1
|
Camacho MC, Balser DH, Furtado EJ, Rogers CE, Schwarzlose RF, Sylvester CM, Barch DM. Higher Intersubject Variability in Neural Response to Narrative Social Stimuli Among Youth With Higher Social Anxiety. J Am Acad Child Adolesc Psychiatry 2024; 63:549-560. [PMID: 38070872 DOI: 10.1016/j.jaac.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/10/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Social anxiety is associated with alterations in socioemotional processing, but the pathophysiology remains poorly understood. Movies present an opportunity to examine more naturalistic socioemotional processing by providing narrative and sensory context to emotion cues. This study aimed to characterize associations between neural response to contextualized social cues and social anxiety symptoms in children. METHOD Data from the Healthy Brain Network (final N = 740; age range 5-15 years) were split into discovery and replication samples to maximize generalizability of findings. Associations of parent- and self-reported social anxiety (Screen for Child Anxiety-related Emotional Disorders) with mean differences and person-to-person variability in functional magnetic resonance imaging-measured activation to 2 emotionally dynamic movies were characterized. RESULTS Though no evidence was found to indicate social anxiety symptoms were associated with mean differences in neural activity to emotional content (fit Spearman rs < 0.09), children with high social anxiety symptoms had higher intersubject activation variability in the posterior cingulate, supramarginal gyrus, and inferior frontal gyrus (Bonferroni familywise error-corrected ps < .05)-regions associated with attention, alertness, and emotion cue processing. Identified regions varied by age group and informant. Across ages, these effects were enhanced for scenes containing greater sensory intensity (brighter, louder, more motion, more vibrance). CONCLUSION These results provide evidence that children with high social anxiety symptoms show high person-to-person variability in the neural processing of sensory aspects of emotional content. These data indicate that children with high social anxiety may require personalized interventions for sensory and emotional difficulties, as the underlying neurology differs from child to child. DIVERSITY & INCLUSION STATEMENT One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. One or more of the authors of this paper received support from a program designed to increase minority representation in science. We actively worked to promote sex and gender balance in our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group. While citing references scientifically relevant for this work, we also actively worked to promote sex and gender balance in our reference list. While citing references scientifically relevant for this work, we also actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our reference list.
Collapse
|
2
|
Nichols ES, Blumenthal A, Kuenzel E, Skinner JK, Duerden EG. Hippocampus long-axis specialization throughout development: A meta-analysis. Hum Brain Mapp 2023. [PMID: 37209288 DOI: 10.1002/hbm.26340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
The human adult hippocampus can be subdivided into the head, or anterior hippocampus and its body and tail, or posterior hippocampus, and a wealth of functional differences along the longitudinal axis have been reported. One line of literature emphasizes specialization for different aspects of cognition, whereas another emphasizes the unique role of the anterior hippocampus in emotional processing. While some research suggests that functional differences in memory between the anterior and posterior hippocampus appear early in development, it remains unclear whether this is also the case for functional differences in emotion processing. The goal of this meta-analysis was to determine whether the long-axis functional specialization observed in adults is present earlier in development. Using a quantitative meta-analysis, long-axis functional specialization was assessed using the data from 26 functional magnetic resonance imaging studies, which included 39 contrasts and 804 participants ranging in age from 4 to 21 years. Results indicated that emotion was more strongly localized to the anterior hippocampus, with memory being more strongly localized to the posterior hippocampus, demonstrating long-axis specialization with regard to memory and emotion in children similar to that seen in adults. An additional analysis of laterality indicated that while memory was left dominant, emotion was processed bilaterally.
