1
|
Akram MZ, Everaert N, Dunisławska A. In ovo sodium butyrate administration differentially impacts growth performance, intestinal barrier function, immune response, and gut microbiota characteristics in low and high hatch-weight broilers. J Anim Sci Biotechnol 2024; 15:165. [PMID: 39643908 PMCID: PMC11624594 DOI: 10.1186/s40104-024-01122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/29/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Hatch weight (HW) affects broiler growth and low HW (LHW) often leads to suboptimal performance. Sodium butyrate (SB) has been shown to promote growth through enhanced intestinal health. This study investigated how broilers with different HW responded to in ovo SB injection and whether SB could enhance gut health and performance in LHW chicks. Ross 308 broiler eggs were injected on incubation d 12 with physiological saline (control) or SB at 0.1% (SB1), 0.3% (SB3), or 0.5% (SB5). Post-hatch, male chicks from each treatment were categorized as high HW (HHW) or LHW and assigned to 8 groups in a 4 × 2 factorial design. Production parameters were recorded periodically. Intestinal weight, length, and gene expression related to gut barrier function and immune response were examined on d 14 and 42. Cecal microbiota dynamics and predicted functionality were analyzed using 16S rRNA gene sequencing. RESULTS SB treatments did not affect hatchability. HHW-control group exhibited consistently better weight gain and FCR than LHW-control group. SB dose-dependently influenced performance and gut health in both HW categories, with greater effects in LHW broilers at 0.3%. LHW-SB3 group attained highest body weight on d 42, exceeding controls but not significantly differing from HHW-SB3 group. LHW-SB3 group showed upregulation of gut-barrier genes CLDN1 in ileum, TJP1 in jejunum and anti-inflammatory cytokine IL-10 in both jejunum and ileum on d 14. Additionally, LHW-SB3 group upregulated mucin-producing MUC6 gene in ileum, while HHW-SB5 group increased pro-inflammatory IL-12p40 cytokine in caecum on d 42. LHW-SB3 group demonstrated shorter relative intestinal lengths, while HHW-SB5 had longer lengths. HHW-control group had higher bacterial diversity and growth-promoting bacteria while LHW-control group harbored the potential pathogen Helicobacter. SB reshaped gut microbiota biodiversity, composition, and predicted metabolic pathways in both HW categories. The LHW-SB3 group exhibited highest alpha diversity on d 14 and most beneficial bacteria at all timepoints. HHW-SB5 group presented increased pathogenic Escherichia-Shigella and Campylobacter on d 42. CONCLUSIONS HW significantly affects subsequent performance and SB has differential effects based on HW. LHW chicks benefited more from 0.3% SB, showing improvements in growth, intestinal development, health, and gut microbiota characteristics.
Collapse
Affiliation(s)
- Muhammad Zeeshan Akram
- Department of Biosystems, Nutrition and Animal-Microbiota Ecosystems Laboratory, KU Leuven, Heverlee, 3001, Belgium
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Nadia Everaert
- Department of Biosystems, Nutrition and Animal-Microbiota Ecosystems Laboratory, KU Leuven, Heverlee, 3001, Belgium
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, 85-084, Poland.
