated in LUAD tissues and cell lines. Low circ_BBS9 expression correlated with poor prognosis. Functional experiments showed that circ_BBS9 overexpression inhibited LUAD cell proliferation and promoted ferroptosis in vitro and suppressed tumor growth in vivo. Mechanistically, circ_BBS9 was found to directly interact with IFIT3 and regulate its expression by acting as a sponge for miR-7150. Additionally, IFIT3 expression correlated positively with immune infiltration in LUAD. Conclusion Circ_BBS9 has been identified as a tumor suppressor in lung adenocarcinoma (LUAD) and holds promise as a diagnostic biomarker. The potential mechanism of action involves the modulation of ferroptosis and the immunological microenvironment through direct interaction with IFIT3 and competitive binding to miR-7150. The aforementioned findings offer new perspectives on the pathophysiology of LUAD and highlight circ_BBS9 as a potentially valuable target for therapeutic interventions.
Collapse
Affiliation(s)
- Daijun Peng
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Mingyu Liang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Li
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Haisheng Yang
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Di Fang
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Lingling Chen
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| | - Bing Guan
- Department of Pathology, Jinshan Branch of Shanghai Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
2
|
Zhang Y, Wang Z, Wei H, Chen M. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. BMC Med Inform Decis Mak 2024; 24:159. [PMID: 38844961 PMCID: PMC11157868 DOI: 10.1186/s12911-024-02564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Compared with the time-consuming and labor-intensive for biological validation in vitro or in vivo, the computational models can provide high-quality and purposeful candidates in an instant. Existing computational models face limitations in effectively utilizing sparse local structural information for accurate predictions in circRNA-disease associations. This study addresses this challenge with a proposed method, CDA-DGRL (Prediction of CircRNA-Disease Association based on Double-line Graph Representation Learning), which employs a deep learning framework leveraging graph networks and a dual-line representation model integrating graph node features. METHOD CDA-DGRL comprises several key steps: initially, the integration of diverse biological information to compute integrated similarities among circRNAs and diseases, leading to the construction of a heterogeneous network specific to circRNA-disease associations. Subsequently, circRNA and disease node features are derived using sparse autoencoders. Thirdly, a graph convolutional neural network is employed to capture the local graph network structure by inputting the circRNA-disease heterogeneous network alongside node features. Fourthly, the utilization of node2vec facilitates depth-first sampling of the circRNA-disease heterogeneous network to grasp the global graph network structure, addressing issues associated with sparse raw data. Finally, the fusion of local and global graph network structures is inputted into an extra trees classifier to identify potential circRNA-disease associations. RESULTS The results, obtained through a rigorous five-fold cross-validation on the circR2Disease dataset, demonstrate the superiority of CDA-DGRL with an AUC value of 0.9866 and an AUPR value of 0.9897 compared to existing state-of-the-art models. Notably, the hyper-random tree classifier employed in this model outperforms other machine learning classifiers. CONCLUSION Thus, CDA-DGRL stands as a promising methodology for reliably identifying circRNA-disease associations, offering potential avenues to alleviate the necessity for extensive traditional biological experiments. The source code and data for this study are available at https://github.com/zywait/CDA-DGRL .
Collapse
Affiliation(s)
- Yi Zhang
- School of Computer Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, 541004, China
| | - ZhenMei Wang
- School of Big Data, Guangxi Vocational and Technical College, Nanning, 530003, China.
| | - Hanyan Wei
- Pharmacy School, Guilin Medical University, Guilin, 541004, China
| | - Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421010, China
| |
Collapse
|
3
|
Yi D, Zhang D, Zeng Z, Zhang S, Song B, He C, Li M, He J. Circular RNA eukaryotic translation initiation factor 6 facilitates TPC-1 cell proliferation and invasion through the microRNA-138-5p/lipase H axis. Funct Integr Genomics 2023; 23:313. [PMID: 37776372 DOI: 10.1007/s10142-023-01240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Both circular RNA eukaryotic translation initiation factor 6 (circEIF6) and microRNA (miR)-138-5p participate in thyroid cancer (TC) progression. Nevertheless, the relationship between them remains under-explored. Hence, this research ascertained the mechanism of circEIF6 in TC via miR-138-5p. After TC tissues and cells were harvested, circEIF6, miR-138-5p, and lipase H (LIPH) levels were assessed. The binding relationships among circEIF6, miR-138-5p, and LIPH were analyzed. The impacts of circEIF6, miR-138-5p, and LIPH on the invasive and proliferative abilities of TPC-1 cells were examined by Transwell and EdU assays. Tumor xenograft in nude mice was established for in vivo validation of the impact of circEIF6. CircEIF6 expression was high in TC cells and tissues. Additionally, miR-138-5p was poor and LIPH level was high in TC tissues. Mechanistically, circEIF6 competitively bound to miR-138-5p to elevate LIPH via a competitive endogenous RNA mechanism. Silencing of circEIF6 reduced TPC-1 cell proliferative and invasive properties, which was annulled by further inhibiting miR-138-5p or overexpressing LIPH. Likewise, circEIF6 silencing repressed the growth of transplanted tumors, augmented miR-138-5p expression, and diminished LIPH expression in nude mice. Conclusively, circEIF6 silencing reduced LIPH level by competitive binding to miR-138-5p, thus subduing the proliferation and invasion of TPC-1 cells.
Collapse
Affiliation(s)
- Dan Yi
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Dongxin Zhang
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Zhaohui Zeng
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Shu Zhang
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Beiping Song
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Chenkun He
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Min Li
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Jie He
- Department of Breast Nail Surgery, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
4
|
Luo Z, Xu J, Xu D, Xu J, Zhou R, Deng K, Chen Z, Zou F, Yao L, Hu Y. Mechanism of immune escape mediated by receptor tyrosine kinase KIT in thyroid cancer. Immun Inflamm Dis 2023; 11:e851. [PMID: 37506147 PMCID: PMC10336654 DOI: 10.1002/iid3.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/16/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Thyroid cancer (TC) is one of the fastest-growing malignant tumors. This study sought to explore the mechanism of immune escape mediated by receptor tyrosine kinase (KIT) in TC. METHODS The expression microarray of TC was acquired through the GEO database, and the difference analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. KIT levels in TC cell lines (K1/SW579/BCPAP) and human normal thyroid cells were detected using reverse transcription quantitative polymerase chain reaction and western blot analysis. TC cells were transfected with overexpressed (oe)-KIT and CD8+ T cells were cocultured with SW579 cells. Subsequently, cell proliferation, migration, and invasion abilities, CD8+ T cell proliferation, cytokine levels (interferon-γ [IFN-γ]/tumor necrosis factor-α [TNF-α]) were determined using colony formation assay, Transwell assays, flow cytometry, and enzyme-linked immunosorbent assay. The phosphorylation of MAPK pathway-related protein (ERK) was measured by western blot analysis. After transfection with oe-KIT, cells were treated with anisomycin (an activator of the MAPK pathway), and the protein levels of p-ERK/ERK and programmed death-ligand 1 (PD-L1) were detected. RESULTS Differentially expressed genes (N = 2472) were obtained from the GEO database. KIT was reduced in TC samples and lower in tumor cells than those in normal cells. Overexpression of KIT inhibited immune escape of TC cells. Specifically, the proliferation, migration, and invasion abilities of TC cells were lowered, the proliferation level of CD8+ T cells was elevated, and IFN-γ and TNF-α levels were increased. KIT inhibited the activation of the MAPK pathway in TC cells and downregulated PD-L1. CONCLUSION KIT suppressed immune escape of TC by blocking the activation of the MAPK pathway and downregulating PD-L1.