Collapse
Affiliation(s)
- Emily S Nichols
- Faculty of Education, Western University, London, Canada
- Western Institute for Neuroscience, Western University, London, Canada
| | - Anna Blumenthal
- Cervo Brain Research Centre, Université Laval, Quebec, Canada
| | | | | | - Emma G Duerden
- Faculty of Education, Western University, London, Canada
- Western Institute for Neuroscience, Western University, London, Canada
- Pediatrics, Schulich School of Medicine & Dentistry, Western University, London, Canada
| |
Collapse
|
3
|
A cross-sectional healthy-control study of serum inflammatory biomarkers interleukin (IL)-1B and IL-2R in panic disorder patients and their offspring. J Psychiatr Res 2022; 149:260-264. [PMID: 35303615 DOI: 10.1016/j.jpsychires.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Alterations in the immune system have been associated with a variety of mental illnesses. An increase in circulating inflammatory cytokines is observed not only in people with mental disorders but also in their first-degree relatives. A considerable amount of data support the link between immune system activation and panic disorder (PD) pathogenesis, while it is still unclear whether differential immunological reactivity represents a propensity, a measure of disease activity, or both. To better understand the role of cytokines in PD pathophysiology, we compared the levels of serum inflammatory biomarkers interleukin (IL)-1B and IL-2R among PD patients, offspring of PD patients and healthy controls. The offspring of PD patients were evaluated by a psychiatrist and were considered unaffected by any mental disorder at the time of the evaluation. Concentrations of the cytokines IL-1B and IL-2R were assessed using the Immulite System (Diagnostic Products Corporation). The levels of proinflammatory markers IL-1B and IL-2R were increased in PD patients compared to those of controls, but offspring of PD patients and healthy controls demonstrated no differences regarding peripheral interleukin levels. Our findings suggest that interleukins might represent a disease-dependent marker in PD.
Collapse
|
4
|
Antunes GL, Silveira JS, Luft C, Greggio S, Venturin GT, Schmitz F, Biasibetti-Brendler H, Vuolo F, Dal-Pizzol F, da Costa JC, Wyse ATS, Pitrez PM, da Cunha AA. Airway inflammation induces anxiety-like behavior through neuroinflammatory, neurochemical, and neurometabolic changes in an allergic asthma model. Metab Brain Dis 2022; 37:911-926. [PMID: 35059965 DOI: 10.1007/s11011-022-00907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Allergic asthma is characterized by chronic airway inflammation and is constantly associated with anxiety disorder. Recent studies showed bidirectional interaction between the brain and the lung tissue. However, where and how the brain is affected in allergic asthma remains unclear. We aimed to investigate the neuroinflammatory, neurochemical, and neurometabolic alterations that lead to anxiety-like behavior in an experimental model of allergic asthma. Mice were submitted to an allergic asthma model induced by ovalbumin (OVA) and the control group received only Dulbecco's phosphate-buffered saline (DPBS). Our findings indicate that airway inflammation increases interleukin (IL) -9, IL-13, eotaxin, and IL-1β release and changes acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain of mice. Furthermore, we demonstrate that a higher reactive oxygen species (ROS) formation and antioxidant defense alteration that leads to protein damage and mitochondrial dysfunction. Therefore, airway inflammation promotes a pro-inflammatory environment with an increase of BDNF expression in the brain of allergic asthma mice. These pro-inflammatory environments lead to an increase in glucose uptake in the limbic regions and to anxiety-like behavior that was observed through the elevated plus maze (EPM) test and downregulation of glucocorticoid receptor (GR). In conclusion, the present study revealed for the first time that airway inflammation induces neuroinflammatory, neurochemical, and neurometabolic changes within the brain that leads to anxiety-like behavior. Knowledge about mechanisms that lead to anxiety phenotype in asthma is a beneficial tool that can be used for the complete management and treatment of the disease.