| |
Collapse
|
2
|
Fries-Craft K, Schmitz-Esser S, Bobeck EA. Broiler chicken distal jejunum microbial communities are more responsive to coccidiosis or necrotic enteritis challenge than dietary anti-interleukin-10 in a model using Salmonella Typhimurium- Eimeria maxima- Clostridium perfringens coinfection. Poult Sci 2024; 103:104000. [PMID: 39002369 PMCID: PMC11519688 DOI: 10.1016/j.psj.2024.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Dietary anti-interleukin (IL)-10 antibodies may protect broiler performance during coccidiosis by inhibiting Eimeria host-evasion pathways; however, anti-IL-10's effects on microbial communities during coccidiosis and secondary Clostridium perfringens (necrotic enteritis) challenge is unknown. The study objectives were to assess the jejunal microbiota of broilers fed anti-IL-10 during E. maxima ± C. perfringens challenge. Two replicate studies using Ross 308 chicks placed in wire-floor cages (32 cages/ replicate study; 20 chicks/ cage) were conducted, with chicks assigned to diets ± 0.03% anti-IL-10 for 25 d. In both replicate studies, challenge-designated chicks were inoculated with 1 × 108Salmonella Typhimurium colony forming units (CFU) at placement. On d14, S. Typhimurium-inoculated chicks were gavaged with 15,000 sporulated Eimeria maxima M6 oocysts and half the E. maxima-challenged chicks received 1×108C. perfringens CFUs on d 18 and 19. Six chicks/ treatment were euthanized for distal jejunum content collection at baseline (d 14), 7 d post-inoculation (pi) with E. maxima/ 3 dpi with C. perfringens (peak) or 11 dpi with E. maxima/ 7 dpi with C. perfringens (post-peak) for 16S rRNA gene amplicon sequencing. Sequences were quality screened (Mothur V.1.43.0) and clustered into de novo operation taxonomical units (OTU; 99% similarity) using the SILVA reference database (v138). Alpha diversity and log-transformed relative abundance data were analyzed in SAS 9.4 with replicate study, diet, challenge, and timepoint main effects plus associated interactions (P ≤ 0.05). Few baseline changes were observed, but E. maxima ± C. perfringens challenge reduced Romboutsia and Staphylococcus relative abundance 4- to 800-fold in both replicate studies (P ≤ 0.008). At peak challenge with secondary C. perfringens, feeding anti-IL-10 instead of the control diet reduced Clostridium sensu stricto 1 relative abundance 13- and 1,848-fold in both replicate studies (P < 0.0001); however, OTUs identified as C. perfringens were not affected by dietary anti-IL-10. These results indicate that anti-IL-10 does not affect the jejunal microbiota of unchallenged broilers, while coccidiosis or necrotic enteritis challenge generally contributed to greater microbiota alterations than diet.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Graduate Microbiology Program, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Melaku M, Su D, Zhao H, Zhong R, Ma T, Yi B, Chen L, Zhang H. The New Buffer Salt-Protected Sodium Butyrate Promotes Growth Performance by Improving Intestinal Histomorphology, Barrier Function, Antioxidative Capacity, and Microbiota Community of Broilers. BIOLOGY 2024; 13:317. [PMID: 38785799 PMCID: PMC11117952 DOI: 10.3390/biology13050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs' content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs' content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition.
Collapse
Affiliation(s)
- Mebratu Melaku
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
- Department of Animal Science, College of Agriculture, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Dan Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Huaibao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Teng Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Bao Yi
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (D.S.); (H.Z.); (R.Z.); (L.C.); (H.Z.)
| |
Collapse
|
4
|
Lu M, Zhao ZT, Xin Y, Chen G, Yang F. Dietary supplementation of water extract of Eucommia ulmoides bark improved caecal microbiota and parameters of health in white-feathered broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:816-838. [PMID: 38324000 DOI: 10.1111/jpn.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Eucommia ulmoides has been used as a food and medicine homologue for a long time in China. We hypothesize that Eucommia ulmoides achieves its health-promoting effects via altering gut microbiota. Here, we investigated the effects of water extract of Eucommia ulmoides bark on caecal microbiota and growth performance, antioxidant activity, and immunity in white-feathered broilers treated for 42 days. A total of 108 one-day-old Cobb white-feathered broilers were randomly assigned to three treatment groups: control diet, 0.75% Eucommia ulmoides diet (EU Ⅰ) and 1.5% Eucommia ulmoides diet (EU Ⅱ). The results showed that EU Ⅱ treatment improved average body weight (ABW), thigh muscle quality and total length of intestines, and decreased the serum total triglycerides and total cholesterol (TC) (p < 0.05). Eucommia ulmoides supplementation increased serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant activities and content of immunoglobulins, and reduced levels of malondialdehyde and tumour necrosis factor-α (TNF-α) (p < 0.05). Moreover, the supplementation increased the diversity of caecal microbiota and reduced the pathogenic genera Escherichia Shigella and Helicobacter. The genera Ochrobactrum, Odoribater, Klebsiella, Enterobacter, Georgenia and Bifidobacterium were positively associated with the ABW, total intestinal length, serum levels of GSH-Px, SOD and immunoglobulins (p < 0.001) and negatively associated with the TC and TNF-α (p < 0.01), suggesting an association of the changes of gut microbiota and improvement of broiler health. Meanwhile, Eucommia ulmoides supplementation enriched the Kyoto Encyclopedia of Genes and Genomes pathway of exocrine secretion from the pancreas, circadian entrainment and inhibited lipopolysaccharide biosynthesis. In conclusion, Eucommia ulmoides water extract can be used as a feed additive to improve poultry industry production.
