1
|
Guo F, Qiao J, Hu Z, Huang J, Bi R, Abbas W, Zhen W, Guo Y, Wang Z. Yeast cell wall polysaccharides accelerate yet in-feed antibiotic delays intestinal development and maturation via modulating gut microbiome in chickens. J Anim Sci Biotechnol 2025; 16:14. [PMID: 39856758 PMCID: PMC11763161 DOI: 10.1186/s40104-024-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND It is important to promote intestinal development and maturation of chicks for feed digestion and utilization, intestinal health, and disease resistance. This study aimed to investigate the effects of dietary yeast cell wall polysaccharides (YCWP) addition on intestinal development and maturation of chickens and its potential action mechanism. METHODS 180 one-day-old male Arbor Acres broilers were randomly assigned to three groups containing control (basal diets without any antibiotics or anticoccidial drug), bacitracin methylene disalicylate (BMD)-treated group (50 mg/kg) and YCWP-supplemented group (100 mg/kg). RESULTS Compared with control group, in-feed antibiotic BMD continuous administration significantly decreased crypt depth (d 21) and villus height (d 42) along with mucosal maltase activity (d 42) in the ileum (P < 0.05). Also, BMD markedly downregulated gene expression levels of β-catenin, lysozyme, occludin and FABP-2 (d 21) and innate immune related genes CD83 and MHC-I mRNA levels (d 42, P < 0.05), and decreased goblet cell counts in the ileum of chickens (d 21 and d 42, P < 0.05). While, TLR-2, TLR-6 and iNOS mRNA abundances were notably upregulated by BMD treatment (d 42, P < 0.05). Nevertheless, dietary YCWP addition significantly increased the ratio of villus height to crypt depth (d 21), villus surface area (d 21 and d 42), ileal alkaline phosphatase and maltase activities as well as goblet cell (d 21 and d 42) and IgA-producing plasma cell numbers as compared to BMD treatment (d 21, P < 0.05). YCWP addition also upregulated gene expression levels of Lgr5, Wnt/β-catenin signaling pathway related gene (Wnt3, β-catenin, d 21; β-catenin, d 42), intestinal cells proliferation marker Ki-67 and barrier function related genes (occludin, d 21 and d 42, P < 0.05). Moreover, YCWP significantly increased antigen presenting cell marker related genes (MHC-II, d 21; CD83 and MHC-I, d 42), TLR-1, TLR-2 and TLR-6 mRNA levels (d 21, P < 0.05). Cecal microbiome analysis showed that YCWP addition obviously improved cecal microbial composition, as indicated by increasing relative abundance of Fournierella, Psychrobacter and Ruminiclostridium on d 21, and Alistipes and Lactobacillus on d 42, which were positively related with gut development and maturation related indexes (P < 0.05). CONCLUSION Collectively, YCWP promoted yet antibiotic BMD delayed intestinal morphological and immunological development linked with modulating gut microbiome in chickens.
Collapse
Affiliation(s)
- Fangshen Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jianing Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zeqiong Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jia Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ruichen Bi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Waseem Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wenrui Zhen
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Lee J, Goo D, Sharma MK, Ko H, Shi H, Paneru D, Choppa VSR, Liu G, Kim WK. Effects of graded yeast cell wall supplementation on growth performance, immunity and intestinal development of broiler chickens raised in floor pens for 42 days. Poult Sci 2024; 104:104695. [PMID: 39721260 PMCID: PMC11732452 DOI: 10.1016/j.psj.2024.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
This study was conducted to evaluate the effects of dietary supplementation of a novel soluble yeast cell wall (YCW) on growth performance, gut health, intestinal morphology, and immune response in broiler chickens for 42 days. A total of 480 one-day-old Cobb 500 male broilers were randomly assigned to four treatments with six replicates and each replicate of twenty broiler chickens: a control group (CON) without feed additive supplementation, and three groups supplemented with YCW at 0.025 % (YCW1), 0.050 % (YCW2), and 0.100 % (YCW3). Results showed that 0.025 % and 0.100 % YCW supplementation significantly increased (P < 0.05) final body weight (BW) and overall body weight gain (BWG) while reducing overall feed conversion ratio (FCR) compared to the CON group. The YCW supplementation also improved (P < 0.05) the balance of gut microbiota by increasing beneficial bacteria (Lactobacillus) and decreasing Salmonella, a potential foodborne pathogen in humans in the ceca. Although intestinal morphology was not significantly affected, YCW supplementation numerically increased the villus height: crypt depth ratio (VH:CD) compared to the CON group. Furthermore, YCW reduced the mRNA expression of pro-inflammatory cytokines (IL-1β and INF-γ) and tight junction protein claudin-1 (CLDN-1) (P < 0.05), suggesting balanced immune response and improved intestinal barrier function. In conclusion, the supplementation of soluble YCW in broiler diets positively influenced growth performance, gut microbiota composition, and immune response, demonstrating its potential as a viable alternative to antibiotics for improving broilers' health.
