1
|
Kim JS, Kim TY, Lim MC, Khan MSI. Campylobacter control strategies at postharvest level. Food Sci Biotechnol 2024; 33:2919-2936. [PMID: 39220305 PMCID: PMC11364751 DOI: 10.1007/s10068-024-01644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is highly associated with poultry and frequently causes foodborne illness worldwide. Thus, effective control measures are necessary to reduce or prevent human infections. In this review, Campylobacter control methods applicable at postharvest level for poultry meat during production, storage, and preparation are discussed. Drying and temperature are discussed as general strategies. Traditional strategies such as steaming, freezing, sanitizing, organic acid treatment, and ultraviolet light treatment are also discussed. Recent advances in nanotechnology using antibacterial nanoparticles and natural antimicrobial agents from plants and food byproducts are also discussed. Although advances have been made and there are various methods for preventing Campylobacter contamination, it is still challenging to prevent Campylobacter contamination in raw poultry meats with current methods. In addition, some studies have shown that large strain-to-strain variation in susceptibility to these methods exists. Therefore, more effective methods or approaches need to be developed to substantially reduce human infections caused by Campylobacter.
Collapse
Affiliation(s)
- Joo-Sung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Tai-Yong Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Min-Cheol Lim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | | |
Collapse
|
2
|
de Rezende HC, de Lima M, Santos LD. Microbiological and physicochemical evaluation of chicken cuts submitted to peracetic acid application during the slaughter. Poult Sci 2024; 103:104329. [PMID: 39342690 PMCID: PMC11470711 DOI: 10.1016/j.psj.2024.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Large-scale poultry slaughter is a highly automated process, which makes cross-contamination possible during the process due to failures in the cleaning and maintenance of automatic equipment, line speed, among other control parameters. To this end, using organic acids to decontaminate poultry meat is a unique strategy for reducing foodborne illnesses. Given the above, this work investigated the application of peracetic acid (PAA) in chicken breast and thigh cuts, to (a) evaluate the effectiveness of PAA as an antimicrobial against Enterobacteriaceae and aerobic mesophilic count (b) evaluate the impact of PAA on the color, texture and cooking loss of skinless chicken breast and chicken thighs with skin. Through the Central Composite Rotational Design (CCRD) with 11 trials and 3 replicates of the central point, the best conditions variable's concentration and time of application of PAA in the cuts were determined. In cuts treated with 1500 PAA solution, a reduction of 2.90 for Enterobacteriaceae in chicken breast was possible with conditions in the central point region and a reduction of 3.65 for Enterobacteriaceae in chicken thigh, when concentrations above 1800 ppm were applied. Peracetic acid (PAA) did not influence the physicochemical characteristics of chicken meat, since it did not change the appearance of fresh meat evaluated by objective analyses (color, texture, and cooking loss), which could impact consumer preference and acceptability.
Collapse
Affiliation(s)
| | - Marieli de Lima
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil.
| |
Collapse
|
3
|
Vaddu S, Wang J, Sidhu G, Leone C, Singh M, Thippareddi H. Relative resistance of Salmonella serotypes (Typhimurium, Infantis, and Reading) to peroxyacetic acid on chicken wings. Poult Sci 2024; 103:103935. [PMID: 38908117 PMCID: PMC11246038 DOI: 10.1016/j.psj.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
Peroxyacetic acid (PAA) is widely used as an antimicrobial in poultry processing. Recent salmonellosis outbreaks caused by Salmonella Infantis (SI) from chicken products and Salmonella Reading (SR) from turkey products have raised concerns about their enhanced resistance (compared to Salmonella Typhimurium [ST]) to commonly used antimicrobial interventions such as PAA. The objective of this research was to evaluate the efficacy of PAA against Salmonella serotypes (Typhimurium, Infantis and Reading), effect on product color and decomposition of PAA at different pH levels. Fresh chicken wings (0.45 kg) were inoculated with a cocktail (ca. 6 log CFU/mL) of nalidixic acid resistant ST, rifampicin resistant SI and kanamycin resistant SR. Inoculated chicken wings were immersed in PAA solutions (100 or 500 ppm; adjusted to either pH 8.5 or unadjusted natural pH) for either 10 s or 60 min to replicate treatments for chicken parts or whole carcasses, respectively. Treated chicken wings were rinsed in buffered peptone water (100 mL) containing sodium thiosulfate (0.1 %), serially diluted in peptone water supplemented with 200 ppm of nalidixic acid, rifampicin or kanamycin for enumeration of ST, SI, and SR respectively, and plated on APC Petrifilm. Immersion of chicken wings in 500 ppm PAA for 60 min resulted in greater microbial reductions (P ≤ 0.05) of ST, SI, SR of ca. Two log CFU/mL each, compared to 10 s treatment. Regardless of concentration and pH of PAA, increased exposure time (60 min vs. 10 s) resulted in greater reductions (P ≤ 0.05) of ST, SI, SR. ST was slightly more resistant to PAA solutions than S. Infantis and S. Reading (P ≤ 0.05) for all experimental conditions (PAA conc, pH, and exposure times). Faster decomposition of PAA (100 and 500 ppm) was observed at pH 8.5 compared to unadjusted, natural pH (P ≤ 0.05). Product color (lightness, L*) was not affected regardless of the PAA concentration, exposure time or the pH.