Collapse
Affiliation(s)
- Zhen Luo
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Jin Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Dayong Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Jiaojiao Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Rongjun Zhou
- Department of SurgeryChangsha Hospital for Maternal and Child Health CareChangshaHunanChina
| | - Keping Deng
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Zheng Chen
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Fang Zou
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Libo Yao
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Yuqin Hu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| |
Collapse
|
5
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Zhou J, Qiu C, Tang X, Wan R, Wu Z, Zou D, Wang W, Luo Y, Liu T. Investigation of the clinicopathological and prognostic role of circMTO1 in multiple cancers. Expert Rev Mol Diagn 2023; 23:159-170. [PMID: 36734331 DOI: 10.1080/14737159.2023.2177102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To observe the prognostic value of circular RNA mitochondrial tRNA translation optimization 1 (circMTO1) in human tumors. METHODS We searched multiple databases for related reports published before November 01, 2021. The OR/HR and 95% CI were extracted to explore the correlation between circMTO1 expression and clinicopathological features in various cancers. The stability of the results from meta-analysis was estimated via sensitivity analysis. We adopted Begg's funnel plots and Egger's test to appraise the potential bias of publication. Subgroup analysis for overall survival (OS) were also performed. RESULTS 11 studies containing 1383 patients and 4 articles including 536 patients were enrolled. We found that low expression status of circMTO1 was significantly related to big tumor size (OR=2.11, 95% CI: 1.26-3.56, P<0.05), poor differentiation tumors (OR=2.09, 95% CI: 1.46-2.98, P<0.05), OS (HR=2.02, 95% CI: 1.63-2.50, P<0.05), disease-free survival (DFS) (HR=1.83, 95% CI: 1.27-2.56, P<0.05) of cancers. Subgroup analysis indicated that low expression status of circMTO1 was correlated with OS, regardless of analysis method, cut-off value, case number and NOS score. CONCLUSIONS The low expression of circMTO1 may predict big tumor size, poor differentiation and worse outcome of cancer, presenting that circMTO1 may be a useful biomarker for prognosis of tumors.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No. 1 People's Hospital, Xiangnan University, Chenzhou, Hunan, China
| | - Rongjun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Respiratory Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospita, Changsha, Hunan, China
| | - Ziyi Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dazhi Zou
- Department of Spine Surgery, Longhui People's Hospital, Shaoyang, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Circ_CSPP1 Regulates the Development of Non-small Cell Lung Cancer via the miR-486-3p/BRD9 Axis. Biochem Genet 2023; 61:1-20. [PMID: 35678942 DOI: 10.1007/s10528-022-10231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023]
Abstract
In this study, we explored the role of circ_CSPP1 in non-small cell lung cancer (NSCLC) using NSCLC cell lines (A549 and H1299) and human bronchial epithelioid cells (16HBE). The differential expression of circ_CSPP1, miR-486-3p and BRD9 in NSCLC by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot in A549 cells, H1299 cells, 16HBE cells, NSCLC tissues and healthy lung tissues. Dual-luciferase reporter assay was conducted to verify the interaction between circ_CSPP1 and miR-486-3p or miR-486-3p and BRD9. The effect of circ_CSPP1/miR-486-3p/BRD9 axis on NSCLC cell proliferation was evaluated using cell counting kit-8 assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine assay. Additionally, transwell assays were performed to evaluate the effect of circ_CSPP1/miR-486-3p/BRD9 axis on A549 and H1299 cell migration and invasion. The effect of circ_CSPP1 on tumor tumorigenesis of A549 cells in vivo was determined by xenograft tumor model and immunohistochemistry assay. Circ_CSPP1 and BRD9 expression were upregulated, while miR-486-3p expression was downregulated in tumor tissues of NSCCL patients and A549 and H1299 cells. Circ_CSPP1 specifically bound miR-486-3p, and miR-486-3p could target BRD9. Circ_CSPP1 upregulation promoted proliferation, invasion and migration of NSCLC cells, circ_CSPP1 knockdown or miR-486-3p upregulation had the opposite effects. Circ_CSPP1 knockdown-induced effects were reverted by miR-486-3p inhibition. Similarly, the effects of miR-486-3p upregulation on NSCLC cell proliferation, invasion and migration were reversed by BRD9 overexpression. In addition, circ_CSPP1 silencing inhibited tumor growth in nude mice. Circ_CSPP1 promoted A549 and H1299 cell malignancy by competitively inhibiting BRD9 and binding to miR-486-3p.
Collapse
|
8
|
Li Y, He Y, Chen Y, He Z, Yang F, Xing C. Contribution of microRNA-30d to the prevention of the thyroid cancer occurrence and progression: mechanism and implications. Apoptosis 2023; 28:576-593. [PMID: 36695983 DOI: 10.1007/s10495-023-01809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/26/2023]
Abstract
Thyroid cancer is a major endocrine tumor and represents an emerging health problem worldwide. MicroRNAs (miRNAs) have been addressed to participate in the pathogenesis and progression of thyroid cancer. However, it remains largely unknown what functions miR-30d may exert on thyroid cancer. This study, herein, aimed to identify the functional significance and machinery of miR-30d in the progression of thyroid cancer. MiR-30b presented aberrant low expression and ubiquitin-specific protease 22 (USP22) exhibited aberrant high expression in thyroid cancer tissues and cells. The current study proposed the possible machinery that miR-30d could target and negatively regulate USP22. Additionally, USP22 could enhance the stability of SIRT1 by inducing deubiquitination which consequently contributed to FOXO3a deacetylation-induced PUMA repression. Responding to the gain- or loss-of-function of miR-30d and/or USP22, behaviors of thyroid cancer cells were altered. Accordingly, miR-30d inhibited proliferation and promoted apoptosis of thyroid cancer cells by suppressing USP22 through SIRT1/FOXO3a/PUMA axis. The effects of miR-30d and USP22-mediated SIRT1/FOXO3a/PUMA axis on thyroid tumorigenesis were finally validated in murine models. We ultimately confirmed the anti-proliferative and pro-apoptotic effect of miR-30d via suppressing USP22 through in vivo findings. Conclusively, our findings highlight that the occurrence and progression of thyroid cancer can be suppressed by miR-30d-mediated inhibition of USP22 via the SIRT1/FOXO3a/PUMA axis, which provides a attractive therapeutic target for thyroid cancer treatment.
Collapse
Affiliation(s)
- Yanqi Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 215000, Suzhou, Jiangsu Province, P.R. China
| | - Yuan He
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, 046000, Changzhi, P.R. China
| | - Yuan Chen
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University, 226361, Nantong, P.R. China
| | - Zhaocai He
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, 046000, Changzhi, P.R. China
| | - Fan Yang
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, 046000, Changzhi, P.R. China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, 215000, Suzhou, Jiangsu Province, P.R. China.
| |
Collapse
|
9
|
Circular RNA circPTPRF promotes the progression of GBM via sponging miR-1208 to up-regulate YY1. Cancer Cell Int 2022; 22:359. [DOI: 10.1186/s12935-022-02753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractGlioblastoma (GBM) is the most common primary malignant tumor in the brain, and its robust proliferation and invasion abilities reduce the survival time of patients. Circular RNAs (circRNAs) play an essential role in various tumors, such as regulating tumor cell proliferation, apoptosis, invasion, metastasis, and other progressive phenotypes through different mechanisms. Finding novel circRNAs may significantly contribute to the prognosis of GBM and provide the basis for the targeted therapy of GBM. In this study, we found circPTPRF is a novel circRNA that has never been studied, which was highly expressed in GBM and is closely related to poor patient prognoses. After knockdown or overexpression in glioma cell lines (U87 and LN229) and glioma stem cells (GSCs), we identified that circPTPRF could promote proliferation, invasion, and neurospheres formation abilities of GBM via in vitro and in vivo experiments. Mechanisms, miR-1208 was confirmed as a target of circPTPRF, and miR-1208 can also target the 3’UTR of YY1, and they were proved by luciferase reporter, western blotting (WB), qPCR and RNA immunoprecipitation (RIP) assays. The following rescue experiments demonstrated that circPTPRF was a miR-1208 sponge for upregulating YY1 expression to promote proliferation, invasion and neurosphere formation abilities of GBM in vitro. In conclusion, the circPTPRF/miR-1208/YY1 axis can regulate GBM progression. CircPTPRF may play an essential role in GBM diagnosis and prognostic prediction and be an important molecular target for GBM therapy.