Collapse
Affiliation(s)
- Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | | | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602 USA.
| |
Collapse
|
3
|
Sharma MK, Kim WK. Coccidiosis in Egg-Laying Hens and Potential Nutritional Strategies to Modulate Performance, Gut Health, and Immune Response. Animals (Basel) 2024; 14:1015. [PMID: 38612254 PMCID: PMC11010854 DOI: 10.3390/ani14071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Avian coccidiosis, despite advancements in management, nutrition, genetics, and immunology, still remains the most impactful disease, imposing substantial economic losses to the poultry industry. Coccidiosis may strike any avian species, and it may be mild to severe, depending on the pathogenicity of Eimeria spp. and the number of oocysts ingested by the bird. Unlike broilers, low emphasis has been given to laying hens. Coccidiosis in laying hens damages the gastrointestinal tract and causes physiological changes, including oxidative stress, immunosuppression, and inflammatory changes, leading to reduced feed intake and a drastic drop in egg production. Several countries around the world have large numbers of hens raised in cage-free/free-range facilities, and coccidiosis has already become one of the many problems that producers have to face in the future. However, limited research has been conducted on egg-laying hens, and our understanding of the physiological changes following coccidiosis in hens relies heavily on studies conducted on broilers. The aim of this review is to summarize the effect of coccidiosis in laying hens to an extent and correlate it with the physiological changes that occur in broilers following coccidiosis. Additionally, this review tries to explore the nutritional strategies successfully used in broilers to mitigate the negative effects of coccidiosis in improving the gut health and performance of broilers and if they can be used in laying hens.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
4
|
Yuan C, Ren L, Sun R, Yun X, Zang X, Zhang A, Wu M. Mannan oligosaccharides improve the fur quality of raccoon dogs by regulating the gut microbiota. Front Microbiol 2023; 14:1324277. [PMID: 38169639 PMCID: PMC10758401 DOI: 10.3389/fmicb.2023.1324277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Adding antibiotics to animal basal diets can improve growth and production performance. However, the use of antibiotics poses a potential threat to public health safety. Methods The study was conducted to investigate the effects of different levels of mannan oligosaccharides (MOS) on the fur quality, nutrient apparent digestibility, serum immunity, antioxidant status, intestinal morphology, and gut microbiota of fur-growing raccoon dogs. Divide 24 male raccoon dogs (120 ± 5 d) of similar weight (5.01 ± 0.52 kg) into 4 groups randomly. Add 0, 0.05, 0.1, and 0.2% MOS to the basal diets of groups C, L, M, and H, respectively. Results Compared to the C group, the addition of 0.05% and 0.1% MOS in the diet increased the apparent digestibility of crude protein (CP), Underfur length (UL), Guard hair length (GL), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) levels in the serum (p < 0.05); Under the dosage of 0.05 % MOS, the activities of Superoxide Dismutase (SOD) and catalase (CAT) increased (p < 0.05). Compared to the C group, adding 0.05% MOS significantly increased the VH/CD of the duodenum and ileum, while also increasing the VH and CD of the jejunum (p < 0.05). Through Spearman correlation analysis of the gut microbiota, it was found that MOS can improve fur quality by reducing the abundance of Dorea while improving the immune response of raccoon dogs by reducing the abundance of Blautia and Gemmiger. Discussion In conclusion, MOS can improve the fur quality, serum immunity, antioxidant capacity, and gut microbiota of raccoon dogs. Therefore, MOS has the potential to replace antibiotics.