Collapse
Affiliation(s)
- Géssica Luana Antunes
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil.
| | - Josiane Silva Silveira
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil
| | - Carolina Luft
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Gianina Teribele Venturin
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Helena Biasibetti-Brendler
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Francieli Vuolo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Jaderson Costa da Costa
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
5
|
Chen X, Huang Y, Xiao M, Luo YJ, Liu Y, Song S, Gao X, Chen H. Self and the brain: Self-concept mediates the effect of resting-state brain activity and connectivity on self-esteem in school-aged children. PERSONALITY AND INDIVIDUAL DIFFERENCES 2021. [DOI: 10.1016/j.paid.2020.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Germundson DL, Vendsel LP, Nagamoto-Combs K. Region-specific regulation of central histaminergic H3 receptor expression in a mouse model of cow's milk allergy. Brain Res 2020; 1749:147148. [PMID: 33035498 DOI: 10.1016/j.brainres.2020.147148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023]
Abstract
Central histaminergic H3 receptor (H3R) has been extensively investigated as a potential therapeutic target for various neurological and neurodegenerative disorders. Despite promising results in preclinical rodent models, clinical trials have not provided conclusive evidence for the benefit of H3R antagonists to alleviate cognitive and behavioral symptoms of these disorders. Inconsistent pharmacological efficacies may arise from aberrant changes in H3R over time during disease development. Because H3R is involved in feedback inhibition of histamine synthesis and secretion, the expression of the autoreceptor may also be reciprocally regulated by altered histamine levels in a pathological condition. Thus, we investigated H3R expression in a mouse model of cow's milk allergy, a condition associated with increased histamine levels. Mice were sensitized to bovine whey proteins (WP) over 5 weeks and H3R protein and transcript levels were examined in the brain. Substantially increased H3R immunoreactivity was observed in various brain regions of WP-sensitized mice compared to sham mice. Elevated H3R expression was also found in the thalamic/hypothalamic region. The expression of histaminergic H1, but not H2, receptor subtype was also increased in this and the midbrain regions. Unlike the brain, all three histaminergic receptors were increased in the small intestine. These results indicated that the central histaminergic receptors were altered in WP-sensitized mice in a subtype- and region-specific manner, which likely contributed to behavioral changes we observed in these mice. Our study also suggests that altered levels of H3R could be considered during a pharmacological intervention of a neurological disease.
Collapse
Affiliation(s)
- Danielle L Germundson
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 N. Columbia Rd, Grand Forks, ND, United States
| | - Lane P Vendsel
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 N. Columbia Rd, Grand Forks, ND, United States
| | - Kumi Nagamoto-Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 N. Columbia Rd, Grand Forks, ND, United States.
| |
Collapse
|
7
|
Ohayon S, Yitzhaky A, Hertzberg L. Gene expression meta-analysis reveals the up-regulation of CREB1 and CREBBP in Brodmann Area 10 of patients with schizophrenia. Psychiatry Res 2020; 292:113311. [PMID: 32712449 DOI: 10.1016/j.psychres.2020.113311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 01/26/2023]
Abstract
Cognitive impairments characterize individuals with schizophrenia, and are correlated to the patients' functional outcome. The transcription factor Cyclic AMP-responsive element-binding protein-1 (CREB1) is involved in learning and memory processes. CREB1 and both CREB-binding protein (CREBBP) and E1A Binding Protein P300 (EP300), co-activators of CREB1, have been associated with schizophrenia. We performed a systematic meta-analysis of CREB1, CREBBP and EP300 differential expression in post mortem Brodmann Area 10 (BA10) samples of patients with schizophrenia vs. healthy controls, following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Two microarray datasets met the inclusion criteria (overall 41 schizophrenia samples and 38 controls were analyzed). We detect up-regulation of CREB1 and CREBBP in BA10 samples of patients with schizophrenia, while EP300 wasn't differentially expressed. The integration of two independent datasets and the positive correlation between the expression patterns of CREB1 and CREBBP increase the validity of the results. The up-regulation of CREB1 and its co-activator CREBBP might relate to BA10 altered activation that has been shown in schizophrenia. As BA10 was shown to be involved in the cognitive impairments associated with schizophrenia, this suggests involvement of CREB1 and CREBBP in the cognitive symptoms that characterize the disease.
