1
|
Sharma MK, Lee J, Shi H, Ko H, Goo D, Paneru D, Holladay SD, Gogal RM, Kim WK. Effect of dietary inclusion of 25-hydroxyvitamin D₃ and vitamin E on performance, gut health, oxidative status, and immune response in laying hens infected with coccidiosis. Poult Sci 2024; 103:104033. [PMID: 39059054 PMCID: PMC11331952 DOI: 10.1016/j.psj.2024.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D3 (25-hydroxyvitamin D3 (VD)) and vitamin E (VE) have proven to have immunomodulatory and antioxidant functions along with capacities to improve the reproductive function in chickens. Coccidiosis in laying hens at different stages of growth has been shown to negatively affect performance, immune response, and oxidative status, thus increasing the cost of production. A study was conducted to evaluate the influence of dietary VD or VE on performance, gut health, immune response, and oxidative status of laying hens at peak production. Laying hens (23 wk-of-age, n = 225) were randomly allocated into 5 treatment groups (n = 9 hens/replicate) with 5 replicate groups each: 1) unchallenged control (UC), 2) pair-fed control (PF), 3) challenged control (CC), 4) challenged control top-dressed with 5,000 IU of 25-hydroxyvitamin D3 (VD) per kg of diet, and 5) challenged control top-dressed with 100 IU of DL-α-tocopherol (VE). At 25 wk-of-age, hens grouped in CC, VD, and VE were challenged with mixed Eimeria spp. to induce coccidiosis. VD or VE supplemented hens did not impact bird body weight; however, egg production increased by 10.36% and 13.77%, respectively (P < 0.0001). Furthermore, the gut health of the hens was improved with either VD or VE supplementation, as indicated by lowered gut permeability and intestinal lesion scores (P < 0.05). VE significantly reduced the heterophil count (P = 0.0490) alongside numerically increasing the peripheral CD4+ and CD8+ T cells and monocyte counts (P > 0.05). Both VD or VE increased the TAC at 14 DPI compared to UC (P<0.05). Preliminary findings suggest that dietary VD or VE supplementation has the potential to improve gut health, modulate the immune response, and increase egg production in coccidiosis-infected laying hens.
Collapse
Affiliation(s)
- Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Steven D Holladay
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Robert M Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Wang X, Yuan Q, Xiao Y, Cai X, Yang Z, Zeng W, Mi Y, Zhang C. Pterostilbene, a Resveratrol Derivative, Improves Ovary Function by Upregulating Antioxidant Defenses in the Aging Chickens via Increased SIRT1/Nrf2 Expression. Antioxidants (Basel) 2024; 13:935. [PMID: 39199181 PMCID: PMC11351833 DOI: 10.3390/antiox13080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is recognized as a prominent factor contributing to follicular atresia and ovarian aging, which leads to decreased laying performance in hens. Reducing oxidative stress can improve ovarian function and prolong the laying period in poultry. This study investigates the impact of Pterostilbene (PTS), a natural antioxidant, on ovarian oxidative stress in low-laying chickens. Thirty-six Hy-Line White laying chickens were evenly divided into four groups and fed diets containing varying doses of PTS for 15 consecutive days. The results showed that dietary supplementation with PTS significantly increased the laying rate, with the most effective group exhibiting a remarkable 42.7% increase. Furthermore, PTS significantly enhanced the antioxidant capacity of aging laying hens, as evidenced by increased levels of glutathione, glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in the ovaries, livers, and serum. Subsequent experiments revealed decreased expressions of Bax, Caspase-3, and γ-H2AX, along with an increased expression of BCL-2 in the ovaries and livers of laying hens. PTS supplementation also positively affects fat metabolism by reducing abdominal fat accumulation and promoting fat transfer from the liver to the ovary. To elucidate the mechanism underlying the effects of PTS on ovarian function, a series of in vitro experiments were conducted. These in vitro experiments revealed that PTS pretreatment restored the antioxidant capacity of D-galactose-induced small white follicles by upregulating SIRT1/Nrf2 expression. This protective effect was inhibited by EX-527, a specific inhibitor of SIRT1. These findings suggest that the natural antioxidant PTS has the potential to regulate cell apoptosis and fat metabolism in laying chickens by ameliorating oxidative stress, thereby enhancing laying performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| |
