1
|
Yang J, Li X, Zhang Y, Che P, Qin W, Wu X, Liu Y, Hu B. Circ_0090231 knockdown protects vascular smooth muscle cells from ox-LDL-induced proliferation, migration and invasion via miR-942-5p/PPM1B axis during atherosclerosis. Mol Cell Biochem 2024; 479:2035-2045. [PMID: 37515673 DOI: 10.1007/s11010-023-04811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Atherosclerosis (AS) is a dominant pathological basis of cardiovascular disease. Circular RNAs (circRNAs) have been proposed to have crucial functions in regulating pathological progressions of AS. Hence, the aim of this study was to investigate the potential function of circ_0090231 in AS progression. Oxidized low densitylipoprotein (ox-LDL)-challenged vascular smooth muscle cells (VSMCs) were used for in vitro functional analysis. Levels of genes and proteins were measured by qRT-PCR and Western blot. The proliferation, migration and invasion were assessed using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell assays. The interaction between miR-942-5p and circ_0090231 or PPM1B (Protein Phosphatase, Mg2+/Mn2+ Dependent 1B) was evaluated by dual-luciferase reporter and pull-down assays. Circ_0090231 is a stable circRNA, and was increased in the serum of AS patients and ox-LDL-challenged VSMCs. Functionally, silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs. Mechanistically, circ_0090231 directly targeted miR-942-5p, and PPM1B was a target of miR-942-5p. Besides, circ_0090231 sequestered miR-942-5p to release PPM1B expression, suggesting the circ_0090231/miR-942-5p/PPM1B axis. Further rescue experiments showed that miR-942-5p inhibition or ectopic overexpression of PPM1B dramatically attenuated the suppressing influences of circ_0090231 knockdown on VSMC proliferative, migratory and invasive abilities under ox-LDL treatment. Silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs via miR-942-5p/PPM1B axis, providing a theoretical basis for elucidating the mechanism of AS process.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Xiangyan Li
- Department of Interventional Catheter Lab, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, China
| | - Yuming Zhang
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Pengfei Che
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Wei Qin
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Xuecui Wu
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Yue Liu
- Department of Radiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, China
| | - Bing Hu
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China.
| |
Collapse
|
2
|
Li Z, Tong G, Peng X, Wang S. Circ_0005785 Silencing Constrains the Functional Properties of Colorectal Cancer Cells Depending on miR-7-5p/DNMT3A Axis. Biochem Genet 2024; 62:1795-1810. [PMID: 37730966 DOI: 10.1007/s10528-023-10522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Circular RNAs (circRNAs) closely related to the progression of colorectal cancer (CRC). Nevertheless, the study of circ_0005785 in CRC has not been reported. In this test, we aimed to investigate the mechanisms of circ_0005785 in CRC development. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were employed to reveal the expression of genes and proteins. Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry analysis, transwell assay and tube formation experiment were implemented to examine cell growth, apoptosis, invasion and angiogenesis. The relationships among circ_0005785, miR-7-5p and DNA methyltransferase 3 A (DNMT3A) were verified by dual-luciferase reporter assay. Xenograft mouse model was built to evaluate the impacts of circ_0005785 deficiency on CRC growth in vivo. We found that circ_0005785 was increased in CRC patients and cell lines. Circ_0005785 downregulation retarded cell proliferation, invasion, angiogenesis whereas expedited apoptosis in CRC cells. Mechanistically, circ_0005785 could sponge miR-7-5p and the suppressive treads of circ_0005785 in CRC development was attenuated by miR-7-5p down-regulation. DNMT3A was targeted by miR-7-5p and miR-7-5p overexpression constrained cell malignant behaviors, but the addition of DNMT3A counteracted the effects. Additionally, circ_0005785 inhibition hindered the tumor growth in vivo. In conclusion, circ_0005785 aggravated the CRC progression by increasing the level of DNMT3A via adsorbing miR-7-5p.
Collapse
Affiliation(s)
- Zhu Li
- Department of oncology, Peking Universtity Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518000, China
| | - Gangling Tong
- Department of oncology, Peking Universtity Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518000, China
| | - Xiaodan Peng
- Department of oncology, Peking Universtity Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518000, China
| | - Shubin Wang
- Department of oncology, Peking Universtity Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, Guangdong Province, 518000, China.
