1
|
Yuan P, Gao X, Xu M, Qiu L, Xiong Z, Shen J, Xing H, Yang R, Zhao L, Liu X, Gu J, Liu W. Novel miRNA markers and their mechanism of esophageal squamous cell carcinoma (ESCC) based on TCGA. Sci Rep 2024; 14:27261. [PMID: 39516222 PMCID: PMC11549395 DOI: 10.1038/s41598-024-76321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs(miRNAs) are promising biomarkers for early esophageal squamous cell carcinoma (ESCC) detection and prognostic prediction. This study aimed to explore the potential biomarkers and molecular pathogenesis in the early diagnosis of ESCC. Firstly, 48 differentially expressed miRNAs (DEMs) and 1319 differentially expressed genes (DEGs) were identified between 94 ESCC tissues and 13 normal esophageal tissues in TCGA. From miRNA-mRNA regulatory network, there are 6558 target genes of the 48 DEMs, where 400 target genes are also among 1319 DEGs. Then, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicate that the 400 DEGs significantly enriched in cell cycle, proteoglycans in cancer, p53 signaling pathway, protein digestion and absorption, transcriptional dysregulation in cancer, and oocyte meiosis. And there are 66 DEGs among these six biological pathways, which we called GO-DEGs. From miRNA-mRNA regulatory network, 32 DEMs regulated the 66 GO-DEGs, where 22 DEMs were verified by different types of experiments in ESCC tissues, cells, or serum from the literature. For the other novel 10 DEMs, single-factor Cox regression analysis show that only hsa-miR-34b-3p showed no significant correlation with the overall survival of ESCC patients. Finally, we obtained the novel 9 ESCC-related DEMs, where three are down-regulated, and six are up-regulated. We analyzed the expression trends of target genes for five miRNAs and identified three significantly different miRNAs (hsa-miR-205-3p, hsa-miR-452-3p, and hsa-miR-6499-3p) confirmed by qPCR. Moreover, the stage-specific miRNAs were also suggested. These three qPCR validated miRNAs are also specific to the early stages of ESCC: hsa-miR-452-3p is specific to Stage I, II and III; hsa-miR-205-3p is specific in Stage II and III; and hsa-miR-6499-3p is Stage II specific. They might be the potential biomarkers for ESCC stage diagnosis. This study identified three novel miRNA markers potentially related to the diagnosis of ESCC and participated in the occurrence and development of ESCC through cell cycle, proteoglycans in cancer, p53 signaling pathway, protein digestion and absorption, transcriptional dysregulation in cancer, and signaling pathway for oocyte meiosis.
Collapse
Affiliation(s)
- Ping Yuan
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoyan Gao
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mingjun Xu
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liangyu Qiu
- Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zijun Xiong
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Jun Shen
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huanhuan Xing
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Ruofan Yang
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Liang Zhao
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xi Liu
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Jiaowei Gu
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Road, Shiyan, 442000, Hubei, People's Republic of China.
| | - Wenting Liu
- Healthcare Big Data Center, School of Public Health, Hubei University of Medicine, 30 Chaoyang Middle Road, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Xian D, Yang S, Liu Y, Liu Q, Huang D, Wu Y. MicroRNA-196a-5p facilitates the onset and progression via targeting ITM2B in esophageal squamous cell carcinoma. Pathol Int 2024; 74:129-138. [PMID: 38289121 DOI: 10.1111/pin.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 03/21/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy affecting the digestive tract, with an increasing incidence rate worldwide. Recently, numerous studies revealed that microRNAs were associated with gene expression regulation, particularly their involvement in the regulation of tumor cells, garnering widespread attention. Here, we discovered that miR-196a-5p was significantly upregulated in both ESCC tissues and cells, which was correlated with an unfavorable prognosis. Series functional in vitro investigations have confirmed that silencing miR-196a-5p obviously restrained the ESCC cells malignant phenotypes and promoted apoptosis. Bioinformatics analysis and rescue experiments revealed that miR-196a-5p directly targeted ITM2B, exerting influence on the development of ESCC cells through negative regulation of ITM2B expression. Xenograft mouse models were established for conducting in vivo experiments, providing further confirmation of the regulatory mechanism and biological significance of the miR-196a-5p/ITM2B axis in ESCC. Our research demonstrated miR-196a-5p promoted ESCC malignant progression by interacting with ITM2B, thereby providing novel clues and potential targets for the new diagnosis and thereby of ESCC.