Collapse
|
10
|
A Review and In Silico Analysis of Tissue and Exosomal Circular RNAs: Opportunities and Challenges in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14194728. [PMID: 36230649 PMCID: PMC9564022 DOI: 10.3390/cancers14194728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thyroid cancer is the most common endocrine neoplasm. Recently, knowledge of the molecular genetic changes of thyroid cancer has dramatically improved. Understanding the roles of these molecular changes in thyroid cancer tumorigenesis and progression is essential in developing a successful treatment strategy and improving disease outcomes. As a family of non-coding RNAs, circular RNAs (circRNAs) have been involved in several aspects of the physiological and pathological processes of the cells. The roles of circRNAs in cancer development and progress are evident. In the current review, we aimed to explore the clinical potential of circRNAs as potential diagnostic, prognostic, and therapeutic targets in thyroid cancer. Furthermore, screening the genome-wide circRNAs and performing functional enrichment analyses for all associated dysregulated circRNAs in thyroid cancer have been done. Given the unique advantages circRNAs have, such as superior stability, higher abundance, and presence in different body fluids, this family of non-coding RNAs could be promising diagnostic and prognostic biomarkers and potential therapeutic targets for thyroid cancer. Abstract Thyroid cancer (TC) is the most common endocrine tumor. The genetic and epigenetic molecular alterations of TC have become more evident in recent years. However, a deeper understanding of the roles these molecular changes play in TC tumorigenesis and progression is essential in developing a successful treatment strategy and improving patients’ prognoses. Circular RNAs (circRNAs), a family of non-coding RNAs, have been implicated in several aspects of carcinogenesis in multiple cancers, including TC. In the current review, we aimed to explore the clinical potential of circRNAs as putative diagnostic, prognostic, and therapeutic targets in TC. The current analyses, including genome-wide circRNA screening and functional enrichment for all deregulated circRNA expression signatures, show that circRNAs display atypical contributions, such as sponging for microRNAs, regulating transcription and translation processes, and decoying for proteins. Given their exceptional clinical advantages, such as higher stability, wider abundance, and occurrence in several body fluids, circRNAs are promising prognostic and theranostic biomarkers for TC.
Collapse
|
11
|
Zhu C, Guo A, Sun B, Zhou Z. Comprehensive elaboration of circular RNA in multiple myeloma. Front Pharmacol 2022; 13:971070. [PMID: 36133810 PMCID: PMC9483726 DOI: 10.3389/fphar.2022.971070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs), a novel category of endogenous non-coding RNAs, are usually well conserved across different species with a covalent closed-loop structure. Existing and emerging evidence confirms that circRNAs can function as regulators of alternative splicing, microRNA and RNA-binding protein sponges and translation, as well as gene transcription. In consideration of their multi-faceted functions, circRNAs are critically involved in hematological malignancies including multiple myeloma (MM). In particular, circRNAs have been found to play vital roles in tumor microenvironment and drug resistance, which may grant them potential roles as biomarkers for MM diagnosis and targeted therapy. In this review, we comprehensively elaborate the current state-of-the-art knowledge of circRNAs in MM, and then focus on their potential as biomarkers in diagnosis and therapy of MM.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Aoxiang Guo
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zheng Zhou, ; Bao Sun,
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zheng Zhou, ; Bao Sun,
| |
Collapse
|
12
|
Circular RNA circ-BNC2 (hsa_circ_0008732) inhibits the progression of ovarian cancer through microRNA-223-3p/ FBXW7 axis. J Ovarian Res 2022; 15:95. [PMID: 35965327 PMCID: PMC9377053 DOI: 10.1186/s13048-022-01025-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are reported to be key regulators in the progression of human cancers. This work focuses on the function and molecular mechanism of circRNA-BNC2 (circ-BNC2) (also known as hsa_circ_0008732) in ovarian cancer (OC). Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect circ-BNC2, microRNA-223-3p (miR-223-3p) and F-box and WD repeat domain containing 7 (FBXW7) mRNA expressions in OC tissues and cells. Besides, cell counting kit 8 (CCK-8), transwell assay and cell cycle assays were executed to assess the proliferative, migrative, invasive abilities, and cell cycle progression of OC cells, respectively. Dual-luciferase reporter gene assay and RNA pull-down assay were used to validate the targeting relationships between miR-223-3p and circ-BNC2 or FBXW7. Western blot was adopted to determine FBXW7 protein levels in OC cells. Results Circ-BNC2 expression was downregulated in OC tissues and cell lines, which was associated with higher FIGO stage and lymph node metastasis of OC patients. Circ-BNC2 overexpression repressed the proliferation, migration, invasion of OC cells and induced cell cycle arrest, while silencing circ-BNC2 worked oppositely. Mechanistically, circ-BNC2 could upregulate FBXW7 expression in OC cells via sponging miR-223-3p. Conclusion Circ-BNC2 suppresses the progression of OC via regulating miR-223-3p / FBXW7 axis. Our findings provided potential biomarker for OC therapy.
Collapse
|
13
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
De Martino M, Esposito F, Capone M, Pallante P, Fusco A. Noncoding RNAs in Thyroid-Follicular-Cell-Derived Carcinomas. Cancers (Basel) 2022; 14:cancers14133079. [PMID: 35804851 PMCID: PMC9264824 DOI: 10.3390/cancers14133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Thyroid tumors represent the most common neoplastic pathology of the endocrine system. Mutations occurring in oncogenes and tumor suppressor genes are responsible for thyroid carcinogenesis; however, the complete mutational landscape characterizing these neoplasias has not been completely unveiled. It has been established that only the 2% of the human genome codes for proteins, suggesting that the vast majority of the genome has regulatory capabilities, which, if altered, could account for the onset of cancer. Hence, many scientific efforts are currently focused on the characterization of the heterogeneous class of noncoding RNAs, which represent an abundant part of the transcribed noncoding genome. In this review, we mainly focus on the involvement of microRNAs, long noncoding RNAs, and pseudogenes in thyroid cancer. The determination of the diagnosis, prognosis, and treatment of thyroid cancers based on the evaluation of the noncoding RNA network could allow the implementation of a more personalized approach to fighting these pathologies. Abstract Among the thyroid neoplasias originating from follicular cells, we can include well-differentiated carcinomas, papillary (PTC) and follicular (FTC) thyroid carcinomas, and the undifferentiated anaplastic (ATC) carcinomas. Several mutations in oncogenes and tumor suppressor genes have already been observed in these malignancies; however, we are still far from the comprehension of their full regulation-altered landscape. Even if only 2% of the human genome has the ability to code for proteins, most of the noncoding genome is transcribed, constituting the heterogeneous class of noncoding RNAs (ncRNAs), whose alterations are associated with the development of several human diseases, including cancer. Hence, many scientific efforts are currently focused on the elucidation of their biological role. In this review, we analyze the scientific literature regarding the involvement of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and pseudogenes in FTC, PTC, and ATC. Recent findings emphasized the role of lncRNAs in all steps of cancer progression. In particular, lncRNAs may control progression steps by regulating the expression of genes and miRNAs involved in cell proliferation, apoptosis, epithelial–mesenchymal transition, and metastatization. In conclusion, the determination of the diagnosis, prognosis, and treatment of cancer based on the evaluation of the ncRNA network could allow the implementation of a more personalized approach to fighting thyroid tumors.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Francesco Esposito
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
| | - Maria Capone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Correspondence: (P.P.); (A.F.)
| | - Alfredo Fusco
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “G. Salvatore”, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini 5, 80131 Napoli, Italy; (M.D.M.); (F.E.); (M.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Napoli, Italy
- Correspondence: (P.P.); (A.F.)
| |
Collapse
|
15
|
Shifman BM, Platonova NM, Vasilyev EV, Abdulkhabirova FM, Kachko VA. Circular RNAs and thyroid cancer: closed molecules, open possibilities. Crit Rev Oncol Hematol 2022; 173:103662. [PMID: 35341987 DOI: 10.1016/j.critrevonc.2022.103662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Thyroid neoplasms requiring differential diagnosis between thyroid cancer and benign tumors can be detected in more than half of the healthy population. A generally accepted method that allows assessing the risk of malignant potential and determining the indications for surgical treatment of thyroid tumor is a fine-needle aspiration biopsy followed by a cytological examination. Nevertheless, in patients with indeterminate categories of cytological conclusions according to Bethesda system, the positive predictive value of the cytology result is significantly lower than desired and often leads to unjustified surgical treatment. In this regard, the search for alternative diagnostic solutions continues. Circular RNAs are a group of non-coding RNAs distinguished by a closed structure formed by covalent bonding of the nucleotide chain ends. Recent studies allow us to conclude that many different circular RNAs are involved in processes mediating oncogenesis in the thyroid gland, and their altered expression in tissue, blood, and exosomes of plasma may be a characteristic sign of thyroid cancer and certain clinicopathological features of its course. The purpose of this review is to analyze the accumulated data on the association of various circular RNAs with thyroid cancer and to discuss possible ways to improve the diagnosis and treatment of the disease based on the assessment of the expression of these molecules.