Collapse
Affiliation(s)
- S Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - J Wang
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - G Sidhu
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - C Leone
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA; Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - M Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - H Thippareddi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Leone C, Xu X, Mishra A, Thippareddi H, Singh M. Interventions to reduce Salmonella and Campylobacter during chilling and post-chilling stages of poultry processing: a systematic review and meta-analysis. Poult Sci 2024; 103:103492. [PMID: 38335673 PMCID: PMC10864810 DOI: 10.1016/j.psj.2024.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Salmonella and Campylobacter are common bacterial hazards causing foodborne illnesses worldwide. A large proportion of Salmonella and Campylobacter illnesses are attributed to contaminated poultry products that are mishandled or under cooked. Processing interventions such as chilling and post-chill dip are critical to reducing microbial contamination of poultry. A comprehensive search of the literature published between 2000 and 2021 was conducted in the databases Web of Science, Academic Search Complete, and Academic OneFile. Studies were included if they were in English and investigated the effects of interventions against Salmonella and/or Campylobacter on whole carcasses and/or parts during the chilling or post-chill stages of poultry processing. Random-effects meta-analyses were performed using the "meta" package in the R programming language. Subgroup analyses were assessed according to outcome measure reported, microorganism tested, processing stage assessed, and chemical treatment used. The results included 41 eligible studies. Eighteen studies reported results of 28 separate interventions against Salmonella and 31 reported results of 50 separate interventions against Campylobacter. No significant difference (P> 0.05) was observed when comparing the combined mean difference of all interventions targeting Salmonella to the combined mean difference of all interventions targeting Campylobacter or when comparing chilling times within each pathogen subgroup. For analyses examining antimicrobial additives, peroxyacetic acid (PAA) had the largest reduction against Salmonella population regardless of chilling time (P< 0.05). PAA also had the largest reduction against Campylobacter population and prevalence during primary chilling (P< 0.01). Air chilling showed a lower reduction for Campylobacter than any immersion chilling intervention (P< 0.05). Chilling time and antimicrobial used during poultry processing had varying effects depending on the pathogen and outcome measure investigated (concentration or prevalence). High heterogeneity and low sample numbers in most analyses suggest that more high-quality research that is well-designed and has transparent reporting of methodology and results is needed to corroborate the results.
Collapse
Affiliation(s)
- Cortney Leone
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Xinran Xu
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | | | - Manpreet Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Richards AK, Siceloff AT, Simmons M, Tillman GE, Shariat NW. Poultry Processing Interventions Reduce Salmonella Serovar Complexity on Postchill Young Chicken Carcasses as Determined by Deep Serotyping. J Food Prot 2024; 87:100208. [PMID: 38142825 DOI: 10.1016/j.jfp.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Nearly 20% of salmonellosis cases are attributed to broilers, with renewed efforts to reduce Salmonella during broiler production and processing. A limitation to Salmonella culture is that often a single colony is picked for characterization, favoring isolation of the most abundant serovar found in a sample, while low abundance serovars can remain undetected. We used a deep serotyping approach, CRISPR-SeroSeq (serotyping by sequencing the clustered regularly interspaced palindromic repeats), to assess Salmonella serovar complexity during broiler processing and to determine the impact of antimicrobial interventions upon serovar population dynamics. Paired hot rehang and postchill young chicken carcasses were collected from establishments across the United States from August to November 2022. CRISPR-SeroSeq was performed on Salmonella culture-positive hot rehang (n = 153) and postchill (n = 38) samples, including 31 paired hot rehang and postchill samples. Multiple serovars were detected in 48.4% (74/153) and 7.9% (3/38) of hot rehang and postchill samples, respectively. On average, hot rehang carcasses contained 1.6 serovars, compared to 1.1 serovars at postchill (Mann Whitney U, p = 0.00018). Nineteen serovars were identified with serovar Kentucky the most common at hot rehang (72.5%; 111/153) and postchill (73.7%; 28/38). Serovar Infantis prevalence was higher at hot rehang (39.9%; 61/153) than in postchill (7.9%; 3/38). At hot rehang, serovar Enteritidis was outnumbered by other serovars 81.3% (13/16) of the time but was always the single or most abundant serovar detected when it was present at postchill (n = 5). We observed 98.4% (188/191) concordance between traditional isolation with serotyping and CRISPR-SeroSeq. Deep serotyping was able to explain serovar discrepancies between paired hot rehang and postchill samples when only traditional isolation and serotyping methods were used. These data demonstrate that processing interventions are effective in reducing Salmonella serovar complexity.
Collapse
Affiliation(s)
- Amber K Richards
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Amy T Siceloff
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Mustafa Simmons
- Eastern Laboratory, U. S. Department of Agriculture's Food Safety and Inspection Service, Athens, GA, USA
| | - Glenn E Tillman
- Eastern Laboratory, U. S. Department of Agriculture's Food Safety and Inspection Service, Athens, GA, USA
| | - Nikki W Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA; Center for Food Safety, University of Georgia, Griffin, GA, USA.
| |
Collapse
|
6
|
Šovljanski O, Ranitović A, Tomić A, Ćetković N, Miljković A, Saveljić A, Cvetković D. Synergistic Strategies of Heat and Peroxyacetic Acid Disinfection Treatments for Salmonella Control. Pathogens 2023; 12:1336. [PMID: 38003799 PMCID: PMC10674339 DOI: 10.3390/pathogens12111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The food industry has recognized a pressing need for highly effective disinfection protocols to decrease the risk of pathogen emergence and proliferation in food products. The integration of antimicrobial treatments in food production has occurred as a potential strategy to attain food items of superior quality with respect to microbiological safety and sensory attributes. This study aims to investigate the individual and synergistic effects of heat and peroxyacetic acid on the inactivation of bacterial cells, considering various contact times and environmental conditions. Four Salmonella serotypes, isolated from industrial meat production surfaces, were employed as model organisms. By systematically assessing the impacts of individual factors and synergistic outcomes, the effectiveness of bacterial cell inactivation and the efficiency of heat and peroxyacetic acid could be predicted. To better approximate real-world food processing conditions, this study also incorporated a bovine albumin-rich condition as a simulation of the presence of organic loads in processing steps. The findings revealed the essential need for a synergistic interplay of investigated parameters with the following optimized values: 1.5% concentration of peroxyacetic acid, temperature range of 60-65 °C, and contact time of 3 min for the complete effect regardless of the degree of contamination.