Collapse
Affiliation(s)
- Min Lu
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhong-Tao Zhao
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ye Xin
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Food Nutrition and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- Food Quality and Safety, School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
5
|
Wishna-Kadawarage RN, Połtowicz K, Dankowiakowska A, Hickey RM, Siwek M. Prophybiotics for in-ovo stimulation; validation of effects on gut health and production of broiler chickens. Poult Sci 2024; 103:103512. [PMID: 38367472 PMCID: PMC10882136 DOI: 10.1016/j.psj.2024.103512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
Probiotics and phytobiotics have demonstrated effective improvement of gut health in broiler chickens when individually administered in-ovo. However, their combined use in-ovo, has not been studied to date. We coined the term "prophybiotic" (probiotic + phytobiotic) for such a combination. The current study therefore, aimed to elucidate the effects of combined use of a selected probiotic and a phytobiotic in-ovo, on broiler gut health and production parameters, as opposed to use of probiotics alone. ROSS 308 hatching eggs were injected with either Leuconostoc mesenteroides (probiotic: PB) or L. mesenteroides with garlic aqueous extract (prophyiotic: PPB) on the 12th day of incubation. Relative abundances of bacteria in feces and cecal content (qPCR), immune related gene expression in cecal mucosa (qPCR) and histomorphology of cecal tissue (PAS staining) were analyzed along with production parameters (hatch quality, body weight, feed efficiency and slaughter and meat quality). PPB treatment increased the abundance of faecalibacteria and bifidobacteria in feces (d 7) and Akkermansia sp. in cecal content. Moreover, it decreased Escherichia coli abundance in both feces (d 34) and cecal content. PB treatment only increased the faecalibacteria in feces (d 7) and Akkermansia sp. in the cecal content. Moreover, PPB treatment resulted in up-regulation of immune related genes (Avian beta defensing 1, Free fatty acid receptor 2 and Mucin 6) and increased the crypt depth in ceca whereas PB treatment demonstrated a higher crypt depth and a tendency to increase Mucin 6 gene expression. Both treatments did not impair the production parameters studied. In conclusion, our results suggest that in-ovo PPB treatment may have enhanced potential in boosting the immune system without compromising broiler production and efficiency, as compared to the use of probiotic alone. Our study, highlights the potential of carefully selected PPB combinations for better results in improving gut health of broiler chickens.
Collapse
Affiliation(s)
- Ramesha N Wishna-Kadawarage
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz 85-084, Poland.
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Krakowska 1, Balice 32-083, Poland
| | - Agata Dankowiakowska
- Department of Animal Physiology and Physiotherapy, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz 85-084, Poland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz 85-084, Poland
| |
Collapse
|
6
|
Ameer A, Cheng Y, Saleem F, Uzma, McKenna A, Richmond A, Gundogdu O, Sloan WT, Javed S, Ijaz UZ. Temporal stability and community assembly mechanisms in healthy broiler cecum. Front Microbiol 2023; 14:1197838. [PMID: 37779716 PMCID: PMC10534011 DOI: 10.3389/fmicb.2023.1197838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, there has been an unprecedented advancement in in situ analytical approaches that contribute to the mechanistic understanding of microbial communities by explicitly incorporating ecology and studying their assembly. In this study, we have analyzed the temporal profiles of the healthy broiler cecal microbiome from day 3 to day 35 to recover the stable and varying components of microbial communities. During this period, the broilers were fed three different diets chronologically, and therefore, we have recovered signature microbial species that dominate during each dietary regime. Since broilers were raised in multiple pens, we have also parameterized these as an environmental condition to explore microbial niches and their overlap. All of these analyses were performed in view of different parameters such as body weight (BW-mean), feed intake (FI), feed conversion ratio (FCR), and age (days) to link them to a subset of microbes that these parameters have a bearing upon. We found that gut microbial communities exhibited strong and statistically significant specificity for several environmental variables. Through regression models, genera that positively/negatively correlate with the bird's age were identified. Some short-chain fatty acids (SCFAs)-producing bacteria, including Izemoplasmatales, Gastranaerophilales, and Roseburia, have a positive correlation with age. Certain pathogens, such as Escherichia-Shigella, Sporomusa, Campylobacter, and Enterococcus, negatively correlated with the bird's age, which indicated a high disease risk in the initial days. Moreover, the majority of pathways involved in amino acid biosynthesis were also positively correlated with the bird's age. Some probiotic genera associated with improved performance included Oscillospirales; UCG-010, Shuttleworthia, Bifidobacterium, and Butyricicoccaceae; UCG-009. In general, predicted antimicrobial resistance genes (piARGs) contributed at a stable level, but there was a slight increase in abundance when the diet was changed. To the best of the authors' knowledge, this is one of the first studies looking at the stability, complexity, and ecology of natural broiler microbiota development in a temporal setting.