Collapse
Affiliation(s)
- Chongshan Yuan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lili Ren
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xianghong Yun
- Animal Husbandry Research Institute, Changchun Academy of Agricultural Science, Changchun, China
| | - Xiao Zang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Aiwu Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Leone F, Ferrante V. Effects of prebiotics and precision biotics on performance, animal welfare and environmental impact. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165951. [PMID: 37532045 DOI: 10.1016/j.scitotenv.2023.165951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
This review aims to analyze the recent studies about prebiotics and precision biotics, as alternatives to animal growth promoters. These substances improve intestinal health, growth performance and poultry environmental impact. Prebiotics are insoluble fibers, that have no nutritive value, but they promote the growth of positive bacteria, increase the nutrients absorption and modulate the immune response. Instead, precision biotics are carbohydrates with glycosidic linkages, which interact with gut bacteria metabolism, reducing the excretion of nitrogen and consequentially, the poultry environmental impact. In the last years, different studies were published in this field, and for this reason, it is necessary to organize the results found. It was shown that mannan-oligosaccharides and β-glucans increase ileal nutrient digestibility, nitrogen retention and antibodies titers. Inulin, arabinoxylans-derived oligosaccharides, and galacto-oligosaccharides improved intestinal morphology, arranging for a larger absorption surface area. It was reported that prebiotics enhance the colonization of positive bacteria and can reduce the count of Campylobacter colonies. Furthermore, xylo-oligosaccharides are often used in animal feed, due to their ability to form organic acids, which decompose noxious substances, improving litter quality, and consequentially, reducing the environmental impact. Litter quality is a relevant aspect for ammonia emissions and for animal welfare. Whether the litter quality is poor, footpad dermatitis increase, worsening animal welfare and increasing nitrogen emissions to air. Precision biotics select metabolic pathways to modulate amino acid degradation, reintegrating the nitrogen discarded, and reducing the ammonia level in litter. It was also reported an improvement of growth performance and a better animal welfare. In conclusion, prebiotics and precision biotics can have positive effects on animal performance and welfare, and they can be a new strategy to reduce the environmental impact of chickens' farms.
Collapse
Affiliation(s)
- Francesca Leone
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Giovanni Celoria 10, 20133 Milan, Italy
| | - Valentina Ferrante
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Giovanni Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
6
|
Youssef IM, Khalil HA, Jaber FA, Alhazzaa RA, Alkholy SO, Almehmadi AM, Alhassani WE, Al-Shehri M, Hassan H, Hassan MS, Abd El Halim HS, El-Hack MEA, Youssef KM, Abo-Samra MA. Influence of dietary mannan-oligosaccharides supplementation on hematological characteristics, blood biochemical parameters, immune response and histological state of laying hens. Poult Sci 2023; 102:103071. [PMID: 37734356 PMCID: PMC10518593 DOI: 10.1016/j.psj.2023.103071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
This study aimed to determine the influence of dietary mannan-oligosaccharides (MOS) on the immune system, hematological traits, blood biochemical parameters, and histological state of laying hens. At 34 wk of age, The Mandarah chicken strain's 120 laying hens and 12 cocks were divided into 4 groups, each with 30 hens and 3 cocks. The first group performed as a control group, which nourished on a basal diet. The second, third, and fourth experimental groups received 0.1, 0.2, and 0.5 g/kg of MOS and a base diet, respectively. Birds obtained MOS at numerous doses significantly (P ˂ 0.05) raised serum levels of immunoglobulin Y (IgY), immunoglobulin M (IgM), and avian influenza (AI) antibodies compared to control birds. Furthermore, adding MOS at a level of 0.1 g/kg diet significantly improved the immune response of the control group. Additionally, compared to the control group, treated birds with MOS at various dosages did not significantly enhance hematological parameters such as red blood cells (RBCs), white blood cells (WBCs), hemoglobin, and hematocrit. Compared to control birds, birds fed MOS at all levels exhibited considerably lower serum cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) values. Also, compared to other treated birds, MOS-treated birds displayed improved histological examination of the small intestine, isthmus, and testis compared to the control group, particularly in birds fed MOS at 0.1 and 0.2 g/kg diet. It could be concluded that using MOS at 0.1 or 2 g/kg diet can successfully improve the physiological performance and overall health of laying hens.