Collapse
|
3
|
Ru M, Liang H, Ruan J, Haji RA, Cui Y, Yin C, Wei Q, Huang J. Chicken ovarian follicular atresia: interaction network at organic, cellular, and molecular levels. Poult Sci 2024; 103:103893. [PMID: 38870615 PMCID: PMC11225904 DOI: 10.1016/j.psj.2024.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Most of follicles undergo a degenerative process called follicular atresia. This process directly affects the egg production of laying hens and is regulated by external and internal factors. External factors primarily include nutrition and environmental factors. In follicular atresia, internal factors are predominantly regulated at 3 levels; organic, cellular and molecular levels. At the organic level, the hypothalamic-pituitary-ovary (HPO) axis plays an essential role in controlling follicular development. At the cellular level, gonadotropins and cytokines, as well as estrogens, bind to their receptors and activate different signaling pathways, thereby suppressing follicular atresia. By contrast, oxidative stress induces follicular atresia by increasing ROS levels. At the molecular level, granulosa cell (GC) apoptosis is not the only factor triggering follicular atresia. Autophagy is also known to give rise to atresia. Epigenetics also plays a pivotal role in regulating gene expression in processes that seem to be related to follicular atresia, such as apoptosis, autophagy, proliferation, and steroidogenesis. Among these processes, the miRNA regulation mechanism is well-studied. The current review focuses on factors that regulate follicular atresia at organic, cellular and molecular levels and evaluates the interaction network among these levels. Additionally, this review summarizes atretic follicle characteristics, in vitro modeling methods, and factors preventing follicular atresia in laying hens.
Collapse
Affiliation(s)
- Meng Ru
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Haiping Liang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Jiming Ruan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Ramlat Ali Haji
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Yong Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Chao Yin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Qing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Jianzhen Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China.
| |
Collapse
|
4
|
Li Z, Qin B, Chen T, Kong X, Zhu Q, Azad MAK, Cui Y, Lan W, He Q. Fermented Aronia melanocarpa pomace improves the nutritive value of eggs, enhances ovarian function, and reshapes microbiota abundance in aged laying hens. Front Microbiol 2024; 15:1422172. [PMID: 38962144 PMCID: PMC11220260 DOI: 10.3389/fmicb.2024.1422172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction There is a decline in the quality and nutritive value of eggs in aged laying hens. Fruit pomaces with high nutritional and functional values have gained interest in poultry production to improve the performance. Methods The performance, egg nutritive value, lipid metabolism, ovarian health, and cecal microbiota abundance were evaluated in aged laying hens (320 laying hens, 345-day-old) fed on a basal diet (control), and a basal diet inclusion of 0.25%, 0.5%, or 1.0% fermented Aronia melanocarpa pomace (FAMP) for eight weeks. Results The results show that 0.5% FAMP reduced the saturated fatty acids (such as C16:0) and improved the healthy lipid indices in egg yolks by decreasing the atherogenicity index, thrombogenic index, and hypocholesterolemia/hypercholesterolemia ratio and increasing health promotion index and desirable fatty acids (P < 0.05). Additionally, FAMP supplementation (0.25%-1.0%) increased (P < 0.05) the ovarian follicle-stimulating hormone, luteinizing hormone, and estrogen 2 levels, while 1.0% FAMP upregulated the HSD3B1 expression. The expression of VTG II and ApoVLDL II in the 0.25% and 0.5% FAMP groups, APOB in the 0.5% FAMP group, and ESR2 in the 1% FAMP group were upregulated (P < 0.05) in the liver. The ovarian total antioxidant capacity was increased (P < 0.05) by supplementation with 0.25%-1.0% FAMP. Dietary 0.5% and 1.0% FAMP downregulated (P < 0.05) the Keap1 expression, while 1.0% FAMP upregulated (P < 0.05) the Nrf2 expression in the ovary. Furthermore, 1.0% FAMP increased cecal acetate, butyrate, and valerate concentrations and Firmicutes while decreasing Proteobacteria (P < 0.05). Conclusion Overall, FAMP improved the nutritive value of eggs in aged laying hens by improving the liver-blood-ovary function and cecal microbial and metabolite composition, which might help to enhance economic benefits.