Collapse
Affiliation(s)
- Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| | - Aleksandra Ranitović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| | - Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| | - Nenad Ćetković
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.Ć.); (A.M.)
| | - Ana Miljković
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.Ć.); (A.M.)
| | - Anja Saveljić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| | - Dragoljub Cvetković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| |
Collapse
|
7
|
Urrutia A, Orellana L, Sierra KS, Reina M, Figueroa JC, Jackson AP, Macklin KS, Buhr RJ, Bourassa DV. In vitro Effect of Photoactive Compounds Curcumin and Chlorophyllin Against Single Strains of Salmonella and Campylobacter. J Food Prot 2023; 86:100157. [PMID: 37729967 DOI: 10.1016/j.jfp.2023.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Salmonella and Campylobacter are two of the most common foodborne pathogens associated with poultry meat. Regulatory restrictions and consumer concerns have increased the interest for plant-derived antimicrobials and emerging novel technologies. The objective of this study was to determine the antimicrobial activity of photoactive compounds curcumin (CUR) and chlorophyllin (CH) followed by activating light exposure for the reduction of Salmonella and Campylobacter. Peroxyacetic acid (PAA) was also evaluated as a poultry industry standard antimicrobial processing aid. CUR and CH were evaluated in 96-well plates at concentrations of 100, 500, and 1,000 ppm, along with PAA at 100, 200, and 300 ppm, or distilled water (DW). Each well was inoculated with 105 CFU/mL of Salmonella Typhimurium or Campylobacter jejuni, and plates were exposed to activating light (430 nm) for 0 or 5 min. No detectable reductions were observed for Salmonella or Campylobacter when treated with CUR, CH, or 100 ppm PAA. However, when Salmonella was treated with 200 ppm PAA, counts were reduced from 4.57 to 2.52 log10 CFU/mL. When Salmonella was treated with 300 ppm PAA, counts were reduced to below detectable levels (5 CFU/mL). Campylobacter was reduced from 4.67 to 2.82 log10 CFU/mL when treated with 200 ppm PAA. However, no further reductions were observed when Campylobacter was treated with 300 ppm PAA (2.50 log10 CFU/mL). These results indicate that CUR and CH were not effective as antimicrobials under the evaluated conditions, particularly in comparison to the commonly used antimicrobial, PAA.
Collapse
Affiliation(s)
- Andrea Urrutia
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Leticia Orellana
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Katherine S Sierra
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Marco Reina
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Juan C Figueroa
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Alexandra P Jackson
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, 325 Wise Center Dr., Mississippi State, MS 39762, United States
| | - R Jeffrey Buhr
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Richard B. Russell Agricultural Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605-2702, United States
| | - Dianna V Bourassa
- Department of Poultry Science, Auburn University, 260 Lem Morrison Dr., Auburn, AL 36849, United States.
| |
Collapse
|
8
|
de Rezende HC, de Lima M, Santos LD. Peracetic acid application as an antimicrobial and its residual (HEDP): a holistic approach on the technological characteristics of chicken meat. Poult Sci 2023; 102:103003. [PMID: 37634267 PMCID: PMC10475510 DOI: 10.1016/j.psj.2023.103003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
The most significant occurrence of food-borne diseases is due to Campylobacter and Salmonella contamination from chicken meat, and for this reason, strict regulations about strategies to improve the control of food pathogens are imposed by food safety authorities. Despite the efforts of poultry industry since the beginning of risk analysis and critical control point to reduce the burden of food-borne illness, technological barriers along the way are increasingly necessary to ensure safe food. The aim of this review was to carry out a scientific approach to the influence of peracetic acid (PAA) as an antimicrobial and its toxicological safety, in particular the stabilizer used in the formulation of PAA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP), suggesting the possibility of researching the residual HEDP in meat, which would allow the approval of the PAA by the health authorities of several countries that still restrict it. This review also aims to ascertain the effectiveness of PAA, in different cuts and carcasses, by different application methods, comparing the effectiveness of this antimicrobial with other antimicrobials, and its exclusive or combined use, for the decontamination of poultry carcasses and raw parts. The literature results support the popularity of PAA as an effective intervention against pathogenic bacteria during poultry processing.
