1
|
Neha, Mazahir I, Khan SA, Kaushik P, Parvez S. The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson's Disease. Mol Neurobiol 2024; 61:8086-8103. [PMID: 38468113 DOI: 10.1007/s12035-024-04078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Parkinson's disease (PD) is a progressive neurological ailment with a slower rate of advancement that is more common in older adults. The biggest risk factor for PD is getting older, and those over 60 have an exponentially higher incidence of this condition. The failure of the mitochondrial electron chain, changes in the dynamics of the mitochondria, and abnormalities in calcium and ion homeostasis are all symptoms of Parkinson's disease (PD). Increased mitochondrial reactive oxygen species (mROS) and an energy deficit are linked to these alterations. Levodopa (L-DOPA) is a medication that is typically used to treat most PD patients, but because of its negative effects, additional medications have been created utilizing L-DOPA as the parent molecule. Ergot and non-ergot derivatives make up most PD medications. PD is successfully managed with the use of dopamine agonists (DA). To get around the motor issues produced by L-DOPA, these dopamine derivatives can directly excite DA receptors in the postsynaptic membrane. In the past 10 years, two non-ergoline DA with strong binding properties for the dopamine D2 receptor (D2R) and a preference for the dopamine D3 receptor (D3R) subtype, ropinirole, and pramipexole (PPx) have been developed for the treatment of PD. This review covers the most recent research on the efficacy and safety of non-ergot drugs like ropinirole and PPx as supplementary therapy to DOPA for the treatment of PD.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Iqra Mazahir
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sara Akhtar Khan
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Garma LD, Harder L, Barba-Reyes JM, Marco Salas S, Díez-Salguero M, Nilsson M, Serrano-Pozo A, Hyman BT, Muñoz-Manchado AB. Interneuron diversity in the human dorsal striatum. Nat Commun 2024; 15:6164. [PMID: 39039043 PMCID: PMC11263574 DOI: 10.1038/s41467-024-50414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Deciphering the striatal interneuron diversity is key to understanding the basal ganglia circuit and to untangling the complex neurological and psychiatric diseases affecting this brain structure. We performed snRNA-seq and spatial transcriptomics of postmortem human caudate nucleus and putamen samples to elucidate the diversity and abundance of interneuron populations and their inherent transcriptional structure in the human dorsal striatum. We propose a comprehensive taxonomy of striatal interneurons with eight main classes and fourteen subclasses, providing their full transcriptomic identity and spatial expression profile as well as additional quantitative FISH validation for specific populations. We have also delineated the correspondence of our taxonomy with previous standardized classifications and shown the main transcriptomic and class abundance differences between caudate nucleus and putamen. Notably, based on key functional genes such as ion channels and synaptic receptors, we found matching known mouse interneuron populations for the most abundant populations, the recently described PTHLH and TAC3 interneurons. Finally, we were able to integrate other published datasets with ours, supporting the generalizability of this harmonized taxonomy.
Collapse
Affiliation(s)
- Leonardo D Garma
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Lisbeth Harder
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Juan M Barba-Reyes
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain
| | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mónica Díez-Salguero
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital, Neurology Department, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Massachusetts General Hospital, Neurology Department, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ana B Muñoz-Manchado
- Karolinska Institutet, Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden.
- Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). University of Cádiz, Cádiz, Spain.