Collapse
Affiliation(s)
- Zhihua Li
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Binghua Qin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ting Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md. Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Duan H, Yang S, Yang S, Zeng J, Yan Z, Zhang L, Ma X, Dong W, Zhang Y, Zhao X, Hu J, Xiao L. The mechanism of curcumin to protect mouse ovaries from oxidative damage by regulating AMPK/mTOR mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155468. [PMID: 38471315 DOI: 10.1016/j.phymed.2024.155468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China.
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Animal Science and Technology College, Beijing University of Agriculture, 102206, Beijing, China.
| |
Collapse
|
6
|
Sharma MK, Liu G, White DL, Kim WK. Graded levels of Eimeria infection linearly reduced the growth performance, altered the intestinal health, and delayed the onset of egg production of Hy-Line W-36 laying hens when infected at the prelay stage. Poult Sci 2024; 103:103174. [PMID: 37931397 PMCID: PMC10654243 DOI: 10.1016/j.psj.2023.103174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
The aim of this experiment was to investigate how different levels of Eimeria infection affect the performance, intestinal health, oxidative status, and egg production of Hy-Line W-36 pullets and laying hens. Three hundred and sixty Hy-Line W-36 pullets, aged 15 wk, were randomly distributed into 5 treatment groups, each comprising 6 replicates and a nonchallenged control. At 15 wk, pullets were inoculated with different levels of mixed Eimeria species as high-dose, medium-high, medium-low, and low-dose treatments. The growth performance and average daily feed intake (ADFI) were measured from 0- to 18-days postinoculation (DPI), whereas hen day egg production (HDEP) was recorded from wk 19. The markers of gastrointestinal health and oxidative status were measured at 6 DPI, 14 DPI, and 23 wk of age. The findings revealed a significant linear reduction in growth performance in response to increased Eimeria challenge dosage on 6 and 14 DPI (P < 0.0001, P-L < 0.0001). An interaction between the graded level of Eimeria infection and DPI was observed for ADFI. The challenged pullets showed a reduction in ADFI starting at 4 DPI, which persisted until 14 DPI, when ADFI recovered back to normal. The most significant drop in feed intake was observed in 6 DPI in all the Eimeria-infected groups. The markers of gastrointestinal health (gastrointestinal permeability and tight junction proteins) were upregulated in challenged pullets because of infection, whereas the relative mRNA expression of key nutrient transporters was downregulated following infection on 6 and 14 DPI (P < 0.05). As a result of an infection on 6 DPI, the oxidative equilibrium was shifted toward the oxidative stress, and at the same time, upregulation of proinflammatory and inflammatory cytokines was observed (P < 0.05). An interaction between the Eimeria challenge dosage and bird age was observed for HDEP (P = 0.0427). The pullets infected with Eimeria started to lay eggs later than the Control birds. However, the HDEP of the challenged groups became similar to Control only at wk 22, 3 wk after laying eggs. In conclusion, coccidiosis reduced growth performance, altered gastrointestinal health, induced oxidative stress, and delayed egg production when infected at the prelay stage of pullets and negatively impacted the laying hens' overall performance.