Collapse
Affiliation(s)
| | - Marieli de Lima
- Faculty of Chemical Engineering, Federal University of Uberlandia, Patos de Minas, MG, Brazil
| | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlandia, Patos de Minas, MG, Brazil.
| |
Collapse
|
9
|
Bogun K, Peh E, Siekmann L, Plötz M, Kittler S. Combining antimicrobial substances for Campylobacter post harvest mitigation on chicken breast fillet and chicken skin - any synergistic effects? J Appl Microbiol 2023; 134:lxad209. [PMID: 37709568 DOI: 10.1093/jambio/lxad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
AIMS To reduce Campylobacter along the food chain, we investigated the mitigation potential of four antimicrobial compounds against Campylobacter using a new evaluation scheme. METHODS AND RESULTS Using the checkerboard method, the minimum inhibitory concentration (MIC) values of two organic acids (peroxyacetic acid and lactic acid) and two plant extracts (carvacrol and resveratrol) against a C. jejuni and a C. coli field isolate were determined as well as the fractional inhibitory concentration (FIC) indices of combined treatment. The lowest MIC values were found for peroxyacetic acid (0.03 mg mL-1) and carvacrol (0.06 mg mL-1). Based on subsequent sensory studies, peroxyacetic acid and carvacrol were selected for challenge tests to quantitatively determine the reducing potential against Campylobacter on chicken meat and chicken skin. Applying peroxyacetic acid significantly reduced Campylobacter counts on chicken skin with maximum reductions of 3.3 log-units (P < .0001), while the combination of peroxyacetic acid and carvacrol resulted in significant reductions of only 0.4 log-units on chicken breast fillet 24 hours after treatment but not thereafter (P = .0192). CONCLUSIONS Peroxyacetic acid is suitable as a postharvest intervention measure to reduce Campylobacter concentration on chicken skin without reducing consumer acceptance.
Collapse
Affiliation(s)
- Katrin Bogun
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover 30173, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover 30173, Germany
| | - Lisa Siekmann
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover 30173, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover 30173, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover 30173, Germany
| |
Collapse
|
10
|
Rasamsetti S, Shariat NW. Biomapping salmonella serovar complexity in broiler carcasses and parts during processing. Food Microbiol 2023; 110:104149. [DOI: 10.1016/j.fm.2022.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
|
11
|
Thames HT, Fancher CA, Colvin MG, McAnally M, Tucker E, Zhang L, Kiess AS, Dinh TTN, Sukumaran AT. The Prevalence of Salmonella and Campylobacter on Broiler Meat at Different Stages of Commercial Poultry Processing. Animals (Basel) 2022; 12:ani12182460. [PMID: 36139320 PMCID: PMC9495152 DOI: 10.3390/ani12182460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
In poultry processing, Salmonella and Campylobacter contaminations are major food safety concerns. Peracetic acid (PAA) is an antimicrobial commonly used in commercial poultry processing to reduce pathogen prevalence so as to meet the USDA-FSIS performance standards. The objective of this study was to determine the prevalence of Salmonella and Campylobacter on broiler meat in various steps of commercial poultry processing in plants that use PAA. Post-pick, pre-chill, post-chill, and drumstick chicken samples were collected from three processing plants and mechanically deboned meat (MDM) was collected from two of the three plants. Each plant was sampled thrice, and 10 samples were collected from each processing step during each visit. Among the 420 samples, 79 were contaminated with Salmonella and 155 were contaminated with Campylobacter. Salmonella and Campylobacter contamination on the post-pick samples averaged 32.2%. Significant reductions in Salmonella and Campylobacter were observed in pre-chill to post-chill samples, where the prevalence was reduced from 34% and 64.4% to nondetectable limits and 1.1%, respectively (p < 0.001). Salmonella and Campylobacter remained undetectable on the drumstick samples in all three processing plants. However, the prevalence of Salmonella and Campylobacter on MDM was similar to the post-pick prevalence, which suggests substantial cross-contamination from post-chill to MDM.
Collapse
Affiliation(s)
- Hudson T. Thames
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Courtney A. Fancher
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mary G. Colvin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mika McAnally
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Emily Tucker
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aaron S. Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Thu T. N. Dinh
- Tyson Foods, 2200 W. Don Tyson Parkway, Springdale, AR 72762, USA
| | - Anuraj T. Sukumaran
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
- Correspondence:
| |
Collapse
|
12
|
Rasamsetti S, Berrang ME, Cox NA, Shariat NW. Assessing Salmonella Prevalence and Complexity Through Processing Using Different Culture Methods. Poult Sci 2022; 101:101949. [PMID: 35688029 PMCID: PMC9189229 DOI: 10.1016/j.psj.2022.101949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional Salmonella surveillance requires a week for isolation, confirmation, and subsequent serotyping. We previously showed that this could be reduced by 24 h by combining the pre-enrichment and enrichment steps into a single selective pre-enrichment step and was tested on directly after picking. The goal of this study was 2-fold: 1) to evaluate the use of selective pre-enrichment through each step of processing, including postintervention when the Salmonella load is reduced, and 2) to assess any changes in serovar populations in Salmonella positive samples. Duplicate carcass drip samples, each representative of 500 broiler carcasses, were collected by catching processing water drip under moving carcass shackle lines in each of three commercial broiler slaughter plants. Samples were collected post-pick, post-inside-outside bird wash (IOBW), and post-chill; duplicate wing rinses were performed pre- and post-antimicrobial parts dip. Each processing plant was sampled 6 times for a total of 180 samples collected. The number of Salmonella positives identified with selective pre-enrichment conditions (48/180) was similar to traditional selective enrichment culture conditions (52/180), showed good concordance in recovery rate between the 2 culture methods (Fisher's exact test, P = 0.72). We also found that the incidence of Salmonella reduced dramatically after antimicrobial intervention (post-pick 66.7% vs. post chill 8.3%). When serovar populations were evaluated in Salmonella positive samples using CRISPR-SeroSeq, we detected four different Salmonella serovars, Kentucky, Infantis, Schwarzengrund, and Typhimurium, and their incidence rose between post-pick and post-IOBW. The relative abundance of Infantis within individual samples increased between post-pick and post-IOBW while the relative abundance of the other 3 serovars decreased. These results suggest that a selective pre-enrichment step reduces the time required for Salmonella isolation without negatively affecting detection and serovar profiles in culture positive samples were not altered between culture conditions used.