Collapse
|
16
|
Jiang J, Gao G, Pan Q, Liu J, Tian Y, Zhang X. Circular RNA circHIPK3 is downregulated in diabetic cardiomyopathy and overexpression of circHIPK3 suppresses PTEN to protect cardiomyocytes from high glucose-induced cell apoptosis. Bioengineered 2022; 13:6272-6279. [PMID: 35200097 PMCID: PMC8974065 DOI: 10.1080/21655979.2022.2031395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It has been reported that circHIPK3 can be downregulated by high glucose, suggesting its potential involvement in diabetes and diabetic complications. This study aimed to explore the role of circHIPK3 in diabetic cardiomyopathy (DC). PTEN is a kind of tumor suppressor gene, which is very commonly lost in human cancer. We detected the expression of circHIPK3 and PTEN in plasma samples from DC patients, diabetic patients without complications diabetes mellitus (DM) and health controls by RT-qPCR and ELISA. In vitro cell experiment, AC16 cells (cardiomyocytes) were treated with high glucose, followed by expression analysis of circHIPK3 and PTEN mRNA by RT-qPCR. CircHIPK3 or PTEN expression vector were used to overexpress circHIPK3 and PTEN in AC16 cells to explore the relationship between them. The role of circHIPK3 and PTEN in regulating the apoptosis of AC16 cells was analyzed by cell apoptosis assay. The result showed that CircHIPK3 was downregulated in diabetes and further downregulated in DC. In AC16 cells, high glucose treatment decreased the expression levels of circHIPK3. Across DC samples, the expression of circHIPK3 was inversely correlated with PTEN. In AC16 cells, overexpression of circHIPK3 decreased the expression levels of PTEN. CircHIPK3 may suppress AC16 cell apoptosis induced by high glucose and inhibited the role of PTEN in cell apoptosis. Therefore, circHIPK3 may downregulate PTEN to protect cardiomyocytes from high glucose-induced cell apoptosis.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Cardiology, Baoquanling Central Hospital, Hegang City, Heilongjiang Province, PR. China
| | - Guannan Gao
- Department of Cardiology, Baoquanling Central Hospital, Hegang City, Heilongjiang Province, PR. China
| | - Qiang Pan
- Department of Cardiology, Baoquanling Central Hospital, Hegang City, Heilongjiang Province, PR. China
| | - Jing Liu
- Department of Cardiology, Baoquanling Central Hospital, Hegang City, Heilongjiang Province, PR. China
| | - Yu Tian
- Department of Cardiology, Baoquanling Central Hospital, Hegang City, Heilongjiang Province, PR. China
| | - Xiaoji Zhang
- Department of Cardiology, Baoquanling Central Hospital, Hegang City, Heilongjiang Province, PR. China
| |
Collapse
|
17
|
Duan X, Yu X, Li Z. Circular RNA hsa_circ_0001658 regulates apoptosis and autophagy in gastric cancer through microRNA-182/Ras-related protein Rab-10 signaling axis. Bioengineered 2022; 13:2387-2397. [PMID: 35030981 PMCID: PMC8974080 DOI: 10.1080/21655979.2021.2024637] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is a tumor with high incidence and lack of early diagnostic markers. The aim of this study was to explore novel regulatory circular RNAs (circRNAs) in GC and their underlying mechanisms. Differentially expressed circRNAs were analyzed using the Gene Expression Omnibus (GEO). mRNA and miRNA expression levels were determined using real-time reverse transcription polymerase chain reaction (RT-qPCR). Protein expression was detected using Western blotting. Cellular functions were evaluated using the cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Immunofluorescence analysis was used to visually identify microtubule-associated protein 1 light chain 3 (LC3) puncta on a per-cell basis. Furthermore, dual-luciferase reporter and RNA pull-down assays were performed to verify the interaction between microRNA (miR)-182 and circ_0001658/Ras-related protein Rab-10 (RAB10). Circ_0001658 was identified to be aberrantly expressed in GC tissues and was demonstrated in GC cell lines (AGS and HGC27) in vitro. MiR-182 bound to circ_0001658 and RAB10. Circ_0001658 and RAB10 were upregulated, whereas miR-182 was suppressed in AGS and HGC27 cells. GC cell viability and autophagy were inhibited and apoptosis was promoted after circ_0001658 knockdown, and the cellular functions were reversed by downregulating miR-182. Moreover, upregulated RAB10 neutralized the effects of miR-182 on cell viability, autophagy, and apoptosis of GC cells. Silencing circ_0001658 restrained cell viability, suppressed autophagy, and promoted apoptosis of GC cells by sponging miR-182 to suppress the expression of RAB10. Therefore, circ_0001658 may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Xinxing Duan
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Xiong Yu
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Circular RNA CCDC66 Improves Murine Double Minute 4 (MDM4) Expression through Targeting miR-370 in Colorectal Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7723995. [PMID: 35069793 PMCID: PMC8767369 DOI: 10.1155/2022/7723995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Introduction Colorectal cancer (CRC), a common digestive tract tumor that contains colon and rectal cancer, is one of the three most common cancers globally. circRNAs are involved in the occurrence and development of CRC, but the mechanism of how they participate in this process remains unclear. Methods We adopted PCR for expression measure, CCK-8 for cell proliferation detection, Transwell for cell migration and invasion detection, and dual-luciferase reporter assays to detect the potential downstream targets of CCDC66 in CRC. Results This study showed that circRNA CCDC66 was overexpressed in CRC tissues, and after knockdown, it inhibited the proliferation, migration, and invasion of CRC cells (RKO and HCT-116) in vitro. In addition, the dual-luciferase reporter assay showed that there was a binding site between circCCDC66 and miR-370, as well as between miR-370 and murine double minute 4 (MDM4). That is, circCCDC66 upregulated the expression of MDM4 through competitively binding to miR-370. The expression of circCCDC66 in CRC tissues was positively correlated with MDM4 and negatively correlated with miR-370. Conclusion In summary, our results indicate that circCCDC66 is a key upregulation of CRC. circCCDC66 upregulates MDM4 through competitive binding to miR-370, thereby enhancing the metastatic ability of CRC cells and promoting the development of CRC.
Collapse
|
19
|
Wang Q, Xu B, Liu H, Wang D, Liu S, He C, Feng X, Wang L. CircRNF121 knockdown suppresses the progression of cervical cancer by regulating miR-153-3p/ATF2 axis and wnt/β-catenin pathway. Drug Dev Res 2022; 83:755-768. [PMID: 34981843 DOI: 10.1002/ddr.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/12/2022]
Abstract
Cervical cancer (CC) is a common malignancy in gynecology. Emerging evidence has demonstrated that circular RNAs (circRNAs) act as vital mediators in CC. However, the roles of circRNA ring finger protein 121 (circRNF121) in CC are largely unknown. Herein, we focused on the exact function and underlying mechanism of circRNF121 in CC development. Our results showed that circRNF121 was highly expressed in CC tissues and cells. Knockdown of circRNF121 suppressed cell growth, metastasis, epithelial-mesenchymal transition (EMT), autophagy, and wnt/β-catenin pathway in CC cells in vitro and blocked tumor formation in vivo. For mechanism investigation, circRNF121 could affect activating transcription factor 2 (ATF2) expression by decoying miR-153-3p, thereby accelerating CC cell development. In conclusion, circRNF121 exerted the tumor-suppressive role in CC progression by altering miR-153-3p/ATF2 axis. These results suggested that circRNF121 might be a possible circ-targeted therapy for patients with CC.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bai Xu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haiping Liu
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Dongwei Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Siyang Liu
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chi He
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiaona Feng
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Limin Wang
- Pharmacological Division of Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
20
|
Qiu J, Sun M, Zang C, Jiang L, Qin Z, Sun Y, Liu M, Zhang W. Five genes involved in circular RNA-associated competitive endogenous RNA network correlates with metastasis in papillary thyroid carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9016-9032. [PMID: 34814333 DOI: 10.3934/mbe.2021444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aimed to identify potential circular RNA (circRNA), microRNA (miRNA) and mRNA biomarkers as well as their underlying regulatory mechanisms in papillary thyroid carcinoma (PTC). Three microarray datasets from the Gene Expression Omnibus database as well as expression data and clinical phenotype from The Cancer Genome Atlas (TCGA) were downloaded, followed by differential expression, functional enrichment, protein-protein interaction (PPI), and module analyses. The support vector machine (SVM)-recursive feature elimination (RFE) algorithm was used to screen the key circRNAs. Finally, the mRNA-miRNA-circRNA regulatory network and competitive endogenous RNA (ceRNA) network were constructed. The prognostic value and clinical correlations of key mRNAs were investigated using TCGA dataset, and their expression was validated using the UALCAN database. A total of 1039 mRNAs, 18 miRNAs and 137 circRNAs were differentially expressed in patients with PTC. A total of 37 key circRNAs were obtained using the SVM-RFE algorithm, whereas 46 key mRNAs were obtained from significant modules in the PPI network. A total of 11 circRNA-miRNA pairs and 40 miRNA-mRNA pairs were predicted. Based on these interaction pairs, 46 circRNA-miRNA-mRNA regulatory pairs were integrated, of which 8 regulatory pairs in line with the ceRNA hypothesis were obtained, including two circRNAs (circ_0004053 and circ_0028198), three miRNAs (miR-199a-5p, miR-199b-5p, and miR-7-5p), and five mRNAs, namely APOA2, CCL20, LPAR5, MFGE8, and TIMP1. Survival analysis showed that LPAR5 expression was associated with patient survival. APOA2 expression showed significant differences between metastatic and non-metastatic tumors, whereas CCL20, LPAR5, MFGE8 and TIMP1 showed significant differences between metastatic and non-metastatic lymph nodes. Overall, we identified several potential targets and regulatory mechanisms involved in PTC. APOA2, CCL20, LPAR5, MFGE8, and TIMP1 may be correlated with PTC metastasis.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Maolin Sun