Collapse
Affiliation(s)
- Shay Ohayon
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel; Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel-Aviv University, 13 Aliat Hanoar St. Hod Hasharon 45100, Israel.
| |
Collapse
|
8
|
Hubbard NA, Siless V, Frosch IR, Goncalves M, Lo N, Wang J, Bauer CCC, Conroy K, Cosby E, Hay A, Jones R, Pinaire M, Vaz De Souza F, Vergara G, Ghosh S, Henin A, Hirshfeld-Becker DR, Hofmann SG, Rosso IM, Auerbach RP, Pizzagalli DA, Yendiki A, Gabrieli JDE, Whitfield-Gabrieli S. Brain function and clinical characterization in the Boston adolescent neuroimaging of depression and anxiety study. Neuroimage Clin 2020; 27:102240. [PMID: 32361633 PMCID: PMC7199015 DOI: 10.1016/j.nicl.2020.102240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022]
Abstract
We present a Human Connectome Project study tailored toward adolescent anxiety and depression. This study is one of the first studies of the Connectomes Related to Human Diseases initiative and is collecting structural, functional, and diffusion-weighted brain imaging data from up to 225 adolescents (ages 14-17 years), 150 of whom are expected to have a current diagnosis of an anxiety and/or depressive disorder. Comprehensive clinical and neuropsychological evaluations and longitudinal clinical data are also being collected. This article provides an overview of task functional magnetic resonance imaging (fMRI) protocols and preliminary findings (N = 140), as well as clinical and neuropsychological characterization of adolescents. Data collection is ongoing for an additional 85 adolescents, most of whom are expected to have a diagnosis of an anxiety and/or depressive disorder. Data from the first 140 adolescents are projected for public release through the National Institutes of Health Data Archive (NDA) with the timing of this manuscript. All other data will be made publicly-available through the NDA at regularly scheduled intervals. This article is intended to serve as an introduction to this project as well as a reference for those seeking to clinical, neurocognitive, and task fMRI data from this public resource.
Collapse
Affiliation(s)
- N A Hubbard
- Massachusetts Institute of Technology, Cambridge, MA, United States; University of Nebraska-Lincoln, Lincoln, NE, United States
| | - V Siless
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - I R Frosch
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - M Goncalves
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - N Lo
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - C C C Bauer
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K Conroy
- Boston University, Boston, MA, United States
| | - E Cosby
- Harvard Medical School, Boston, MA, United States; McLean Hospital, Belmont, MA, United States
| | - A Hay
- Boston University, Boston, MA, United States
| | - R Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - M Pinaire
- Boston University, Boston, MA, United States
| | - F Vaz De Souza
- Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Boston, MA, United States
| | - G Vergara
- Harvard Medical School, Boston, MA, United States; McLean Hospital, Belmont, MA, United States
| | - S Ghosh
- Massachusetts Institute of Technology, Cambridge, MA, United States; Harvard Medical School, Boston, MA, United States
| | - A Henin
- Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Boston, MA, United States
| | - D R Hirshfeld-Becker
- Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital, Boston, MA, United States
| | - S G Hofmann
- Boston University, Boston, MA, United States
| | - I M Rosso
- Harvard Medical School, Boston, MA, United States; McLean Hospital, Belmont, MA, United States
| | - R P Auerbach
- Columbia University, New York, NY, United States
| | - D A Pizzagalli
- Harvard Medical School, Boston, MA, United States; McLean Hospital, Belmont, MA, United States
| | - A Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - J D E Gabrieli
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - S Whitfield-Gabrieli
- Massachusetts Institute of Technology, Cambridge, MA, United States; Northeastern University, Boston, MA, United States.