Collapse
Affiliation(s)
- Aqsa Ameer
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Youqi Cheng
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Farrukh Saleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Uzma
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - William T. Sloan
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sundus Javed
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Umer Zeeshan Ijaz
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Lyimu WM, Leta S, Everaert N, Paeshuyse J. Influence of Live Attenuated Salmonella Vaccines on Cecal Microbiome Composition and Microbiota Abundances in Young Broiler Chickens. Vaccines (Basel) 2023; 11:1116. [PMID: 37376505 DOI: 10.3390/vaccines11061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Salmonellosis is a global food safety challenge caused by Salmonella, a gram-negative bacterium of zoonotic importance. Poultry is considered a major reservoir for the pathogen, and humans are exposed through consumption of raw or undercooked products derived from them. Prophylaxis of Salmonella in poultry farms generally mainly involves biosecurity measures, flock testing and culling, use of antibiotics, and vaccination programs. For decades, the use of antibiotics has been a common practice to limit poultry contamination with important pathogenic bacteria such as Salmonella at the farm level. However, due to an increasing prevalence of resistance, non-therapeutic use of antibiotics in animal production has been banned in many parts of the world. This has prompted the search for non-antimicrobial alternatives. Live vaccines are among the developed and currently used methods for Salmonella control. However, their mechanism of action, particularly the effect they might have on commensal gut microbiota, is not well understood. In this study, three different commercial live attenuated Salmonella vaccines (AviPro® Salmonella Vac T, AviPro® Salmonella DUO, and AviPro® Salmonella Vac E) were used to orally vaccinate broiler chickens, and cecal contents were collected for microbiomes analysis by 16S rRNA next generation sequencing. Quantitative real-time PCR (qPCR) was used to study the cecal immune-related genes expression in the treatment groups, while Salmonella-specific antibodies were analyzed from sera and cecal extracts by enzyme-linked immunosorbent assay (ELISA). We show that vaccination with live attenuated Salmonella vaccines had a significant influence on the variability of the broiler cecal microbiota (p = 0.016). Furthermore, the vaccines AviPro® Salmonella Vac T and AviPro® Salmonella DUO, but not AviPro® Salmonella Vac E, had a significant effect (p = 0.024) on microbiota composition. This suggests that the live vaccine type used can differently alter the microbiota profiles, driving the gut colonization resistance and immune responses to pathogenic bacteria, and might impact the overall chicken health and productivity. Further investigation is, however, required to confirm this.
Collapse
Affiliation(s)
- Wilfred Michael Lyimu
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Samson Leta
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Nadia Everaert
- The Nutrition and Animal Microbiota Ecosystems Laboratory, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jan Paeshuyse
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
8
|
Zhu Y, Cidan Y, Sun G, Li X, Shahid MA, Luosang Z, Suolang Z, Suo L, Basang W. Comparative analysis of gut fungal composition and structure of the yaks under different feeding models. Front Vet Sci 2023; 10:1193558. [PMID: 37396992 PMCID: PMC10310795 DOI: 10.3389/fvets.2023.1193558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
The yaks that inhabit the Tibetan plateau are a rare breed that is closely related to local economic development and human civilization. This ancient breed may have evolved a unique gut microbiota due to the hypoxic high-altitude environment. The gut microbiota is susceptible to external factors, but research regarding the effects of different feeding models on the gut fungal community in yaks remains scarce. In this study, we compared and analyzed the composition and variability of the gut fungal community among wild yaks (WYG), house-feeding domestic yaks (HFG), and grazing domestic yaks (GYG). The results revealed that Basidiomycota and Ascomycota were the most preponderant phyla in the gut fungal community, regardless of feeding models. Although the types of dominant fungal phyla did not change, their abundances did. Intergroup analysis of fungal diversity showed that the Shannon and Simpson indices of WYG and GYG were significantly higher than those of HFG. Fungal taxonomic analysis showed that there were 20 genera (Sclerostagonospora and Didymella) that were significantly different between WYG and GYG, and 16 genera (Thelebolus and Cystobasidium) that were significantly different between the WYG and HFG. Furthermore, the proportions of 14 genera (Claussenomyces and Papiliotrema) significantly decreased, whereas the proportions of eight genera (Stropharia and Lichtheimia) significantly increased in HFG as compared to GYG. Taken together, this study indicated that the gut fungal composition and structure differ significantly between yaks raised in different breeding groups.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Xin Li