Collapse
|
13
|
De Villena JF, Vargas DA, Bueno López R, Chávez-Velado DR, Casas DE, Jiménez RL, Sanchez-Plata MX. Bio-Mapping Indicators and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High and Low Antimicrobial Intervention Levels. Foods 2022; 11:foods11060775. [PMID: 35327198 PMCID: PMC8947298 DOI: 10.3390/foods11060775] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 01/01/2023] Open
Abstract
The poultry industry in the United States has traditionally implemented non-chemical and chemical interventions against Salmonella spp. and Campylobacter spp. on the basis of experience and word-of-mouth information shared among poultry processors. The effects of individual interventions have been assessed with microbiological testing methods for Salmonella spp. and Campylobacter spp. prevalence as well as quantification of indicator organisms, such as aerobic plate counts (APC), to demonstrate efficacy. The current study evaluated the loads of both indicators and pathogens in a commercial chicken processing facility, comparing the “normal chemical”, with all chemical interventions turned-on, at typical chemical concentrations set by the processing plant versus low-chemical process (“reduced chemical”), where all interventions were turned off or reduced to the minimum concentrations considered in the facility’s HACCP system. Enumeration and prevalence of Salmonella spp. and Campylobacter spp. as well as indicator organisms (APC and Enterobacteriaceae—EB) enumeration were evaluated to compare both treatments throughout a 25-month sampling period. Ten locations were selected in the current bio-mapping study, including live receiving, rehanger, post eviscerator, post cropper, post neck breaker, post IOBW #1, post IOBW #2, prechilling, post chilling, and parts (wings). Statistical process control parameters for each location and processing schemes were developed for each pathogen and indicator evaluated. Despite demonstrating significant statistical differences between the normal and naked processes in Salmonella spp. counts (“normal” significantly lower counts than the “reduced” at each location except for post-eviscerator and post-cropper locations), the prevalence of Salmonella spp. after chilling is comparable on both treatments (~10%), whereas for Campylobacter spp. counts, only at the parts’ location was there significant statistical difference between the “normal chemical” and the “reduced chemical”. Therefore, not all chemical intervention locations show an overall impact on Salmonella spp. or Campylobacter spp., and certain interventions can be turned off to achieve the same or better microbial performance if strategic intervention locations are enhanced.
Collapse
|
14
|
Spencer-Williams I, Theobald A, Cypcar CC, Casson LW, Haig SJ. Examining the antimicrobial efficacy of granulated tetraacetylethylenediamine derived peracetic acid and commercial peracetic acid in urban wastewaters. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10688. [PMID: 35118781 DOI: 10.1002/wer.10688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The ever-increasing need for access to safe water has meant that alternative water sources and innovative water reclamation approaches are often required to meet the global water demand. As a result, many wastewater treatment facilities have faced regulatory pressure to seek alternative disinfection methods that ensure public health safety, while adhering to regulations that set limits on carcinogenic disinfection by-products (DBPs). Peracetic acid (PAA) is an emerging wastewater disinfectant in the United States that has been widely used in other industries such as food sanitization and does not produce carcinogenic DBPs. However, several factors such as transport, storage, and physical and chemical effects have stymied its widespread use in wastewater markets. Therefore, the purpose of this study was to examine the antimicrobial efficacy of an on-site generated PAA compared against a commercially available PAA. Antimicrobial efficacy was assessed using standard fecal contamination indicators (i.e., total coliforms and Escherichia coli) in six urban wastewater treatment facilities ranging in size and treatment processes. Overall, few statistical differences were found between the antimicrobial efficacies of on-site generated PAA and commercially available PAA; however, before becoming more widely utilized, the on-site PAA should be tested against emerging fecal contamination indicators (e.g., human norovirus and enterovirus) and be assessed in terms of economic and sustainability impacts. PRACTITIONER POINTS: Alternative Ct approaches should be considered when using disinfectants like PAA. On-site generated PAA can achieve the same level of disinfection as commercial PAA. On-site generation of PAA may help further its use as a wastewater disinfectant.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Leonard W Casson