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Chuanshan Zang
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Liwei Jiang
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zuorong Qin
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yan Sun
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingbo Liu
- Department of Otolaryngology, Hainan Hospital of PLA General Hospital, Sanya 572000, China
| | - Wenwei Zhang
- Radiology Department, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
21
|
Liu B, Shi H, Qiu W, Wu X, Li L, Wu W. A two-microRNA signature predicts the progression of male thyroid cancer. Open Life Sci 2021; 16:981-991. [PMID: 34595349 PMCID: PMC8439266 DOI: 10.1515/biol-2021-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
In various cancers, microRNAs (miRNAs) are abnormally expressed, including thyroid cancer (TC). In recent years, the incidence of TC has increased annually around the world. Compared with female patients, male TC patients are more likely to have a postoperative recurrence and lymph node metastasis, and hence need second treatments. However, the molecular biological processes underlying this phenomenon are not understood. Therefore, we collected data on miRNA expression and clinical information of male TC patients from The Cancer Genome Atlas (TCGA) database. Differentially expressed miRNAs were identified between male TC tissues and matched normal tissues. The Kaplan–Meier method, univariate and multivariate Cox regressions, and receiver operating characteristic curve analyses were performed to assess the association between miRNAs and the disease-free survival of male TC patients. Gene Ontology (GO) and the Kyoto Encyclopaedia of Gene and Genome (KEGG) enrichment analyses were then used to explore the function of miRNA target genes. Furthermore, we evaluated the ability of the miRNA biomarker to predict survival in female TC patients. As a result, a total of 118 differentially expressed miRNAs were identified, including 25 upregulated and 93 downregulated miRNAs. Among them, miR-451a and miR-16-1-3p were confirmed to be independent prognostic factors for the disease-free survival rate. The target genes of miR-451a and miR-16-1-3p were identified, and functional analysis showed that these genes were enriched in 25 Go and KEGG accessions, including cell signal transduction, motor adhesion, phagocytosis, regulation of transcription, cell proliferation, angiogenesis, etc. Neither miR-451a and miR-16-1-3p, nor a prediction model based on both miRNAs effectively predicted survival in female TC patients. In conclusion, both miR-451a and miR-16-1-3p may play important roles in the processes of male TC. The two-miRNA signature involving miR-1258 and miR-193a may serve as a novel prognostic biomarker for male TC patients.
Collapse
Affiliation(s)
- Bingyang Liu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Haihong Shi
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Weigang Qiu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Xinquan Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Liqiong Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Wenyi Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| |
Collapse
|
22
|
Zhou J, Zhang H, Zou D, Zhou Z, Wang W, Luo Y, Liu T. Clinicopathologic and prognostic roles of circular RNA plasmacytoma variant translocation 1 in various cancers. Expert Rev Mol Diagn 2021; 21:1095-1104. [PMID: 34346262 DOI: 10.1080/14737159.2021.1964959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To explore the clinicopathologic and prognostic significance of circular RNA plasmacytoma variant translocation 1 (circPVT1) in various cancers. METHODS Several databases were searched for eligible studies published before March 01, 2021. The pooled odds ratios (ORs) with 95% confidence interval (95% CI) were calculated to assess the association between circPVT1 expression and prognostic outcomes of tumor including age, gender, clinical stage, tumor size, metastasis and overall survival. Begg's funnel plots and Egger's test were used to evaluate the publication bias. The robustness of our results was assessed using sensitivity analysis. RESULTS Ten studies comprising a total of 878 patients with cancer were included in this meta-analysis. The results showed that the high expression of circPVT1 was significantly related to clinical stage (OR=3.44, 95% CI: 2.40-4.94, P<0.05), tumor size (OR=2.29, 95% CI: 1.38-3.79, P<0.05), metastasis (OR=2.97, 95% CI: 2.06-4.28, p<0.05) and overall survival of cancer (OR=3.30, 95% CI: 2.26-4.84, p<0.05), but not associated with age and gender of patients with tumor. No publication bias was found. CONCLUSIONS High expression of circPVT1 may predict an advanced clinical stage and poor prognosis of tumor, suggesting that circPVT1 may serve as a potential prognostic marker in cancers.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dazhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Shaoyang, Hunan, China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Jiang B, Chen Y, Xia F, Li X. PTCSC3-mediated glycolysis suppresses thyroid cancer progression via interfering with PGK1 degradation. J Cell Mol Med 2021; 25:8454-8463. [PMID: 34337858 PMCID: PMC8419167 DOI: 10.1111/jcmm.16806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
The Warburg effect (aerobic glycolysis), a hallmark of cancer, serves as a promising target for diagnosis and therapy. Growing evidence indicates that long non‐coding RNAs (lncRNAs) play an important role in aerobic glycolysis of various tumours. However, the correlation between lncRNAs and glycolysis in thyroid cancer cells is still poorly understood. In this study, we showed that lncRNA papillary thyroid cancer susceptibility candidate 3 (PTCSC3) was significantly downregulated in papillary thyroid carcinoma (PTC). Overexpression of PTCSC3 significantly inhibited the aerobic glycolysis and tumour growth of PTC cells. Consistently, PTCSC3 overexpression suppressed tumour progress in vivo. Mechanistically, PTCSC3 inhibits aerobic glycolysis and proliferation of PTC by directly interacting with PGK1, a key enzyme in glycolytic pathway. As a result, PTCSC3 performs its role in PTC development via PGK1 and may be a potential therapeutic target for PTC treatment.
Collapse
Affiliation(s)
- Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Sun X, Deng K, Zang Y, Zhang Z, Zhao B, Fan J, Huang L. Exploring the regulatory roles of circular RNAs in the pathogenesis of atherosclerosis. Vascul Pharmacol 2021; 141:106898. [PMID: 34302990 DOI: 10.1016/j.vph.2021.106898] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with a covalently closed loop structure. Recent evidence has shown that circRNAs can regulate gene transcription, alternative splicing, microRNA (miRNA) "molecular sponges", RNA-binding proteins and protein translation. Atherosclerosis is one of the leading causes of death worldwide, and more studies have indicated that circRNAs are related to atherosclerosis pathogenesis, including vascular endothelial cells, vascular smooth muscle cells, inflammation and lipid metabolism. In this review, we systematically summarize the biogenesis, characteristics and functions of circRNAs with a focus on their roles in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xueyuan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Kaiyuan Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Yunhui Zang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Boxin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Lijuan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
| |
Collapse
|
25
|
Xu K, Qiu Z, Xu L, Qiu X, Hong L, Wang J. Increased levels of circulating circular RNA (hsa_circ_0013587) may serve as a novel biomarker for pancreatic cancer. Biomark Med 2021; 15:977-985. [PMID: 34289738 DOI: 10.2217/bmm-2020-0750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: Circular RNA can serve as a biomarker for early diagnosis of pancreatic cancer. Materials & methods: Analyzed the expression of various differentially expressed circular RNAs in the pancreatic cancer tissues by gene chip and identified the expression of hsa_circ_0013587 in pancreatic cancer cells, tissues and plasma by quantitative reverse transcription PCR (qRT-PCR). Results: Hsa_circ_0013587 was highly expressed in the pancreatic cancer tissues, cell lines and plasma samples from patients with pancreatic cancer. Notably, hsa_circ_0013587 was upregulated in pancreatic cancer patients with later clinical stages III-IV as compared with those detected in early clinical stages I-II. Conclusion: A high expression of hsa_circ_0013587 may serve as a novel diagnostic and therapeutic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Kaiwei Xu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| | - Zhoujian Qiu
- Department of Radiology, Second Yinzhou District Hospital, Ningbo, Zhejiang Province, China
| | - Liu Xu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| | - Xuedan Qiu
- Clinical laboratory, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang Province, China
| | - Lu Hong
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| |
Collapse
|
26
|
Ju X, Tang Y, Qu R, Hao S. The Emerging Role of Circ-SHPRH in Cancer. Onco Targets Ther 2021; 14:4177-4188. [PMID: 34285509 PMCID: PMC8286153 DOI: 10.2147/ott.s317403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Circ-SHPRH is a circular RNA that can regulate the expression of target genes by sponging microRNAs (miRNAs) or translating tumor suppressor proteins. Recent studies have suggested that circ-SHPRH may play a role in the development of tumors and cancers. Hence, this paper aimed to review the biological characteristics, molecular mechanisms, and potential clinical significance of circ-SHPRH in a variety of tumors and to evaluate its potential as a new diagnostic and prognostic biomarker. METHODS Numerous experiments were performed regarding the abnormal expression of circ-SHPRH in a variety of tumors, including hepatocellular carcinoma, gastric carcinoma, non-small cell lung cancer, osteosarcoma, colorectal cancer, cholangiocarcinoma, pancreatic ductal adenocarcinoma, retinoblastoma, and glioblastoma. RESULTS Upregulation of circ-SHPRH reportedly inhibits tumor cell proliferation, migration, and invasion, leading to the inhibition of tumor development. The clinicopathological parameters and the functional characteristics of circ-SHPRH in multiple human tumors and cancers were summarized. Circ-SHPRH functions as a tumor suppressor gene and has great potential as a diagnostic and prognostic biomarker for different types of cancer.