Collapse
Affiliation(s)
- Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Hassan A Khalil
- Animal Production Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Kingdom of Saudi Arabia
| | - Rasha A Alhazzaa
- Basic Sciences Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Kingdom of Saudi Arabia; King Abdullah International Medical Research Center, Riyadh 11481, Kingdom of Saudi Arabia
| | - Sarah O Alkholy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, Makkah, P.O. BOX. 715. 21955, Saudi Arabia
| | - Awatif M Almehmadi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, Makkah, P.O. BOX. 715. 21955, Saudi Arabia
| | - Walaa E Alhassani
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AL-Qura University, Makkah, P.O. BOX. 715. 21955, Saudi Arabia
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hesham Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha 61413, Saudi Arabia
| | - Magdy S Hassan
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Haiam S Abd El Halim
- Animal Production Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Khaled M Youssef
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Maher A Abo-Samra
- Animal Production Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Elkomy HS, Koshich II, Mahmoud SF, Abo-Samaha MI. Use of lactulose as a prebiotic in laying hens: its effect on growth, egg production, egg quality, blood biochemistry, digestive enzymes, gene expression and intestinal morphology. BMC Vet Res 2023; 19:207. [PMID: 37845670 PMCID: PMC10578020 DOI: 10.1186/s12917-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The rising popularity of eggs as an alternative source of protein to meat has led to significant increase in egg consumption over the past decade. To meet the increasing demand for eggs, poultry farmers have used antibiotics to treat infections and, to some extent, promote growth and egg production in raising layer. However, the emergence and global spread of antibiotic resistant bacteria has now necessitated antibiotic-free poultry farming. As alternatives to antibiotics, prebiotics are feed additives that can be used to improve the growth and laying performance of poultry which positively impacts their performance and general health. In this study we evaluated the effect of lactulose, formulated as Vetelact, on body weight, egg production, egg quality, blood biochemical parameters and expression of genes associated with reproductive performance in laying hens. RESULTS Vetelact supplementation improved egg weight, egg production as well as egg quality. Following Vetalact supplementation, the levels of total bilirubin, total protein, globulin and phosphorus were increased, while the activities of alkaline phosphatase and lipase enzymes were increased compared to control. Vetelact at 0.10 ml/kg body weight upregulated OCX-36, OVAL, CALB1, OC-116, OCX-32 and IL8 transcripts while downregulating the transcription of Gal-10, PENK and AvBD9. At this optimal inclusion rate of Vetalect, histomorphologic analyses of intestinal tissue showed increased villi length with more goblet cell distribution and obvious mucus covering a surface, increase in the depth of intestinal crypts produce digestive enzymes, as well as more developed muscle layer that promote improved nutrient absorption. CONCLUSION Vetelact at a dose of 0.10 ml/ kg body weight was effective in improving productive performance of laying hens. Adding lactulose (0.10 ml/ kg body weight) to layer diet is recommended to promote growth and improve egg laying performance in antibiotics-free poultry production.
Collapse
Affiliation(s)
- Hassan S Elkomy
- Poultry Breeding and Production, Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
- Moscow State Academy of Veterinary Medicine and Biotechnology Named After K.I. Skryabin, 23, Academician Skryabin Street, Moscow, 109472, Russia
| | - Ivan I Koshich
- Moscow State Academy of Veterinary Medicine and Biotechnology Named After K.I. Skryabin, 23, Academician Skryabin Street, Moscow, 109472, Russia
| | - Sahar F Mahmoud
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhur University, Damanhur, 22511, Egypt
| | - Magda I Abo-Samaha
- Poultry Breeding and Production, Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt.