Collapse
Affiliation(s)
- Dubiao Xian
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Shubo Yang
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Yunzhong Liu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Qingfeng Liu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Ding Huang
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| | - Yuechang Wu
- Cardiothoracic Surgery, The First Affiliated Hospital of Hainan Medical College, The Respiratory Medical Center of Hainan Province, Haikou, Hainan, China
| |
Collapse
|
4
|
An L, Li M, Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer 2023; 22:140. [PMID: 37598158 PMCID: PMC10439611 DOI: 10.1186/s12943-023-01839-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the sixth most common cause of cancer-related mortality worldwide, with more than half of them occurred in China. Radiotherapy (RT) has been widely used for treating ESCC. However, radiation-induced DNA damage response (DDR) can promote the release of cytokines and chemokines, and triggers inflammatory reactions and changes in the tumor microenvironment (TME), thereby inhibiting the immune function and causing the invasion and metastasis of ESCC. Radioresistance is the major cause of disease progression and mortality in cancer, and it is associated with heterogeneity. Therefore, a better understanding of the radioresistance mechanisms may generate more reversal strategies to improve the cure rates and survival periods of ESCC patients. We mainly summarized the possible mechanisms of radioresistance in order to reveal new targets for ESCC therapy. Then we summarized and compared the current strategies to reverse radioresistance.
Collapse
Affiliation(s)
- Lingbo An
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Mahdizadehi M, Saghaeian Jazi M, Mir SM, Jafari SM. Role of fibrilins in human cancer: A narrative review. Health Sci Rep 2023; 6:e1434. [PMID: 37469709 PMCID: PMC10353528 DOI: 10.1002/hsr2.1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Background Fibrillin is one of the extracellular matrix glycoproteins and participates in forming microfibrils found in many connective tissues. The microfibrils enable the elasticity and stretching properties of the ligaments and support connective tissues. There are three isoforms of fibrillin molecules identified in mammals: fibrillin 1 (FBN1), fibrillin 2 (FBN2), and fibrillin 3. Objective Multiple studies have shown that mutations in these genes or changes in their expression levels can be related to various diseases, including cancers. In this study, we focus on reviewing the role of the fibrillin family in multiple cancers. Methods and Results We performed a comprehensive literature review to search PubMed and Google Scholar for studies published so far on fibrillin gene expression and its role in cancers. In this review, we have focused on the expression of FBN1 and FBN2 genes in cancers such as the lung, intestine, ovary, pancreatic ductal, esophagus, and thyroid. Conclusion Altogether various studies showed higher expression of fibrillins in different tumor tissues correlated with the patient's survival. However, there are controversial findings, as some other cancers showed hypermethylated FBN promoters with lower gene expression levels.
Collapse
Affiliation(s)
- Mahsa Mahdizadehi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Seyyed Mostafa Mir
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| |
Collapse
|
6
|
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, Mahmoud AMA, Raouf AA, Elballal MS, El-Dakroury WA, AbdelRazek MMM, Noshy M, El-Husseiny HM, Abulsoud AI. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathol Res Pract 2023; 246:154529. [PMID: 37196470 DOI: 10.1016/j.prp.2023.154529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-β signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
7
|
Hatami H, Sajedi A, Mir SM, Memar MY. Importance of lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) in cancer cells. Health Sci Rep 2023; 6:e996. [PMID: 36570342 PMCID: PMC9768844 DOI: 10.1002/hsr2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background In most regions, cancer ranks the second most frequent cause of death following cardiovascular disorders. Aim In this article, we review the various aspects of glycolysis with a focus on types of MCTs and the importance of lactate in cancer cells. Results and Discussion Metabolic changes are one of the first and most important alterations in cancer cells. Cancer cells use different pathways to survive, energy generation, growth, and proliferation compared to normal cells. The increase in glycolysis, which produces substances such as lactate and pyruvate, has an important role in metastases and invasion of cancer cells. Two important cellular proteins that play a role in the production and transport of lactate include lactate dehydrogenase and monocarboxylate transporters (MCTs). These molecules by their various isoforms and different tissue distribution help to escape the immune system and expansion of cancer cells under different conditions.
Collapse
Affiliation(s)
- Hamed Hatami
- Department of Immunology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Atefe Sajedi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Clinical Biochemistry, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|