Collapse
Affiliation(s)
- Xinyue Ju
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
27
|
Ji X, Sun W, Lv C, Huang J, Zhang H. Circular RNAs Regulate Glucose Metabolism in Cancer Cells. Onco Targets Ther 2021; 14:4005-4021. [PMID: 34239306 PMCID: PMC8259938 DOI: 10.2147/ott.s316597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) were originally thought to result from RNA splicing errors. However, it has been shown that circRNAs can regulate cancer onset and progression in various ways. They can regulate cancer cell proliferation, differentiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in cancer cells through different mechanisms such as directly regulating glycolytic enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction pathways. In this review, we elucidate on the role of circRNAs in regulating glucose metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, and provides new therapeutic targets or new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| |
Collapse
|
28
|
Sun J, Peng Y, Liu J, Zhou H, Sun L, He Q, Yu E. Pseudogene legumain promotes thyroid carcinoma progression via the microRNA-495/autophagy pathway. Oncol Lett 2021; 22:616. [PMID: 34257724 PMCID: PMC8243076 DOI: 10.3892/ol.2021.12877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
The pseudogene legumain (LGMN) has been reported to regulate cancer cell biology. However, the role of LGMN in thyroid carcinoma remains unknown. Herein, Cell Counting Kit 8 and Transwell assays were performed to evaluate cellular proliferation and invasion capacity, respectively. In addition, a tube formation assay was performed to assess HUVEC angiogenesis. The results showed that LGMN depletion attenuated cellular proliferation, invasion and tube formation ability, and that LGMN expression was dysregulated in thyroid carcinoma tumors. Furthermore, patients with high LGMN expression levels exhibited a lower overall survival rate than those with low expression levels. LGMN and microRNA (miR)-495 modulated the expression levels of autophagy-related gene 3 (ATG3) and p62. Finally, ATG3 overexpression rescued the LGMN-regulated thyroid carcinoma phenotype. In conclusion, LGMN was found to promote thyroid carcinoma progression via the miR-495/autophagy axis, thus providing novel insights for understanding the pathogenesis of thyroid carcinoma.
Collapse
Affiliation(s)
- Jie Sun
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yicheng Peng
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianxia Liu
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hao Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liang Sun
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qin He
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Enqiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
29
|
Jiang L, Wang Y, Tang H, Li X, Huang C, Liu Z, Zhou F, Wang X, Li Y. CircCA12 Promotes Malignant Process via Sponging miR-1184 and Upregulating RAS Family in Bladder Cancer. Front Genet 2021; 12:663982. [PMID: 34234808 PMCID: PMC8257087 DOI: 10.3389/fgene.2021.663982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a panel of non-coding RNAs that mediate the regulation of gene expression, as well as pathological responses. Nonetheless, the function and expression pattern of circRNAs in urinary bladder cancer (UBC) remain unclear. Herein, we examined the function of circCA12 in UBC development. qRT-PCR results demonstrated remarkable circCA12 upregulation in UBC cell lines, as well as tissues. CCK-8, colony formation, and xenograft assays were employed to determine the effect of circCA12 on UBC. Our data illustrated silencing circCA12 repressed the proliferation along with the colony-formation capability of UBC cells. The migration and metastasis potential of UBC cells were remarkably abated in vivo, as well as in vitro after transfection with si-cirCA12 or sh-circCA12. Moreover, luciferase reporter and RIP assays indicated that circCA12 binds to miRNA-1184 through sponging miRNA, thereby up-regulating the expression of RAS family genes (NRAS, KRAS, and HRAS). In conclusion, the circCA12/miRNA-1184/RAS family was identified as a regulatory axis in UBC progression.
Collapse
Affiliation(s)
- Lijuan Jiang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Huancheng Tang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiangdong Li
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Chaowen Huang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zhuowei Liu
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaolan Wang
- Reproductive Center of Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yonghong Li
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| |
Collapse
|
30
|
Jafari SH, Rabiei N, Taghizadieh M, Mirazimi SMA, Kowsari H, Farzin MA, Razaghi Bahabadi Z, Rezaei S, Mohammadi AH, Alirezaei Z, Dashti F, Nejati M. Joint application of biochemical markers and imaging techniques in the accurate and early detection of glioblastoma. Pathol Res Pract 2021; 224:153528. [PMID: 34171601 DOI: 10.1016/j.prp.2021.153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022]
Abstract
Glioblastoma is a primary brain tumor with the most metastatic effect in adults. Despite the wide range of multidimensional treatments, tumor heterogeneity is one of the main causes of tumor spread and gives great complexity to diagnostic and therapeutic methods. Therefore, featuring noble noninvasive prognostic methods that are focused on glioblastoma heterogeneity is perceived as an urgent need. Imaging neuro-oncological biomarkers including MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status, tumor grade along with other tumor characteristics and demographic features (e.g., age) are commonly referred to during diagnostic, therapeutic and prognostic processes. Therefore, the use of new noninvasive prognostic methods focused on glioblastoma heterogeneity is considered an urgent need. Some neuronal biomarkers, including the promoter methylation status of the promoter MGMT, the characteristics and grade of the tumor, along with the patient's demographics (such as age and sex) are involved in diagnosis, treatment, and prognosis. Among the wide array of imaging techniques, magnetic resonance imaging combined with the more physiologically detailed technique of H-magnetic resonance spectroscopy can be useful in diagnosing neurological cancer patients. In addition, intracranial tumor qualitative analysis and sometimes tumor biopsies help in accurate diagnosis. This review summarizes the evidence for biochemical biomarkers being a reliable biomarker in the early detection and disease management in GBM. Moreover, we highlight the correlation between Imaging techniques and biochemical biomarkers and ask whether they can be combined.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayad Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Kowsari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Farzin
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Alirezaei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Paramedical School, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
31
|
Huang L, Rong Y, Tang X, Yi K, Wu J, Wang F. Circular RNAs Are Promising Biomarkers in Liquid Biopsy for the Diagnosis of Non-small Cell Lung Cancer. Front Mol Biosci 2021; 8:625722. [PMID: 34136531 PMCID: PMC8201604 DOI: 10.3389/fmolb.2021.625722] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
The high incidence and mortality of lung cancer make early detection of lung cancer particularly important. At present, the diagnosis of lung cancer mainly depends on diagnostic imaging and tissue biopsy. However, current diagnostics are not satisfactory owing to the low specificity and inability of multiple sampling. Accumulating evidence indicates that circular RNAs (circRNAs) play a critical role in cancer progression and are promising cancer biomarkers. In particular, circRNAs are considered novel specific diagnostic markers for non-small cell lung cancer (NSCLC). Liquid biopsy is an important method in the early diagnosis of cancer due to its high sensitivity and specificity, as well as the possibility of performing multiple sampling. circRNAs are stably present in exosomes and sometimes become part of circulating nucleic acids, making them ideal for liquid biopsy. In this review, we summarize the advances in the research on circRNAs in NSCLC, and also highlight their potential applications for NSCLC detection.