| |
Collapse
|
8
|
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel) 2023; 13:ani13081386. [PMID: 37106949 PMCID: PMC10135100 DOI: 10.3390/ani13081386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Li Z, Zhang B, Zhu W, Lin Y, Chen J, Zhu F, Guo Y. Effects of nonantibiotic growth promoter combinations on growth performance, nutrient utilization, digestive enzymes, intestinal morphology, and cecal microflora of broilers. PLoS One 2023; 18:e0279950. [PMID: 36996144 PMCID: PMC10062635 DOI: 10.1371/journal.pone.0279950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Given the ban on antibiotic growth promoters, the effects of nonantibiotic alternative growth promoter combinations (NAGPCs) on the growth performance, nutrient utilization, digestive enzyme activity, intestinal morphology, and cecal microflora of broilers were evaluated. All birds were fed pellets of two basal diets-starter (0-21 d) and grower (22-42 d)-with either enramycin (ENR) or NAGPC supplemented. 1) control + ENR; 2) control diet (CON, basal diet); 3) control + mannose oligosaccharide (MOS) + mannanase (MAN) + sodium butyrate (SB) (MMS); 4) control + MOS + MAN + Bacillus subtilis (BS) (MMB); 5) control + MOS + fruit oligosaccharide (FOS) + SB (MFS); 6) control + FOS + BS (MFB); 7) control + MOS + FOS + MAN (MFM); 8) control + MOS + BS + phytase (PT) (MBP). ENR, MOS, FOS, SB, MAN, PT, and BS were added at 100, 2,000, 9,000, 1,500, 300, 37, and 500 mg/kg, respectively. The experiment used a completely random block design with six replicates per group: 2400 Ross 308 broilers in the starter phase and 768 in the grower phase. All NAGPCs significantly improved body weight gain (P < 0.01), utilization of dry matter, organic matter, and crude protein (P < 0.05), villus height and villus height/crypt depth in the jejunum and ileum (P < 0.01), and decreased the feed conversion ratio (P < 0.01) at d 21 and 42. MMS, MMB, MFB, and MFM duodenum trypsin, lipase, and amylase activities increased significantly (P < 0.05) at d 21 and 42. On d 21 and 42, MMS, MMB, and MBP increased the abundance of Firmicutes and Bacteroides whereas MMB, MFB, and MBP decreased the abundance of Proteobacteria, compared to ENR and CON. Overall, the NAGPCs were found to have some beneficial effects and may be used as effective antibiotic replacements in broilers.
Collapse
Affiliation(s)
- Zunyan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Weimin Zhu
- Qingdao Animal Husbandry and Veterinary Research Institute, Qingdao, People’s Republic of China
| | - Yingting Lin
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Jia Chen
- Rongcheng Lidao Animal Husbandry and Veterinary Station, Rongcheng, People’s Republic of China
| | - Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Yixuan Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| |
Collapse
|
10
|
Kwiecień M, Jachimowicz-Rogowska K, Krupa W, Winiarska-Mieczan A, Krauze M. Effects of Dietary Supplementation of L-Carnitine and Mannan-Oligosaccharides on Growth Performance, Selected Carcass Traits, Content of Basic and Mineral Components in Liver and Muscle Tissues, and Bone Quality in Turkeys. Animals (Basel) 2023; 13:770. [PMID: 36830557 PMCID: PMC9951985 DOI: 10.3390/ani13040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The study aimed to determine the effect of L-carnitine and Bio-Mos administration on selected production performance, slaughter parameters, elemental and mineral content of liver, breast and thigh muscles, and physical, morphometric, strength and bone mineral composition parameters of turkeys. The experiment was conducted on 360 six-week-old Big-6 turkey females, randomly divided into three groups of 120 birds each (six replicates of 20 birds). The turkeys of the control group were fed standard feed without additives; group II was fed with drinking water, a preparation containing L-carnitine at a dose of 0.83 mL/L, while group III was provided mixed feed with 0.5% Bio-Mos. The addition of L-carnitine and Bio-Mos increased body weight at 16 weeks (p = 0.047) and reduced the proportion of fat in the breast muscle (p = 0.029) and liver (p = 0.027). It also modified the content of some minerals in breast muscle, thigh muscle, liver, and bone. Furthermore, the addition of L-carnitine and Bio-Mos increased bone mass and length and modified the value of selected morphometric and strength parameters. The results indicate a positive effect of the applied feed additives on selected rearing indices and carcass quality while improving the elasticity and fracture toughness of the femur. There is a need for further research to determine optimal doses of L-carnitine and Bio-Mos in poultry nutrition.