| |
Collapse
|
3
|
Ysbæk-Nielsen AT. Connectome-based predictive modelling estimates individual cognitive status in Parkinson's disease. Parkinsonism Relat Disord 2024; 123:106020. [PMID: 38579439 DOI: 10.1016/j.parkreldis.2024.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 04/07/2024]
Abstract
INTRODUCTION The progressive nature of Parkinson's disease (PD) affords emphasis on accurate early-stage individual-level assessment of risk and intervention appropriateness. In PD, cognitive impairment (CI) may follow or precede motor symptoms but are generally underdetected. In addition to impeding daily functioning and quality of life, CIs increase the risk for later conversion to dementia, providing a pressing need to develop novel tools to detect and interpret them. Connectome-based predictive modelling (CPM) is an emerging machine-learning approach to individual prediction that holds translational promise due to its noninvasiveness and simple implementation. The aim of this study was to investigate CPM's potential to predict and understand CIs in PD. METHODS Resting-state functional connectivity from 58 patients with PD of varying cognitive status was used to train a CPM-model to predict a global cognitive composite (GCC) score. The model was validated using cross-validation, permutation testing, and internal stability analyses. The combined predictive strength of two brain connectivity networks, positive and negative, directly and inversely correlated with GCC, respectively, was assessed. RESULTS The model significantly predicted individual GCC scores, r = 0.63, pperm < .05. Separately, the positive and negative networks were similar in performance, rs ≥ .58, ps < .05, but varied in anatomical distribution. CONCLUSIONS This study identified a connectome predictive of cognitive scores in PD, with features overlapping with established and emerging evidence on aberrant connectivity in PD-related CIs. Overall, CPM appears promising for clinical translation in this population, but longitudinal studies with out-of-sample validation are needed.
Collapse
|
4
|
Hajebrahimi F, Budak M, Saricaoglu M, Temel Z, Demir TK, Hanoglu L, Yildirim S, Bayraktaroglu Z. Functional neural networks stratify Parkinson's disease patients across the spectrum of cognitive impairment. Brain Behav 2024; 14:e3395. [PMID: 38376051 PMCID: PMC10808882 DOI: 10.1002/brb3.3395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Cognitive impairment (CI) is a significant non-motor symptoms in Parkinson's disease (PD) that often precedes the emergence of motor symptoms by several years. Patients with PD hypothetically progress from stages without CI (PD-normal cognition [NC]) to stages with Mild CI (PD-MCI) and PD dementia (PDD). CI symptoms in PD are linked to different brain regions and neural pathways, in addition to being the result of dysfunctional subcortical regions. However, it is still unknown how functional dysregulation correlates to progression during the CI. Neuroimaging techniques hold promise in discriminating CI stages of PD and further contribute to the biomarker formation of CI in PD. In this study, we explore disparities in the clinical assessments and resting-state functional connectivity (FC) among three CI stages of PD. METHODS We enrolled 88 patients with PD and 26 healthy controls (HC) for a cross sectional clinical study and performed intra- and inter-network FC analysis in conjunction with comprehensive clinical cognitive assessment. RESULTS Our findings underscore the significance of several neural networks, namely, the default mode network (DMN), frontoparietal network (FPN), dorsal attention network, and visual network (VN) and their inter-intra-network FC in differentiating between PD-MCI and PDD. Additionally, our results showed the importance of sensory motor network, VN, DMN, and salience network (SN) in the discriminating PD-NC from PDD. Finally, in comparison to HC, we found DMN, FPN, VN, and SN as pivotal networks for further differential diagnosis of CI stages of PD. CONCLUSION We propose that resting-state networks (RSN) can be a discriminating factor in distinguishing the CI stages of PD and progressing from PD-NC to MCI or PDD. The integration of clinical and neuroimaging data may enhance the early detection of PD in clinical settings and potentially prevent the disease from advancing to more severe stages.