| |
Collapse
|
9
|
Liu C, Tian X, Ling Y, Xu J, Zhou X. Alterations of Metabolites in the Frontal Cortex and Amygdala Are Associated With Cognitive Impairment in Alcohol Dependent Patients With Aggressive Behavior. Front Psychiatry 2020; 11:00694. [PMID: 33061908 PMCID: PMC7518064 DOI: 10.3389/fpsyt.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alcohol dependence (AD) patients have a high prevalence of aggressive behavior (AB). The frontal cortex and amygdala contains various neurotransmitter systems and plays an important role in AB, which is also associated with cognitive deficits. However, to date, no study has addressed the association of metabolites in the frontal cortex and amygdala with cognitive deficits in Chinese aggressive behavior-alcohol dependent patients(AB-ADs). METHODS We recruited 80 male AD and 40 male healthy controls (HCs), who completed the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), the Modified Overt Aggression Scale (MOAS), and the proton magnetic resonance spectroscopy (¹H MRS) scan using 3.0T Siemens. The ¹H MRS data were automatically fitted with a linear combination model for quantification of metabolite levels of n-acetyl-aspartate (NAA), glutamate (Glu), Choline (Cho) and creatine (Cr). Metabolite levels were reported as ratios to Cr. RESULTS The AB-ADs group scored significantly lower than the non-aggression-alcohol dependent patients (NA-ADs) on these two RBANS subscales (immediate memory and attention function indices). The AB-ADs group showed a significant reduction in NAA/CR ratio in the left frontal cortex and Cho/Cr ratio in the left amygdala, and elevation in Glu/Cr ratio in the bilateral amygdala, compared with the NA-ADs group. The NAA/Cr ratio in the left frontal cortex was positively associated with immediate memory (r=0.60, P<0.05), and the Glu/Cr ratio in the right amygdala was negatively associated with delayed memory (r=-0.44,P<0.05) in AB-ADs group. CONCLUSIONS Metabolite alterations in the frontal cortex and amygdala may be involved in the pathophysiology of AB in AD and its associated cognitive impairment, especially immediate memory and delayed memory.
Collapse
Affiliation(s)
- Chang Liu
- Department of Psychiatrics, Brains Hospital of Hunan Province, Changsha, China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China.,Clinical Medical Research Center, Hunan Provincial Mental Behavioral Disorder, Changsha, China
| | - Xuefei Tian
- Department of Psychiatrics, Brains Hospital of Hunan Province, Changsha, China
| | - Yang Ling
- Department of Psychiatrics, The Ninth Hospital of Changsha, Changsha, China
| | - Jiabin Xu
- Department of Psychiatrics, Brains Hospital of Hunan Province, Changsha, China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China.,Clinical Medical Research Center, Hunan Provincial Mental Behavioral Disorder, Changsha, China
| | - Xuhui Zhou
- Department of Psychiatrics, Brains Hospital of Hunan Province, Changsha, China.,Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China.,Clinical Medical Research Center, Hunan Provincial Mental Behavioral Disorder, Changsha, China
| |
Collapse
|
10
|
Lau JYF, Waters AM. Annual Research Review: An expanded account of information-processing mechanisms in risk for child and adolescent anxiety and depression. J Child Psychol Psychiatry 2017; 58:387-407. [PMID: 27966780 DOI: 10.1111/jcpp.12653] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Anxiety and depression occurring during childhood and adolescence are common and costly. While early-emerging anxiety and depression can arise through a complex interplay of 'distal' factors such as genetic and environmental influences, temperamental characteristics and brain circuitry, the more proximal mechanisms that transfer risks on symptoms are poorly delineated. Information-processing biases, which differentiate youth with and without anxiety and/or depression, could act as proximal mechanisms that mediate more distal risks on symptoms. This article reviews the literature on information-processing biases, their associations with anxiety and depression symptoms in youth and with other distal risk factors, to provide direction for further research. METHODS Based on strategic searches of the literature, we consider how youth with and without anxiety and/or depression vary in how they deploy attention to social-affective stimuli, discriminate between threat and safety cues, retain memories of negative events and appraise ambiguous information. We discuss how these information-processing biases are similarly or differentially expressed on anxiety and depression and whether these biases are linked to genetic and environmental factors, temperamental characteristics and patterns of brain circuitry functioning implicated in anxiety and depression. FINDINGS Biases in attention and appraisal characterise both youth anxiety and depression but with some differences in how these are expressed for each symptom type. Difficulties in threat-safety cue discrimination characterise anxiety and are understudied in depression, while biases in the retrieval of negative and overgeneral memories have been observed in depression but are understudied in anxiety. Information-processing biases have been studied in relation to some distal factors but not systematically, so relationships remain inconclusive. CONCLUSIONS Biases in attention, threat-safety cue discrimination, memory and appraisal may characterise anxiety and/or depression risk. We discuss future research directions that can more systematically test whether these biases act as proximal mechanisms that mediate other distal risk factors.