Collapse
Affiliation(s)
- Małgorzata Kwiecień
- Department of Animal Nutrition, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Wanda Krupa
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| |
Collapse
|
11
|
Colombino E, Karimi M, Ton Nu MA, Tilatti AA, Bellezza Oddon S, Calini F, Bergamino C, Fiorilla E, Gariglio M, Gai F, Capucchio MT, Schiavone A, Gasco L, Biasato I. Effects of feeding a thermomechanical, enzyme-facilitated, coprocessed yeast and soybean meal on growth performance, organ weights, leg health, and gut development of broiler chickens. Poult Sci 2023; 102:102578. [PMID: 36933528 PMCID: PMC10031541 DOI: 10.1016/j.psj.2023.102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The development of a healthy gut during prestarter and starter phases is crucial to drive chicken's productivity. This study aimed to evaluate the effects of a thermomechanical, enzyme-facilitated, coprocessed yeast and soybean meal (pYSM) on growth performance, organ weights, leg health, and gut development in broiler chickens. A total of 576 as-hatched broiler chicks were randomly allotted to 3 dietary treatments (8 replicates/treatment, 24 chickens/replicate): a control group (C) without the pYSM, a treatment group 1 (T1), in which the pSYM was included at 20, 10, 5, 0, and 0% levels in the prestarter, starter, grower, finisher I, and finisher II feeding phases, respectively, and a treatment group 2 (T2), in which the pSYM was included at 5, 5, 5, 0, and 0% levels in each feeding phase. On d 3 and 10, 16 broilers/treatment were euthanized. The T1 broilers tended to show higher live weight (d 3 and 7) and average daily gain (prestarter and starter phases) than the other groups (P ≤ 0.10). Differently, pYSM-based diets did not influence the growth performance of the other feeding phases and the whole experimental period (P > 0.05). Relative weights of pancreas and liver were also unaffected by pYSM utilization (P > 0.05). Litter quality tended to have higher average scores in C group (P = 0.079), but no differences were observed for leg health (P > 0.05). Histomorphometry of gut, liver, and bursa of Fabricius was not affected by diet (P > 0.05). Gut immunity was driven to an anti-inflammatory pattern, with the reduction of IL-2, INF-γ, and TNF-α in the duodenum of treated birds (d 3, P < 0.05). Also, MUC-2 was greater in the duodenum of C and T2 group when compared to T1 (d 3, P = 0.016). Finally, T1-fed chickens displayed greater aminopeptidase activity in the duodenum (d 3 and 10, P < 0.05) and jejunum (d 3, P < 0.05). Feeding high levels of pYSM (10-20%) to broilers in the first 10 d tended to improve growth performance in the prestarter and starter phases. It also positively downregulated proinflammatory cytokines during the first 3 d, as well as stimulated the aminopeptidase activity in the prestarter and starter periods.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | | | | | | | - Sara Bellezza Oddon
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Cinzia Bergamino
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Edoardo Fiorilla
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Turin, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy; Institute of Science of Food Production, National Research Council, Turin, Italy.
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Laura Gasco
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
12
|
Lepczyński A, Herosimczyk A, Bucław M, Adaszyńska-Skwirzyńska M. Antibiotics in avian care and husbandry-status and alternative antimicrobials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2021-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract
Undoubtedly, the discovery of antibiotics was one of the greatest milestones in the treatment of human and animal diseases. Due to their over-use mainly as antibiotic growth promoters (AGP) in livestock farming, antimicrobial resistance has been reported with increasing intensity, especially in the last decades. In order to reduce the scale of this phenomenon, initially in the Scandinavian countries and then throughout the entire European Union, a total ban on the use of AGP was introduced, moreover, a significant limitation in the use of these feed additives is now observed almost all over the world. The withdrawal of AGP from widespread use has prompted investigators to search for alternative strategies to maintain and stabilize the composition of the gut microbiota. These strategies include substances that are used in an attempt to stimulate the growth and activity of symbiotic bacteria living in the digestive tract of animals, as well as living microorganisms capable of colonizing the host’s gastrointestinal tract, which can positively affect the composition of the intestinal microbiota by exerting a number of pro-health effects, i.e., prebiotics and probiotics, respectively. In this review we also focused on plants/herbs derived products that are collectively known as phytobiotic.