Collapse
Affiliation(s)
- Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
32
|
Nazarian H, Novin MG, Khaleghi S, Habibi B. Small non-coding RNAs in embryonic pre-implantation. Curr Mol Med 2021; 22:287-299. [PMID: 34042034 DOI: 10.2174/1566524021666210526162917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/22/2022]
Abstract
Failure of embryo implantation has been introduced as an important limiting parameter in early assisted reproduction and pregnancy. The embryo-maternal interactions, endometrial receptivity, and detections of implantation consist of the embryo viability. For regulating the implantation, multiple molecules may be consisted, however, their specific regulatory mechanisms still stand unclear. MicroRNAs (miRNAs) have been highly concerned due to their important effect on human embryo implantation. MicroRNA (miRNA), which acts as the transcriptional regulator of gene expression, is consisted in embryo implantation. Scholars determined that miRNAs cannot affect the cells and release by cells in the extracellular environment considering facilitating intercellular communication, multiple packaging forms, and preparing indicative data in the case of pathological and physiological conditions. The detection of extracellular miRNAs provided new information in cases of implantation studies. For embryo-maternal communication, MiRNAs offered novel approaches. In addition, in assisted reproduction, for embryo choice and prediction of endometrial receptivity, they can act as non-invasive biomarkers and can enhance the accuracy in the process of reducing the mechanical damage for the tissue.
Collapse
Affiliation(s)
- Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khaleghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Habibi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Khan S, Jha A, Panda AC, Dixit A. Cancer-Associated circRNA-miRNA-mRNA Regulatory Networks: A Meta-Analysis. Front Mol Biosci 2021; 8:671309. [PMID: 34055888 PMCID: PMC8149909 DOI: 10.3389/fmolb.2021.671309] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023] Open
Abstract
Recent advances in sequencing technologies and the discovery of non-coding RNAs (ncRNAs) have provided new insights in the molecular pathogenesis of cancers. Several studies have implicated the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and recently discovered circular RNAs (circRNAs) in tumorigenesis and metastasis. Unlike linear RNAs, circRNAs are highly stable and closed-loop RNA molecules. It has been established that circRNAs regulate gene expression by controlling the functions of miRNAs and RNA-binding protein (RBP) or by translating into proteins. The circRNA-miRNA-mRNA regulatory axis is associated with human diseases, such as cancers, Alzheimer's disease, and diabetes. In this study, we explored the interaction among circRNAs, miRNAs, and their target genes in various cancers using state-of-the-art bioinformatics tools. We identified differentially expressed circRNAs, miRNAs, and mRNAs on multiple cancers from publicly available data. Furthermore, we identified many crucial drivers and tumor suppressor genes in the circRNA-miRNA-mRNA regulatory axis in various cancers. Together, this study data provide a deeper understanding of the circRNA-miRNA-mRNA regulatory mechanisms in cancers.
Collapse
Affiliation(s)
- Shaheerah Khan
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Atimukta Jha
- Institute of Life Sciences, Bhubaneswar, India
- Manipal Academy of Higher Education, Manipal, India
| | | | | |
Collapse
|
34
|
Aishanjiang K, Wei XD, Fu Y, Lin X, Ma Y, Le J, Han Q, Wang X, Kong X, Gu J, Wu H. Circular RNAs and Hepatocellular Carcinoma: New Epigenetic Players With Diagnostic and Prognostic Roles. Front Oncol 2021; 11:653717. [PMID: 33959506 PMCID: PMC8093866 DOI: 10.3389/fonc.2021.653717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Due to the lack of potent diagnosis and prognosis biomarkers and effective therapeutic targets, the overall prognosis of survival is poor in HCC patients. Circular RNAs (circRNAs) are a class of novel endogenous non-coding RNAs with covalently closed loop structures and implicated in diverse physiological processes and pathological diseases. Recent studies have demonstrated the involvement of circRNAs in HCC diagnosis, prognosis, development, and drug resistance, suggesting that circRNAs may be a class of novel targets for improving HCC diagnosis, prognosis, and treatments. In fact, some artificial circRNAs have been engineered and showed their therapeutic potential in treating HCV infection and gastric cancer. In this review, we introduce the potential of circRNAs as biomarkers for HCC diagnosis and prognosis, as therapeutic targets for HCC treatments and discuss the challenges in circRNA research and chances of circRNA application.
Collapse
Affiliation(s)
- Kedeerya Aishanjiang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Dong Wei
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yi Fu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xinjie Lin
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Jiamei Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xuan Wang
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
35
|
Fang N, Ding GW, Ding H, Li J, Liu C, Lv L, Shi YJ. Research Progress of Circular RNA in Gastrointestinal Tumors. Front Oncol 2021; 11:665246. [PMID: 33937077 PMCID: PMC8082141 DOI: 10.3389/fonc.2021.665246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
circular RNA (circRNA) is a closed ring structure formed by cyclic covalent bonds connecting the 5’-end and 3’-end of pre-mRNA. circRNA is widely distributed in eukaryotic cells. Recent studies have shown that circRNA is involved in the pathogenesis and development of multiple types of diseases, including tumors. circRNA is specifically expressed in tissues. And the stability of circRNA is higher than that of linear RNA, which can play biological roles through sponge adsorption of miRNA, interaction with RNA binding protein, regulation of gene transcription, the mRNA and protein translation brake, and translation of protein and peptides. These characteristics render circRNAs as biomarkers and therapeutic targets of tumors. Gastrointestinal tumors are common malignancies worldwide, which seriously threaten human health. In this review, we summarize the generation and biological characteristics of circRNA, molecular regulation mechanism and related effects of circRNA in gastrointestinal tumors.
Collapse
Affiliation(s)
- Na Fang
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Guo-Wen Ding
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Hao Ding
- Department of Respiratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Juan Li
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Chao Liu
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Lu Lv
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Yi-Jun Shi
- Department of Thoracic and Cardiovascular Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Geng J, Yang K. circCCND1 Regulates Oxidative Stress and FGF9 to Enhance Chemoresistance of Non-Small Cell Lung Cancer via Sponging miR-187-3p. DNA Cell Biol 2021; 40:675-682. [PMID: 33733860 DOI: 10.1089/dna.2020.6412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Circular RNAs have been shown to regulate cancer tumorigenesis and drug resistance. Recently, circCCND1 is reported to promote laryngeal squamous cell carcinoma; however, whether circCCND1 is implicated in non-small cell lung cancer (NSCLC) remains unclear. In this research, The Cancer Genome Atlas data of lung adenocarcinoma were analyzed to show gene expression and overall survival. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay and cell colony formation assay were utilized to measure cell viability and proliferation of A549 and HCC827. Apoptosis was detected by TdT-mediated dUTP Nick-End Labeling assay. Besides, reverse transcription-quantitative PCR was used to examine gene expression. We observed that circCCND1 was significantly upregulated in lung cancer cells and patients. circCCND1 knockdown attenuated cell proliferation and induced apoptosis under cisplatin treatment. Mechanistically, circCCND1 interacted with miR-187-3p to regulate reactive oxygen species and FGF9 in NSCLC cells. Finally, miR-187-3p was demonstrated to rescue circCCND1 knockdown-modulated chemoresistance of NSCLC cells. In this study, our conclusions facilitate the understanding of NSCLC drug resistance to cisplatin.
Collapse
Affiliation(s)
- Jiqun Geng
- Department of Thoracic Surgery, and Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kaihua Yang
- Department of Radiotherapy, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Sun H, Wu Z, Liu M, Yu L, Li J, Zhang J, Ding X, Jin H. CircRNA May Not Be "Circular". Front Genet 2021; 12:633750. [PMID: 33679895 PMCID: PMC7934283 DOI: 10.3389/fgene.2021.633750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNA (circRNA) is a novel regulatory non-coding RNA and participates in diverse physiological and pathological processes. However, the structures and molecular mechanisms of circRNAs remain unclear. In this study, taking advantage of openly databases and bioinformatics analysis, we observed lots of internal complementary base-pairing sequences (ICBPS) existed in plenty of circRNAs, especially in extremely long circRNAs (el-circRNAs, > 5,000 nt). The result indicated that circRNA may not be a simple circular structure. In addition, we put forward the hypothesis of “open-close effect” in the transition for specific circRNA from normal state to morbid state. Taken together, our results not only expand the knowledge of circRNAs, but also highlight the potential molecular mechanism of circRNAs.