Collapse
Affiliation(s)
- Jennifer Y F Lau
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Allison M Waters
- School of Applied Psychology, Griffith University, Gold Coast, Qld, Australia
| |
Collapse
|
11
|
Yang X, Zhou M, Lama S, Chen L, Hu X, Wang S, Chen T, Shi Y, Huang X, Gong Q. Intrinsic Brain Activity Responsible for Sex Differences in Shyness and Social Anxiety. Front Behav Neurosci 2017; 11:43. [PMID: 28348521 PMCID: PMC5346560 DOI: 10.3389/fnbeh.2017.00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/27/2017] [Indexed: 02/05/2023] Open
Abstract
Male and female show significant differences in important behavioral features such as shyness, yet the neural substrates of these differences remain poorly understood. Previous neuroimaging studies have demonstrated that both shyness and social anxiety in healthy subjects are associated with increased activation in the fronto-limbic and cognitive control areas. However, it remains unknown whether these brain abnormalities would be shared by different genders. Therefore, in the current study, we used resting-state fMRI (r-fMRI) to investigate sex differences in intrinsic cerebral activity that may contribute to shyness and social anxiety. Sixty subjects (28 males, 32 females) participated in r-fMRI scans, and the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) were used to measure the spontaneous regional cerebral activity in all subjects. We first compared the differences between male and female both in the ALFF and fALFF and then we also examined the whole brain correlation between the ALFF/fALFF and the severity of shyness as well as social anxiety by genders. Referring to shyness measure, we found a significant positive correlation between shyness scores (CBSS) and ALFF/fALFF value in the frontoparietal control network and a negative correlation in the cingulo-insular network in female; while in male, there is no such correlation. For the social anxiety level, we found positive correlations between Leibowitz Social Anxiety Scale (LSAS) scores and spontaneous activity in the frontal-limbic network in male and negative correlation between the frontal-parietal network; however, such correlation was not prominent in female. This pattern suggests that shy female individuals engaged a proactive control process, driven by a positive association with activity in frontoparietal network and negative association in cingulo-insular network, whereas social anxiety males relied more on a reactive control process, driven by a positive correlation of frontal-limbic network and negative correlation of frontoparietal network. Our results reveal that shyness or social anxiety is associated with disrupted spontaneous brain activity patterns and that these patterns are influenced by sex.
Collapse
Affiliation(s)
- Xun Yang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan UniversityChengdu, China; Department of Sociality and Psychology, Southwest University for NationalitiesChengdu, China
| | - Ming Zhou
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Sunima Lama
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Lizhou Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Xinyu Hu
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Song Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Taolin Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Yan Shi
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University Chengdu, China
| |
Collapse
|
12
|
Bas-Hoogendam JM, Blackford JU, Brühl AB, Blair KS, van der Wee NJ, Westenberg PM. Neurobiological candidate endophenotypes of social anxiety disorder. Neurosci Biobehav Rev 2016; 71:362-378. [DOI: 10.1016/j.neubiorev.2016.08.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
|