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Punchihewage-Don AJ, Parveen S, Schwarz J, Hamill L, Nindo C, Hall P, Vimini B. Efficacy and Quality Attributes of Antimicrobial Agent Application via a Commercial Electrostatic Spray Cabinet To Inactivate Salmonella on Chicken Thigh Meat. J Food Prot 2021; 84:2221-2228. [PMID: 34410413 DOI: 10.4315/jfp-21-206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella is a foodborne pathogen associated with poultry meat. This study aimed to determine the efficiency and quality attributes of two antimicrobial agents to reduce Salmonella on raw chicken meat when applied individually and in combination using an electrostatic spray cabinet. Thus, 5 log CFU/g of nonpathogenic, rifampin-resistant Salmonella Typhimurium was inoculated on skinless, boneless, raw chicken thigh meat and passed through an electrostatic spray cabinet while being sprayed with 5% lauric arginate (LAE), and 100, 1,000, 1,500, and 1,750 ppm of peracetic acid (PAA). Spraying of 5% LAE for 45 s significantly reduced Salmonella by 5 log (P < 0.05). The 1,500 ppm of PAA reduced Salmonella significantly within 45 s (1.157 log). Spraying of 1,500 ppm of PAA followed by LAE within 15 s reduced Salmonella significantly more than vice versa (P < 0.05). The color, water holding capacity, and texture did not differ significantly but resulted in significantly strong aroma and flavor. Both LAE and PAA efficiently reduced Salmonella when applied in an electrostatic spray cabinet on raw chicken thigh meat. The results suggest that the sequential order of application of antimicrobial agents is important to improve the safety and quality of raw chicken thigh meat. HIGHLIGHTS
Collapse
Affiliation(s)
| | - Salina Parveen
- University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - Jurgen Schwarz
- University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - Lindsey Hamill
- Perdue Farms Inc., P.O. Box 1537, Salisbury, Maryland 21802, USA
| | - Caleb Nindo
- University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - Parker Hall
- Perdue Farms Inc., P.O. Box 1537, Salisbury, Maryland 21802, USA
| | - Bob Vimini
- Perdue Farms Inc., P.O. Box 1537, Salisbury, Maryland 21802, USA
| |
Collapse
|
16
|
Berrang M, Gamble G, Bowker B, Meinersmann R, Cox N, Knapp S. Cetylpyridinium chloride and peracetic acid to lessen Campylobacter, Escherichia coli, and total aerobic bacterial contamination on chicken liver. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Wang W, Zhao D, Li KE, Xiang Q, Bai Y. Effect of UVC Light-Emitting Diodes on Pathogenic Bacteria and Quality Attributes of Chicken Breast. J Food Prot 2021; 84:1765-1771. [PMID: 34086892 DOI: 10.4315/jfp-21-066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to investigate the inactivation of foodborne pathogens and the quality characteristics of fresh chicken breasts after UVC light-emitting diode (UVC-LED) treatment. Fresh chicken breasts were separately inoculated with Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes at initial populations of 6.01, 5.80, and 6.22 log CFU/cm2, respectively, and then treated with UVC-LED irradiation at 1,000 to 4,000 mJ/cm2. UVC-LED irradiation inactivated the test bacteria in a dose-dependent manner. After UVC-LED treatment at 4,000 mJ/cm2, the populations of Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes on chicken breasts were decreased by 1.90, 2.25, and 2.18 log CFU/cm2, respectively. No significant changes (P > 0.05) were found in color, pH, texture, and thiobarbituric acid-reactive substances of chicken breasts following UVC-LED irradiation at doses ≤4,000 mJ/cm2. These results indicate that UVC-LED radiation is a promising technology for reducing the level of microorganisms while maintaining the physicochemical characteristics of poultry meat. HIGHLIGHTS
Collapse
Affiliation(s)
- Wenwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Dianbo Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - K E Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
18
|
Vaddu S, Kataria J, Belem TS, Sidhu G, Moller AE, Leone C, Singh M, Thippareddi H. On-site generated peroxy acetic acid (PAA) technology reduces Salmonella and Campylobacter on chicken wings. Poult Sci 2021; 100:101206. [PMID: 34111613 PMCID: PMC8192870 DOI: 10.1016/j.psj.2021.101206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022] Open
Abstract
Peroxyacetic acid (PAA) is a widely used antimicrobial during poultry processing that requires to be shipped in a concentrated solution, stored under hazardous conditions and diluted for use. On-site PAA generation using nonhazardous ingredients can help eliminate transportation and storage issues at the processing plant and reduce the risk of occupational hazards. The objective of the proposed research was to 1) evaluate the efficacy of on-site generated PAA in reducing Salmonella and Campylobacter populations compared to the commercially available PAA stock solutions and 2) to perform color measurements to evaluate any deviations between treatments. PAA solutions at 50 and 100 ppm were used for treating the chicken wings. Fresh chicken wings (0.45 kg) were inoculated with a cocktail of nalidixic acid resistant Salmonella Typhimurium (STNR) and gentamicin resistant Campylobacter coli (CCGR) and immersed in PAA solutions (50 and 100 ppm) adjusted to pH 8.5 and 10.0 or 10.5, for either 10 s or 60 min. Treated chicken wings were rinsed for 1 min in chilled BPW (100 mL), serially diluted and plated on APC Petrifilm for Salmonella, spread plated on Campy-cefex agar supplemented with gentamicin (200 ppm) for Campylobacter enumeration. Immersion of chicken wings in 100 ppm PAA for 60 min irrespective of pH levels and PAA solutions resulted in greater microbial reductions (P < 0.05) of Salmonella by 1.68 and 1.42 log CFU/mL for SaniDate, 1.82 and 1.83 log CFU/mL for OxyFusion (on-site generated). For the same treatments, Campylobacter reductions of 1.59 and 1.36 log CFU/mL for SaniDate, 1.63 and 1.71 log CFU/mL for OxyFusion were achieved. The antimicrobial efficiency of PAA was not affected by pH and type of PAA solution. No significant differences (P > 0.05) in color were observed between treatments and controls. On-site generated PAA provides poultry processors an effective, safer, and less hazardous alternative to commercially available PAA solutions, ensuring poultry workers’ health and safety.