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Muhammad Akbar Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Zhaxi Luosang
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Zhaxi Suolang
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Lang Suo
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
9
|
Wang XY, Meng JX, Ren WX, Ma H, Liu G, Liu R, Geng HL, Zhao Q, Zhang XX, Ni HB. Amplicon-based metagenomic association analysis of gut microbiota in relation to egg-laying period and breeds of hens. BMC Microbiol 2023; 23:138. [PMID: 37202719 DOI: 10.1186/s12866-023-02857-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/07/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND The gut microbiota plays an essential role in maintaining gut homeostasis and improving performance, with the composition of microbial communities visibly differing across different laying stages in hens and significantly correlating with egg production. To gain further insights into the association between microbial community characteristics and laying periods in Hy-Line variety brown and Isa brown laying hens, we conducted a 16S rRNA amplicon sequencing survey. RESULTS Our result revealed the diversity of bacteria in the early laying period was commonly higher than peak, and in Hy-Line variety brown laying hens were generally higher than Isa brown. Principal coordinate analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) revealed that the structure and composition of the gut microbiota of laying hens exhibited significant differences among different groups. Phylum Firmicutes, Bacteroidota, Proteobacteria, and Fusobacteriota were found that dominant in the host's feces. Therein, the abundance of Fusobacteriota was higher in the peak period than in the early period, while the abundance of Cyanobacteria in the early period was higher in two breeds of hens. Furthermore, random forest based on machine learning showed that there were several distinctly abundant genera, which can be used as potential biomarkers to differentiate the different groups of laying periods and breeds. In addition, the prediction of biological function indicated the existing discrepancy in microbial function among the microbiota of four groups. CONCLUSIONS Our findings offer new insights into the bacterial diversity and intestinal flora composition of different strains of laying hens during various laying periods, contributing significantly to the improvement of production performance and the prevention of chicken diseases.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Wei-Xin Ren
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Quan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China.
| |
Collapse
|
10
|
He Y, Li J, Wang F, Na W, Tan Z. Dynamic Changes in the Gut Microbiota and Metabolites during the Growth of Hainan Wenchang Chickens. Animals (Basel) 2023; 13:348. [PMID: 36766238 PMCID: PMC9913245 DOI: 10.3390/ani13030348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Gut microbiota and their metabolites play important roles in animal growth by influencing the host's intake, storage, absorption, and utilization of nutrients. In addition to environmental factors, mainly diet, chicken breed and growth stage also affect changes in the gut microbiota. However, little research has been conducted on the development of gut microbiota and its metabolites in local chickens. In this study, the cecal microbiota and metabolites in different developmental stages of Hainan Wenchang chickens (a native breed of Bantam) were investigated using 16S rRNA sequencing and untargeted metabolomics. With aging, the structure of gut microbiota tended to be more stable. The relative proportions of dominant bacteria phyla Firmicutes, Bacteroidetes, and Proteobacteria showed stage changes with the development. With aging, gut microbiota and their metabolites may have structural and functional changes in response to nutrient metabolism and immune requirements in different physiological states. Several microbial and metabolic biomarkers with statistical differences were detected in different development stages. The bacteria that form networks with their significant related metabolites were different in various growth stages, including uncultured_bacterium_f_Ruminococcaceae, Ruminococcaceae_UCG-014, Faecalibacterium, uncultured_bacterium_o_Bacteroidales, and uncultured_bacterium_f_Lachnospiraceae. Partially differential bacteria were significantly correlated with short-chain fatty acids such as butyric acid. These findings may provide new insights into the physiological and molecular mechanisms of developmental changes of local chicken breeds, as well as resources for microbial and metabolic biomarker identification to improve growth efficiency.
Collapse
Affiliation(s)
| | | | | | - Wei Na
- School of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Zhen Tan
- School of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|