Collapse
Affiliation(s)
- Handong Sun
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijuan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Ming Liu
- Guangzhou Geneseed Biotech Co., Ltd., Guangzhou, China
| | - Liang Yu
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jinwen Zhang
- Guangzhou Geneseed Biotech Co., Ltd., Guangzhou, China
| | - Xiangming Ding
- Department of Bioinformatics, ATCGene Inc., Guangzhou, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| |
Collapse
|
38
|
Xiong D, He R, Dang Y, Wu H, Feng Z, Chen G. The Latest Overview of circRNA in the Progression, Diagnosis, Prognosis, Treatment, and Drug Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 10:608257. [PMID: 33680930 PMCID: PMC7928415 DOI: 10.3389/fonc.2020.608257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the main causes of tumor-related deaths worldwide. Due to the lack of obvious early symptoms and the lack of sensitive screening indicators in the early stage of HCC, the vast majority of patients are diagnosed with advanced or metastatic HCC, resulting in dissatisfactory treatment result. Therefore, it is urgent to determine effective and sensitive diagnostic and prognostic indicators and to determine new therapeutic targets. Circular RNA (circRNA) is a type of non-coding RNA that has been neglected for a long time. In recent years, it has been proved to play an important role in the development of many human diseases. Increasing evidence shows that change in circRNA expression has an extensive effect on the biological behavior of HCC. In this study, we comprehensively tracked the latest progress of circRNA in the pathogenesis of HCC, and reviewed its role as a biomarker for diagnosis and prognosis prediction in patients with HCC. In addition, we also summarized the potential of circRNA as therapeutic target in HCC and its relationship with HCC drug resistance, providing clues for the clinical development of circRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Dandan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhenbo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
39
|
Zhao Y, Sun Y, Yang J, Zhu Z, Jia X. WITHDRAWN: Circ_0000517 contributes to hepatocellular carcinoma progression by upregulating ARID4B via sponging miR-328-3p. Cell Signal 2021:109950. [PMID: 33582185 DOI: 10.1016/j.cellsig.2021.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yongmei Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| | - Ya Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, China.
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| | - Zhenfeng Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| | - Xin Jia
- School of pharmacy, Zhengzhou University, Zhengzhou City, Henan Province 450052, China
| |
Collapse
|
40
|
Fang Z, Jiang C, Li S. The Potential Regulatory Roles of Circular RNAs in Tumor Immunology and Immunotherapy. Front Immunol 2021; 11:617583. [PMID: 33613544 PMCID: PMC7886782 DOI: 10.3389/fimmu.2020.617583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes with features of high stability, tissue-specific and cell-specific expression. According to their biogenesis, circRNAs are mainly classified into five types, i.e. exonic circRNAs (EciRNAs), exon-intron circRNAs (EIciRNAs), intronic RNAs (CiRNAs), fusion circRNAs (f-circRNAs), and read-through circRNAs (rt-circRNAs). CircRNAs have been emerging as important non-coding regulatory RNAs in a variety of human cancers. CircRNA4s were revealed to exert regulatory function through multiple mechanisms, such as sponges/decoys of miRNAs and proteins, enhancers of protein functions, protein scaffolds, protein recruitment, or protein translation templates. Furthermore, some circRNAs are intensively associated with immune cells in tumor immune microenvironment (TIME), e.g. circARSP91 and natural killer cells. Through regulating immune checkpoint genes, circRNAs are demonstrated to modulate the immune checkpoint blockade immunotherapy, e.g. circCPA4 could up-regulate PD-L1 expression. In summary, we reviewed the molecular features of circRNAs and mechanisms how they exert functions. We further summarized functional implications of circRNA regulations in tumor immunology and immunotherapy. Further understanding of the regulatory roles of circRNAs in tumor immunology and immunotherapy will benefit tumor treatment.
Collapse
Affiliation(s)
- Zhixiao Fang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Shengli Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Zhang C, He J, Qi L, Wan L, Wang W, Tu C, Li Z. Diagnostic and Prognostic Significance of Dysregulated Expression of Circular RNAs in Osteosarcoma. Expert Rev Mol Diagn 2021; 21:235-244. [PMID: 33428501 DOI: 10.1080/14737159.2021.1874922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE This study aimed to perform an updated meta-analysis to explore the clinical, diagnostic, and prognostic values of circRNAs in osteosarcoma. METHODS : PubMed, Web of Science, EMBASE, Scopus, and Cochrane Library were systematically searched up to December 15, 2020. Eligible studies regarding the relationship between circRNAs levels and clinicopathological, diagnostic, and prognostic values in osteosarcoma were included for study. RESULTS 31 studies involving 1979 osteosarcoma patients were enrolled, with 22 studies on clinicopathological parameters, eleven on diagnosis, and 23 on prognosis. For clinical parameters, overexpression of oncogenic circRNAs was intimately correlated with larger tumor size, advanced Enneking stage, poor differentiation, and distant metastasis (DM). In contrast, the downregulated circRNAs showed negative correlation with Enneking stage and DM. For the diagnostic values, the summary area under the curve of circRNA for the discriminative efficacy between osteosarcoma patients and non-cancer counterparts was estimated to be 0.87, with a weighted sensitivity of 0.79, specificity of 0.81, respectively. For the prognostic significance, oncogenic circRNAs had poor overall survival (OS) and disease-free survival, while elevated expression of tumor-suppressor circRNAs were closely related to longer OS. CONCLUSION This study showed that aberrantly expressed circRNA signatures could serve as potential biomarkers in diagnosis and prognosis in osteosarcoma.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 2021; 19:910-928. [PMID: 33598105 PMCID: PMC7851342 DOI: 10.1016/j.csbj.2021.01.018] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a very interesting class of conserved single-stranded RNA molecules derived from exonic or intronic sequences by precursor mRNA back-splicing. Unlike canonical linear RNAs, circRNAs form covalently closed, continuous stable loops without a 5'end cap and 3'end poly(A) tail, and therefore are resistant to exonuclease digestion. The majority of circRNAs are highly abundant, and conserved across different species with a tissue or developmental-stage-specific expression. circRNAs have been shown to play important roles as microRNA sponges, regulators of gene splicing and transcription, RNA-binding protein sponges and protein/peptide translators. Emerging evidence reveals that circRNAs function in various human diseases, particularly cancers, and may function as better predictive biomarkers and therapeutic targets for cancer treatment. In consideration of their potential clinical relevance, circRNAs have become a new research hotspot in the field of tumor pathology. In the present study, the current understanding of the biogenesis, characteristics, databases, research methods, biological functions subcellular distribution, epigenetic regulation, extracellular transport and degradation of circRNAs was discussed. In particular, the multiple databases and methods involved in circRNA research were first summarized, and the recent advances in determining the potential roles of circRNAs in tumor growth, migration and invasion, which render circRNAs better predictive biomarkers, were described. Furthermore, future perspectives for the clinical application of circRNAs in the management of patients with cancer were proposed, which could provide new insights into circRNAs in the future.
Collapse
Key Words
- AML, acute myloid leukemia
- BSJ, back-splice junction
- Biomarker
- CLL, chronic lymphocytic leukemia
- CML, chronic myeloid leukemia
- CRC, colorectal cancer
- Cancer
- Circular RNAs
- EIciRNAs, exon–intron RNAs
- EMT, epithelial-mesenchymal transition
- Functions
- GC, gastric cancer
- HCC, hepatocellular carcinoma
- ISH, in situ hybridization
- LUAD, lung adenocarcinoma
- MER, miRNA response elements
- MM, multiple myeloma
- NSCLC, non-small cell lung cancer
- PCR, polymerase chain reaction
- PDAC, pancreatic ductal adenocarcinoma
- RBP, RNA-binding protein
- RNA, ribonucleic acid
- RNase, ribonuclease
- RT-PCR, reverse transcription-PCR
- TNM, tumor node metastases
- UTR, untranslated regions
- ccRCC, clear cell renal cell carcinoma
- ceRNAs, endogenous RNAs
- ciRNAs, circular intronic RNAs
- ciRS-7, circular RNA sponge for miR-7
- circRNAs, circular RNAs
- ecircRNAs, exonic circular RNAs
- lncRNAs, long ncRNA
- miRNAs, microRNAs
- ncRNAs, noncoding RNAs
- qPCR, quantitative PCR
- rRNA, ribosomal RNA
- siRNAs, small interfering RNAs
- snRNA, small nuclear RNA
- tricRNAs, tRNA intronic circRNAs
Collapse
Affiliation(s)
- Xiaozhu Tang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyan Ren
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|