Collapse
Affiliation(s)
- Farzin Hajebrahimi
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Physical Therapy and Rehabilitation, School of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Department of Health Informatics, Rutgers University, School of Health ProfessionsRutgers Biomedical and Health SciencesNewarkNew JerseyUSA
| | - Miray Budak
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Ergotherapy, School of Health SciencesIstanbul Medipol UniversityIstanbulTurkey
- Center for Molecular and Behavioral NeuroscienceRutgers University‐NewarkNewarkNew JerseyUSA
| | - Mevhibe Saricaoglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Program of Electroneurophysiology, Vocational SchoolIstanbul Medipol UniversityIstanbulTurkey
| | - Zeynep Temel
- Department of PsychologyFatih Sultan Mehmet Vakif UniversityIstanbulTurkey
| | - Tugce Kahraman Demir
- Program of Electroneurophysiology, Vocational SchoolBiruni UniversityIstanbulTurkey
| | - Lutfu Hanoglu
- Department of Neurology, School of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
| | - Suleyman Yildirim
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Medical Microbiology, International School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of Physiology, International School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| |
Collapse
|
5
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
6
|
Garma L, Harder L, Barba-Reyes J, Diez-Salguero M, Serrano-Pozo A, Hyman B, Munoz-Manchado A. Interneuron diversity in the human dorsal striatum. RESEARCH SQUARE 2023:rs.3.rs-2921627. [PMID: 37292997 PMCID: PMC10246286 DOI: 10.21203/rs.3.rs-2921627/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deciphering the striatal interneuron diversity is key to understanding the basal ganglia circuit and to untangle the complex neurological and psychiatric diseases affecting this brain structure. We performed snRNA-seq of postmortem human caudate nucleus and putamen samples to elucidate the diversity and abundance of interneuron populations and their transcriptional structure in the human dorsal striatum. We propose a new taxonomy of striatal interneurons with eight main classes and fourteen subclasses and provide their specific markers and some quantitative FISH validation, particularly for a novel PTHLH-expressing population. For the most abundant populations, PTHLH and TAC3, we found matching known mouse interneuron populations based on key functional genes such as ion channels and synaptic receptors. Remarkably, human TAC3 and mouse Th populations share important similarities including the expression of the neuropeptide tachykinin 3. Finally, we were able to integrate other published datasets supporting the generalizability of this new harmonized taxonomy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bradley Hyman
- Massachusetts General Hospital, Harvard Medical School
| | | |
Collapse
|
7
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
8
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|
9
|
Bhome R, Zarkali A, Thomas GEC, Iglesias JE, Cole JH, Weil RS. Thalamic white matter macrostructure and subnuclei volumes in Parkinson's disease depression. NPJ Parkinsons Dis 2022; 8:2. [PMID: 35013327 PMCID: PMC8748828 DOI: 10.1038/s41531-021-00270-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
Depression is a common non-motor feature of Parkinson's disease (PD) which confers significant morbidity and is challenging to treat. The thalamus is a key component in the basal ganglia-thalamocortical network critical to the pathogenesis of PD and depression but the precise thalamic subnuclei involved in PD depression have not been identified. We performed structural and diffusion-weighted imaging (DWI) on 76 participants with PD to evaluate the relationship between PD depression and grey and white matter thalamic subnuclear changes. We used a thalamic segmentation method to divide the thalamus into its 50 constituent subnuclei (25 each hemisphere). Fixel-based analysis was used to calculate mean fibre cross-section (FC) for white matter tracts connected to each subnucleus. We assessed volume and FC at baseline and 14-20 months follow-up. A generalised linear mixed model was used to evaluate the relationship between depression, subnuclei volume and mean FC for each thalamic subnucleus. We found that depression scores in PD were associated with lower right pulvinar anterior (PuA) subnucleus volume. Antidepressant use was associated with higher right PuA volume suggesting a possible protective effect of treatment. After follow-up, depression scores were associated with reduced white matter tract macrostructure across almost all tracts connected to thalamic subnuclei. In conclusion, our work implicates the right PuA as a relevant neural structure in PD depression and future work should evaluate its potential as a therapeutic target for PD depression.
Collapse
Affiliation(s)
- R Bhome
- Dementia Research Centre, University College London, London, UK.
| | - A Zarkali
- Dementia Research Centre, University College London, London, UK
| | - G E C Thomas
- Dementia Research Centre, University College London, London, UK
| | - J E Iglesias
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Cambridge, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA
| | - J H Cole
- Dementia Research Centre, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - R S Weil
- Dementia Research Centre, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Movement Disorders Consortium, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
10
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|