Collapse
Affiliation(s)
- Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Dima L White
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Sharma MK, Singh AK, Goo D, Choppa VSR, Ko H, Shi H, Kim WK. Graded levels of Eimeria infection modulated gut physiology and temporarily ceased the egg production of laying hens at peak production. Poult Sci 2024; 103:103229. [PMID: 38007903 PMCID: PMC10801662 DOI: 10.1016/j.psj.2023.103229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 11/28/2023] Open
Abstract
An experiment was conducted to investigate the changes in gastrointestinal physiology, including intestinal leakage, immune response, oxidative stress, along with performance traits, of Hy-Line W-36 laying hens following Eimeria infection at peak egg production. A total of 360 laying hens, at 25 wk of age, were assigned randomly to 5 treatment groups, each consisting of 6 replicate cages, including a nonchallenged control group. The other 4 groups were inoculated with graded levels of mixed Eimeria species as high, medium-high, medium-low, and low doses, respectively. The body weight (BW) and body weight gain (BWG) of laying hens were measured from 0 to 14 days postinoculation (DPI). Average daily feed intake (ADFI) and hen-day egg production (HDEP) were measured from 0 to 15 and 0 to 28 DPI, respectively. Gut permeability was measured on 5 DPI, whereas oxidative stress, immune response, and expression of nutrient transporter genes were measured on 6 and 14 DPI. A significant linear reduction in BW and BWG was observed with increased Eimeria inoculation dosage on both 6 and 14 DPI (P < 0.001, P-Lin < 0.0001). An interaction between the Eimeria dosages and DPI was observed for ADFI (P < 0.0001). Feed intake in the challenged groups decreased starting at 4 DPI, with the most significant drop occurring at 7 DPI, which did not recover until 15 DPI. Following the challenge, gastrointestinal physiology shifted toward the host defense against the Eimeria infection by upregulating mRNA expression of tight junction proteins and immune responses while downregulating the expression of key nutrient transporters on 6 and 14 DPI (P < 0.05). An interaction between the Eimeria inoculation dosage and DPI was also observed for daily HDEP (P < 0.0001). Overall, HDEP was lower in the challenged groups compared to the control. Daily HDEP in the challenged groups dropped from 8 DPI and became similar to the control birds only after 24 DPI. Egg production temporarily ceased in most of the laying hens infected with the high and medium-high dosages of Eimeria. In conclusion, Eimeria infection activated the host immune response, negatively affecting the gastrointestinal health, growth performance, and temporarily ceased the egg production of Hy-Line W-36 laying hens when infected at peak production.
Collapse
Affiliation(s)
| | - Amit Kumar Singh
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Kui H, Li P, Wang T, Luo Y, Ning C, Li M, Liu S, Zhu Q, Li J, Li D. Dynamic mRNA expression during chicken ovarian follicle development. G3 (BETHESDA, MD.) 2023; 14:jkad237. [PMID: 37832513 PMCID: PMC10755205 DOI: 10.1093/g3journal/jkad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Ovarian follicle development is a complex and well-orchestrated biological process of great economic significance for poultry production. Specifically, understanding the molecular mechanisms underlying follicular development is essential for high-efficiency follicular development can benefit the entire industry. In addition, domestic egg-laying hens often spontaneously develop ovarian cancer, providing an opportunity to study the genetic, biochemical, and environmental risk factors associated with the development of this cancer. Here, we provide high-quality RNA sequencing data for chicken follicular granulosa cells across 10 developmental stages, which resulted in a total of 204.57 Gb of clean sequencing data (6.82 Gb on average per sample). We also performed gene expression, time-series, and functional enrichment analyses across the 10 developmental stages. Our study revealed that SWF (small while follicle), F1 (F1 hierarchical follicles), and POFs (postovulatory follicles) best represent the transcriptional changes associated with the prehierarchical, preovulatory, and postovulatory stages, respectively. We found that the preovulatory stage F1 showed the greatest divergence in gene expression from the POF stage. Our research lays a foundation for further elucidation of egg-laying performance of chicken and human ovarian disease.