Collapse
Affiliation(s)
- S Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - J Kataria
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - T S Belem
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - G Sidhu
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - A E Moller
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - C Leone
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - M Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - H Thippareddi
- Department of Poultry Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
19
|
Evaluation of Immersion and Spray Applications of Antimicrobial Treatments for Reduction of Campylobacter jejuni on Chicken Wings. Foods 2021; 10:foods10040903. [PMID: 33924021 PMCID: PMC8073659 DOI: 10.3390/foods10040903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The decontamination efficacy of antimicrobial treatments against Campylobacter jejuni on chicken wings was evaluated. Chicken wings surface-inoculated with C. jejuni (3.9 log colony-forming units [CFU]/mL) were left untreated (control) or were treated by immersion (5 s) or in a spray cabinet (4 s) with water, a sulfuric acid and sodium sulfate blend (SSS; pH 1.2), formic acid (1.5%), peroxyacetic acid (PAA; 550 ppm), or PAA (550 ppm) that was pH-adjusted (acidified) with SSS (pH 1.2) or formic acid (1.5%). All evaluated immersion and spray chemical treatments effectively (p < 0.05) lowered C. jejuni populations on chicken wings. Spray application of chemical treatments resulted in immediate pathogen reductions ranging from 0.5 to 1.2 log CFU/mL, whereas their application by immersion lowered initial pathogen levels by 1.7 to 2.2 log CFU/mL. The PAA and acidified PAA treatments were equally (p ≥ 0.05) effective at reducing initial C. jejuni populations, however, following a 24 h refrigerated (4 °C) storage period, wings treated with acidified PAA had lower (p < 0.05) pathogen levels than samples that had been treated with PAA that was not acidified. Findings of this study should be useful to the poultry industry in its efforts to control Campylobacter contamination on chicken parts.
Collapse
|
20
|
Cutts T, Kasloff S, Safronetz D, Krishnan J. Decontamination of common healthcare facility surfaces contaminated with SARS-CoV-2 using peracetic acid dry fogging. J Hosp Infect 2021; 109:82-87. [PMID: 33417989 PMCID: PMC7832754 DOI: 10.1016/j.jhin.2020.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has highlighted the urgent need for safe and effective surface decontamination methods, particularly in healthcare settings. AIM To evaluate the effectiveness of peracetic acid (PAA) dry fogging in decontaminating healthcare facility surfaces experimentally contaminated with SARS-CoV-2. METHODS Nine materials (stainless steel, latex painted wood, unsealed hardwood, melamine countertop, vinyl flooring, clear plastic, faux leather, computer keyboard button, and smartphone touch screen) were surface contaminated with >106 median tissue culture infectious dose (TCID50) of SARS-CoV-2, and allowed to dry before exposing to PAA dry fogging. FINDINGS When fumigated with PAA dry fog for 1 h, no infectious SARS-CoV-2 virus was recovered from any of the experimentally inoculated surface types. By contrast, high titres of infectious virus were recovered from corresponding untreated drying controls of the same materials. CONCLUSION Standard surface decontamination processes, including sprays and wipes, are laborious and frequently cannot completely decontaminate sensitive electronic equipment. The ease of use, low cost, and overall effectiveness of a PAA dry fogging suggest that it should be considered for decontaminating healthcare settings, particularly intensive care units where severely ill SARS-CoV-2 patients are cared for.
Collapse
Affiliation(s)
- T Cutts
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - S Kasloff
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - D Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - J Krishnan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Megahed A, Aldridge B, Lowe J. Antimicrobial Efficacy of Aqueous Ozone and Ozone-Lactic Acid Blend on Salmonella-Contaminated Chicken Drumsticks Using Multiple Sequential Soaking and Spraying Approaches. Front Microbiol 2020; 11:593911. [PMID: 33381091 PMCID: PMC7768038 DOI: 10.3389/fmicb.2020.593911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/16/2020] [Indexed: 12/03/2022] Open
Abstract
Ozone (O3) is an attractive alternative antimicrobial in the poultry processing industry. The optimal operational conditions of O3 for improving food safety concerns are poorly understood. The main objective of this study was therefore to characterize the microbial killing capacity of aqueous O3 and O3-lactic acid blend (O3-LA) at different operational conditions on chicken drumsticks contaminated with high Salmonella load using sequential soaking and spraying approaches. Four hundred forty-eight chicken drumsticks (280-310 g) were soaked into two-strain Salmonella cocktail, and the initial load on the surface of the skin was 6.9-log10 cell forming unit (CFU)/cm2 [95% confidence interval (CI), 6.8-7.0]. The contaminated drumsticks were then sequentially (10×) soaked and sprayed with aqueous O3 (8 ppm) and O3-LA. Following O3 exposure, quantitative bacterial cultures were performed on the post-soaking and post-spraying water, skin surface, and subcutaneous (SC) of each drumstick using 3MTM PetrifilmTM Rapid Aerobic Count Plate (RAC) and plate reader. The average killing capacity of aqueous O3/cycle on the skin surface was 1.6-log10/cm2 (95% CI, 1.5-1.8-log10/cm2) and 1.2-log10/cm2 (95% CI, 1.0-1.4-log10/cm2), and it was 1.1-log10/cm2 (95% CI, 0.9-1.3-log10/cm2) and 0.9-log10/cm2 (95% CI, 0.7-1.1-log10/cm2) in SC for soaking and spraying approaches, respectively. Six sequential soaking and seven sequential spraying cycles with ozonated water of 8 ppm reduced the heavy Salmonella load below the detectable limit on the skin surface and SC of drumsticks, respectively. Addition of LA seems to increase the microbial killing capacity of aqueous O3 with average differences of 0.3-log10/cm2 (P = 0.08) and 0.2-log10/cm2 (P = 0.12) on the skin surface using soaking and spraying approaches, respectively. Aqueous O3 did not cause any significant changes in the drumstick skin color. The Salmonella load of < 4.5-log10/cm2 was a strong predictor for the reduction rate (P < 0.001, R 2 = 0.64). These results provide important information that helps the poultry processing facilities for selecting the optimal operational strategy of O3 as an effective antimicrobial.