Collapse
Affiliation(s)
- Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics , West Pomeranian University of Technology , Szczecin , Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics , West Pomeranian University of Technology , Szczecin , Poland
| | - Mateusz Bucław
- Department of Monogastric Animal Sciences , West Pomeranian University of Technology , Szczecin , Poland
| | | |
Collapse
|
13
|
Luo Z, Ma L, Zhou T, Huang Y, Zhang L, Du Z, Yong K, Yao X, Shen L, Yu S, Shi X, Cao S. Beta-Glucan Alters Gut Microbiota and Plasma Metabolites in Pre-Weaning Dairy Calves. Metabolites 2022; 12:687. [PMID: 35893252 PMCID: PMC9332571 DOI: 10.3390/metabo12080687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to evaluate the alterations in gut microbiome and plasma metabolites of dairy calves with β-glucan (BG) supplementation. Fourteen healthy newborn dairy calves with similar body weight were randomly divided into control (n = 7) and BG (n = 7) groups. All the calves were fed on the basal diet, while calves in the BG group were supplemented with oat BG on d 8 for 14 days. Serum markers, fecal microbiome, and plasma metabolites at d 21 were analyzed. The calves were weaned on d 60 and weighed. The mean weaning weight of the BG group was 4.29 kg heavier than that of the control group. Compared with the control group, the levels of serum globulin, albumin, and superoxide dismutase were increased in the BG group. Oat BG intake increased the gut microbiota richness and decreased the Firmicutes-to-Bacteroidetes ratio. Changes in serum markers were found to be correlated with the plasma metabolites, including sphingosine, trehalose, and 3-methoxy-4-hydroxyphenylglycol sulfate, and gut microbiota such as Ruminococcaceae_NK4A214, Alistipes, and Bacteroides. Overall, these results suggest that the BG promotes growth and health of pre-weaning dairy calves by affecting the interaction between the host and gut microbiota.
Collapse
Affiliation(s)
- Zhengzhong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China;
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Li Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Yixin Huang
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Liben Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Kang Yong
- Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China;
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China;
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| |
Collapse
|
14
|
Effect of β-Glucan Supplementation on Growth Performance and Intestinal Epithelium Functions in Weaned Pigs Challenged by Enterotoxigenic Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11040519. [PMID: 35453270 PMCID: PMC9029716 DOI: 10.3390/antibiotics11040519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: To examine the effect of β-glucan (BGL) supplementation on growth performance and intestinal epithelium functions in weaned pigs upon Enterotoxigenic Escherichia coli (ETEC) challenge. Methods: Thirty-two weaned pigs (Duroc × Landrace × Yorkshire) were assigned into four groups. Pigs fed with a basal diet or basal diet containing 500 mg/kg BGL were orally infused with ETEC or culture medium. Results: Results showed BGL tended to increase the average daily gain (ADG) in ETEC-challenged pigs (0.05 < p < 0.1). Dietary BGL supplementation had no significant influence on nutrient digestibility (p > 0.05). However, BGL improved the serum concentrations of immunoglobulin (Ig) A and IgG, and was beneficial to relieve the increasement of the concentrations of inflammatory cytokines such as the TNF-α and IL-6 upon ETEC-challenge (p < 0.05). Interestingly, BGL significantly increased the duodenal, jejunal and ileal villus height, and increased the jejunal ratio of villus height to crypt depth (V/C) upon ETEC challenge (p < 0.05). BGL also increased the activities of mucosal, sucrase and maltase in the ETEC-challenged pigs (p < 0.05). Moreover, BGL elevated the abundance of Lactobacillus and the concentration of propanoic acid in colon in the ETEC-challenged pigs (p < 0.05). Importantly, BGL elevated the expression levels of zonula occludins-1 (ZO-1) and mucin-2 (MUC-2) in the small intestinal mucosa upon ETEC challenge (p < 0.05). BGL also upregulated the expressions of functional genes such as the claudin-1, cationic amino acid transporter-1 (CAT-1), LAT-1, L amino acid transporter-1 (LAT1), fatty acid transport proteins (FATP1), FATP4, and sodium/glucose cotransporter-1 (SGLT-1) in the duodenum, and the occludin-1 and CAT-1 in the jejunum upon ETEC challenge (p < 0.05). Conclusions: These results suggested that BGL can attenuate intestinal damage in weaned pigs upon ETEC challenge, which was connected with the suppressed secretion of inflammatory cytokines and enhanced serum immunoglobulins, as well as improved intestinal epithelium functions and microbiota.
Collapse
|