Collapse
Affiliation(s)
- Hua Kui
- School of Pharmacy, Chengdu University, Chengdu 610106, People’s Republic of China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital Co., Ltd., 66 Bisheng Road, Chengdu 610000, People’s Republic of China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital Co., Ltd., 66 Bisheng Road, Chengdu 610000, People’s Republic of China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, People’s Republic of China
| | - Yingyu Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, People’s Republic of China
| | - Chunyou Ning
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, People’s Republic of China
| | - Mengmeng Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, People’s Republic of China
| | - Siying Liu
- School of Pharmacy, Chengdu University, Chengdu 610106, People’s Republic of China
| | - Qing Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, People’s Republic of China
| | - Jing Li
- College of Agriculture, Kunming University, Kunming 650214, People’s Republic of China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, People’s Republic of China
| |
Collapse
|
9
|
Li H, Hou Y, Hu J, Li J, Liang Y, Lu Y, Liu X. Dietary naringin supplementation on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during the late laying period. Poult Sci 2023; 102:102605. [PMID: 36940650 PMCID: PMC10033312 DOI: 10.1016/j.psj.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
In this study, the effects of naringin on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during late laying period were evaluated. A total of 480 (54-wk-old) Three-Yellow breeder hens were randomly assigned to 4 groups (6 replicates of 20 hens): nonsupplemented control diet (C), and control diet supplemented with 0.1%, 0.2%, and 0.4% of naringin (N1, N2, and N3), respectively. Results showed that dietary supplemented with 0.1%, 0.2%, and 0.4% of naringin for 8 wk promoted the cell proliferation and attenuated the excessive fat accumulation in the liver. Compared with C group, increased concentrations of triglyceride (TG), total cholesterol (T-CHO), high-density lipoprotein cholesterol (HDL-C), and very low-density lipoprotein (VLDL), and decreased contents of low-density lipoprotein cholesterol (LDL-C) were detected in liver, serum and ovarian tissues (P < 0.05). After 8 wk of feeding with naringin (0.1%, 0.2%, and 0.4%), serum estrogen (E2) level, expression levels of proteins and genes of estrogen receptors (ERs) increased significantly (P < 0.05). Meanwhile, naringin treatment regulated expression of genes related to yolk precursors formation (P < 0.05). Furthermore, dietary naringin addition increased the antioxidants, decreased the oxidation products, and up-regulated transcription levels of antioxidant genes in liver tissues (P < 0.05). These results indicated that dietary supplemented with naringin could improve hepatic yolk precursors formation and hepatic antioxidant capacity of Three-Yellow breeder hens during the late laying period. Doses of 0.2% and 0.4% are more effective than dose of 0.1%.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Wang H, Cong X, Qin K, Yan M, Xu X, Liu M, Xu X, Zhang Y, Gao Q, Cheng S, Zhao J, Zhu H, Liu Y. Se-Enriched Cardamine violifolia Improves Laying Performance and Regulates Ovarian Antioxidative Function in Aging Laying Hens. Antioxidants (Basel) 2023; 12:antiox12020450. [PMID: 36830007 PMCID: PMC9952132 DOI: 10.3390/antiox12020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
As a selenium-enriched plant, Cardamine violifolia (SEC) has an excellent antioxidant function. The edibility of SEC is expected to develop new sources of organic Se supplementation for human and animal nutrition. This study was conducted to investigate the effects of SEC on laying performance and ovarian antioxidant capacity in aging laying hens. A total of 450 laying hens were assigned to five treatments. Dietary treatments included the following: a basal diet (diet without Se supplementation, CON) and basal diets supplemented with 0.3 mg/kg Se from sodium selenite (SS), 0.3 mg/kg Se from Se-enriched yeast (SEY), 0.3 mg/kg Se from SEC, or 0.3 mg/kg Se from SEC and 0.3 mg/kg Se from SEY (SEC + SEY). Results showed that supplementation with SEC tended to increase the laying rate, increased the Haugh unit of eggs, and reduced the FCR. SEC promoted ovarian cell proliferation, inhibited apoptosis, and ameliorated the maintenance of follicles. SEC, SEY, or SEC + SEY increased ovarian T-AOC and decreased MDA levels. SEC increased the mRNA abundance of ovarian selenoproteins. SEC and SEC + SEY increased the mRNA abundance of Nrf2, HO-1, and NQO1, and decreased the mRNA abundance of Keap1. These results indicate that SEC could potentially to improve laying performance and egg quality via the enhancement of ovarian antioxidant capacity. SEC exerts an antioxidant function through the modulation of the Nrf2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Hui Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Kun Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengke Yan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xianfeng Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingkang Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Qingyu Gao
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, NC 72701, USA
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (H.Z.); (Y.L.); Tel.: +86-27-8395-6175 (H.Z. & Y.L.)