Collapse
Affiliation(s)
- Ameer Megahed
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
- Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Brian Aldridge
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - James Lowe
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| |
Collapse
|
22
|
Vaddu S, Kataria J, Rama EN, Moller AE, Gouru A, Singh M, Thippareddi H. Impact of pH on efficacy of peroxy acetic acid against Salmonella, Campylobacter, and Escherichia coli on chicken wings. Poult Sci 2020; 100:256-262. [PMID: 33357688 PMCID: PMC7772656 DOI: 10.1016/j.psj.2020.09.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 11/03/2022] Open
Abstract
Peroxy acetic acid (PAA) is widely used as an antimicrobial in poultry processing, specifically in the chiller. While the natural pH of PAA at the concentrations used is between 4.5 and 6.0, poultry processors adjust the pH to ≥8.0 to maintain product yield. The objective of this study was to evaluate 1) efficacy of PAA at different concentrations, pH, and contact times against Salmonella, Campylobacter, and Escherichia coli and 2) use of E. coli as a surrogate for Salmonella and Campylobacter to conduct validations studies for poultry processing. Fresh chicken wings (0.45 Kg) were inoculated with a cocktail of nalidixic acid-resistant Salmonella Typhimurium, rifampicin-resistant E. coli (5-strain cocktail), and gentamicin-resistant Campylobacter coli. Inoculated chicken wings were immersed in PAA solutions of 50, 250, and 500 ppm adjusted to pH 8.2 and 10.0 as well as nonadjusted PAA solutions for 10 s and 60 min. Treated chicken wings were rinsed in chilled buffered peptone water, serially diluted, and plated on Petrifilm APC for enumerating Salmonella and E. coli populations and spread plated on Campy Cefex Agar containing gentamicin (200 ppm) to enumerate Campylobacter. Immersion of chicken wings in 500 ppm of PAA (non-pH-adjusted) for 60 min resulted in greater microbial reductions (P ≤ 0.05) of Salmonella, Campylobacter, and E. coli populations of 2.56, 1.90, and 2.53 log CFU/mL, respectively. Higher concentrations and longer exposure times resulted in greater reductions (P ≤ 0.05) of Salmonella, E. coli, and Campylobacter populations, and increasing pH of PAA solution did not affect (P > 0.05) its efficacy. A high correlation (r = 0.93) was observed between E. coli (surrogate) and Salmonella populations suggesting that E. coli can be used as a surrogate for Salmonella for conducting validation studies for antimicrobial efficacy testing in poultry processing.
Collapse
Affiliation(s)
- S Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - J Kataria
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - E N Rama
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - A E Moller
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - A Gouru
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - M Singh
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - H Thippareddi
- Department of Poultry Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
23
|
Evaluating the efficacy of peracetic acid on Salmonella and Campylobacter on chicken wings at various pH levels. Poult Sci 2020; 99:5137-5142. [PMID: 32988552 PMCID: PMC7598301 DOI: 10.1016/j.psj.2020.06.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Peracetic acid (PAA) is commonly used as an antimicrobial aid during poultry processing to reduce the pathogen load on poultry and poultry products. However, limited research is available on the effects of pH on the efficacy of PAA against Salmonella and Campylobacter. Therefore, the objective of this study was to determine the efficacy of PAA in reducing Salmonella and Campylobacter populations on chicken wings adjusted to various pH levels. Chicken wings (0.454 kg each) were inoculated with nalidixic acid-resistant (200 ppm) Salmonella Typhimurium (∼7 log10 cfu/mL) and gentamicin-resistant (200 ppm) Campylobacter coli (∼6-7 log10 cfu/mL). Inoculated wings were treated with PAA by immersion for 10 s or 60 min at 4°C to 6°C. The treatments included 50 ppm (0.005%) and 500 ppm (0.05%) PAA at 3 pH levels (8.2, 10, and 11) or sodium hydroxide (NaOH, pH 11). Surviving populations of Salmonella and Campylobacter were determined by sampling the chicken wings after treatments. Irrespective of concentration and pH of PAA, higher (P ≤ 0.05) reductions of Salmonella were observed subsequent to 60 min exposure as compared with 10 s of immersion. Immersion time and the higher pH of antimicrobial solutions did not affect (P > 0.05) the antimicrobial efficacy of PAA (50 or 500 ppm) against Campylobacter. The antimicrobial efficacy of PAA was not affected by pH of the antimicrobial solutions, and longer exposure time and higher PAA concentrations improve the antimicrobial efficacy.
Collapse
|
24
|
Thames HT, Theradiyil Sukumaran A. A Review of Salmonella and Campylobacter in Broiler Meat: Emerging Challenges and Food Safety Measures. Foods 2020; 9:E776. [PMID: 32545362 PMCID: PMC7353592 DOI: 10.3390/foods9060776] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Poultry is one of the largest sources of animal-based protein in the United States. Poultry processing has grown from a small local network of plants to nearly 500 plants nationwide. Two of the most persistent bacteria in poultry processing are Salmonella and Campylobacter. It was not until the introduction of Hazard Analysis and Critical Control Point systems in 1996 that major efforts to reduce bacterial contamination were developed. Traditionally, chlorine has been the industry standard for decontaminating chicken meat. However, antimicrobials such as peracetic acid, cetylpyridinium chloride, and acidified sodium chlorite have replaced chlorine as primary antimicrobials. Despite current interventions, the emergence of stress-tolerant and biofilm-forming Salmonella and Campylobacter is of primary concern. In an effort to offset growing tolerance from microbes, novel techniques such as cold plasma treatment, electrostatic spraying, and bacteriophage-based applications have been investigated as alternatives to conventional treatments, while new chemical antimicrobials such as Amplon and sodium ferrate are investigated as well. This review provides an overview of poultry processing in the United States, major microbes in poultry processing, current interventions, emerging issues, and emerging technologies in antimicrobial treatments.
Collapse
|