| |
Collapse
|
3
|
Zhang Y, Luo J, Yang W, Ye WC. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis 2023; 14:353. [PMID: 37296107 PMCID: PMC10250185 DOI: 10.1038/s41419-023-05881-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Globally, colorectal cancer (CRC) is the third most prevalent cancer and the second leading cause of cancer-related deaths. Circular RNAs (circRNAs) are single-stranded RNA with covalently closed-loop structures and are highly stable, conserved, and abundantly expressed in various organs and tissues. Recent research found abnormal circRNA expression in CRC patients' blood/serum, cells, CRC tissues, and exosomes. Furthermore, mounting data demonstrated that circRNAs are crucial to the development of CRC. CircRNAs have been shown to exert biological functions by acting as microRNA sponges, RNA-binding protein sponges, regulators of gene splicing and transcription, and protein/peptide translators. These characteristics make circRNAs potential markers for CRC diagnosis and prognosis, potential therapeutic targets, and circRNA-based therapies. However, further studies are still necessary to improve the understanding of the roles and biological mechanisms of circRNAs in the development of CRC. In this review, up-to-date research on the role of circRNAs in CRC was examined, focusing on their potential application in CRC diagnosis and targeted therapy, which would advance the knowledge of the functions of circRNAs in the development and progression of CRC.
Collapse
Affiliation(s)
- Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Jingyan Luo
- Forevergen Biosciences Centre, Guangzhou International Biotech Island, Guangzhou, 510300, China
| | - Weikang Yang
- Department of Prevention and Healthcare, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Wen-Chu Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
4
|
Fang G, Xu D, Zhang T, Wang G, Qiu L, Gao X, Miao Y. Biological functions, mechanisms, and clinical significance of circular RNA in colorectal cancer. Front Oncol 2023; 13:1138481. [PMID: 36950552 PMCID: PMC10025547 DOI: 10.3389/fonc.2023.1138481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide due to the lack of effective diagnosis and prognosis biomarkers and therapeutic targets, resulting in poor patient survival rates. Circular RNA (circRNA) is a type of endogenous non-coding RNA (ncRNA) with a closed-loop structure that plays a crucial role in physiological processes and pathological diseases. Recent studies indicate that circRNAs are involved in the diagnosis, prognosis, drug resistance, and development of tumors, particularly in CRC. Therefore, circRNA could be a potential new target for improving CRC diagnosis, prognosis, and treatment. This review focuses on the origin and biological functions of circRNA, summarizes recent research on circRNA's role in CRC, and discusses the potential use of circRNAs as clinical biomarkers for cancer diagnosis and prognosis, as well as therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Guida Fang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
| | - Dalai Xu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
| | - Gang Wang
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Lei Qiu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xuzhu Gao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
- Institute of Clinical Oncology, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
5
|
Antonyová V, Tatar A, Brogyányi T, Kejík Z, Kaplánek R, Vellieux F, Abramenko N, Sinica A, Hajduch J, Novotný P, Masters BS, Martásek P, Jakubek M. Targeting of the Mitochondrial TET1 Protein by Pyrrolo[3,2- b]pyrrole Chelators. Int J Mol Sci 2022; 23:ijms231810850. [PMID: 36142763 PMCID: PMC9505425 DOI: 10.3390/ijms231810850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Targeting of epigenetic mechanisms, such as the hydroxymethylation of DNA, has been intensively studied, with respect to the treatment of many serious pathologies, including oncological disorders. Recent studies demonstrated that promising therapeutic strategies could potentially be based on the inhibition of the TET1 protein (ten-eleven translocation methylcytosine dioxygenase 1) by specific iron chelators. Therefore, in the present work, we prepared a series of pyrrolopyrrole derivatives with hydrazide (1) or hydrazone (2–6) iron-binding groups. As a result, we determined that the basic pyrrolo[3,2-b]pyrrole derivative 1 was a strong inhibitor of the TET1 protein (IC50 = 1.33 μM), supported by microscale thermophoresis and molecular docking. Pyrrolo[3,2-b]pyrroles 2–6, bearing substituted 2-hydroxybenzylidene moieties, displayed no significant inhibitory activity. In addition, in vitro studies demonstrated that derivative 1 exhibits potent anticancer activity and an exclusive mitochondrial localization, confirmed by Pearson’s correlation coefficient of 0.92.
Collapse
Affiliation(s)
- Veronika Antonyová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
| | - Ameneh Tatar
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Tereza Brogyányi
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic
| | - Zdeněk Kejík
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Robert Kaplánek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
| | - Nikita Abramenko
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
| | - Alla Sinica
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Petr Novotný
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
| | - Bettie Sue Masters
- Duke University Medical Center, Department of Biochemistry, Durham, NC 27707, USA
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- Correspondence: (P.M.); (M.J.)
| | - Milan Jakubek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 20 Vestec, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
- Correspondence: (P.M.); (M.J.)
| |
Collapse
|