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (H.Z.); (Y.L.); Tel.: +86-27-8395-6175 (H.Z. & Y.L.)
| |
Collapse
|
11
|
E X, Shao D, Li M, Shi S, Xiao Y. Supplemental dietary genistein improves the laying performance and antioxidant capacity of Hy-Line brown hens during the late laying period. Poult Sci 2023; 102:102573. [PMID: 36989857 PMCID: PMC10070936 DOI: 10.1016/j.psj.2023.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The present study evaluated the effects of 3 supplemental levels of dietary genistein ingested during the late laying period (66-73 wk) of laying hens. A total of 384 Hy-Line brown hens (66 wk old) were randomly divided into 4 groups (6 replicates of 16 hens in each group), the basal diet group (CON), and groups for the basal diet supplemented with 80, 120, and 400 mg/kg of genistein, G1, G2, and G3, respectively. The results of the present study showed an increased laying rate in groups G2 and G3 (linear, P < 0.01), and decreased feed-egg ratios (linear, P < 0.05) and broken egg rate (P < 0.01) in all genistein-treated groups compared with the CON group. Moreover, the G2 group showed an increase in eggshell strength and ratio (linear, P < 0.05), whereas all genistein-treated groups saw a decrease in the L* value (linear, P < 0.01) and an increase in the a* value (linear, P < 0.05) compared with the CON group. Additionally, all genistein-treated groups had an increase in the total antioxidant capacity of plasma (linear, P < 0.05), along with reduced plasma, ovarian, and yolk malondialdehyde levels (linear, P < 0.05), compared with the CON group. The G2 group had an increase in both the superoxide dismutase activity of plasma (P < 0.01) and the total antioxidant capacity of the ovaries (linear, P < 0.05), compared with the CON group. The G3 group had an increase in both the glutathione peroxidase concentration of plasma (linear, P < 0.05) and the total antioxidant capacity of the ovaries (linear, P < 0.01), compared with the CON group. The transcript levels of nuclear factor erythroid 2-related factor 2, superoxide dismutase 1, and catalase were increased in all of the genistein-treated groups (P < 0.05) compared with the CON group, whereas heme oxygenase 1 and glutamate-cysteine ligase modifier subunit were increased only in the G2 group (P < 0.05). In conclusion, supplementation with 120 mg/kg dietary genistein had the best effect on improving the laying rate, eggshell quality, and antioxidant capacity in Hy-Line brown hens during the late laying period.
Collapse
|
12
|
Liu J, Qi N, Xing W, Li M, Qian Y, Luo G, Yu S. The TGF-β/SMAD Signaling Pathway Prevents Follicular Atresia by Upregulating MORC2. Int J Mol Sci 2022; 23:ijms231810657. [PMID: 36142569 PMCID: PMC9505042 DOI: 10.3390/ijms231810657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
In mammals, female fertility is determined by the outcome of follicular development (ovulation or atresia). The TGF-β/SMAD signaling pathway is an important regulator of this outcome. However, the molecular mechanism by which the TGF-β/SMAD signaling pathway regulates porcine follicular atresia has not been fully elucidated. Microrchidia family CW-type zinc finger 2 (MORC2) is anovel epigenetic regulatory protein widely expressed in plants, nematodes, and mammals. Our previous studies showed that MORC2 is a potential downstream target gene of the TGF-β/SMAD signaling pathway. However, the role of MORC2 in porcine follicular atresia is unknown. To investigate this, qRT-PCR, western blotting, and TdT-mediated dUTP nick-end labeling were performed. Additionally, the luciferase activity assay was conductedto confirm that the TGF-β/SMAD signaling pathway regulates MORC2. Our results demonstrate that MORC2 is animportant anti-apoptotic molecule that prevents porcine follicular atresia via a pathway involving mitochondrial apoptosis, not DNA repair. Notably, this studyrevealsthat the TGF-β/SMAD signaling pathway inhibits porcine granulosa cell apoptosis by up-regulating MORC2. The transcription factor SMAD4 regulated the expression of MORC2 by binding to its promoter. Our results will help to reveal the mechanism underlying porcine follicular atresia and improve the reproductive efficiency of sows.
Collapse
Affiliation(s)
- Jiying Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Nannan Qi
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Wenwen Xing
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Mengxuan Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Yonghang Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
- Correspondence:
| |
Collapse
|
13
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|