1
|
Liu Y, Zhao Y, Ma J, Guo S, Gao X, Wang B, Gong L, Lv Z, Guo Y. Optimal glycine allowance levels in low-protein diets and the dynamic requirement model for broilers. Poult Sci 2024; 103:104255. [PMID: 39332340 PMCID: PMC11467656 DOI: 10.1016/j.psj.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/29/2024] Open
Abstract
This study aimed to investigate the effects of different glycine levels in low-protein diets on the growth, nitrogen deposition, and expression of intestinal amino acid and glucose transporters in broilers from 29 to 42 d of age, in order to determine the optimal glycine supplementation level. A total of 240 male broilers at 29 days old were randomly assigned to 5 groups: the control group with a crude protein level of 20%, and experimental groups with low-protein diets (LP130) containing 18% crude protein, supplemented with glycine to achieve standardized ileal digestible (SID) glycine + serine to lysine ratios of 134% (LP134), 140% (LP140), and 145% (LP145). The results showed that the LP134 group had similar growth performance and slaughter performance compared to the control group (P > 0.05), whereas other low-protein diet groups had significantly lower growth performance (P < 0.05). Regression analysis determined that the optimal ratio for SID glycine + serine to lysine was 137%. A dynamic model for glycine + serine requirements was established through binary regression analysis: y = 599.051 × BW^0.75 + 8.381 × ADG (R2 = 0.998, P < 0.001). Feeding LP134, LP140, and LP145 diets significantly improved nitrogen deposition rates in broilers (P < 0.05). Low-protein diets significantly upregulated mRNA levels of b0,+AT, EAAT3, and SGLT1 genes in the duodenum (P < 0.05). In conclusion, appropriate glycine supplementation in low-protein diets can enhance growth performance, and nitrogen deposition efficiency, and regulate the expression of intestinal amino acid and glucose transporters. The optimal ratio of SID glycine + serine to lysine in low-protein diets for broilers aged 29 to 42 d is 137%.
Collapse
Affiliation(s)
- Yongfa Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiran Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyan Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuyang Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Kwon SH, Lee JH, Kim HW, Kim DY, Kil DY. Effect of increasing supplementation of dietary glycine on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress conditions. Poult Sci 2024; 103:104352. [PMID: 39383666 PMCID: PMC11490916 DOI: 10.1016/j.psj.2024.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
The current study aimed to investigate the effect of increasing supplementation of dietary glycine (Gly) on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress (HS) conditions. A total of one thousand six hundred 25-d-old broiler chickens were randomly allotted to 1 of 5 dietary treatments with 8 replicates. Each replicate comprised 20 male and 20 female birds. A negative control (NC) diet was prepared to meet or exceed energy and nutrient requirement estimates, whereas a positive control (PC) diet was formulated to contain increasing concentrations of AMEn by 50 kcal/kg as well as those of digestible amino acids, total Ca, and available P by 10% compared with the respective concentrations in the NC diet. Three additional diets were prepared by supplementing the NC diet with 0.4, 0.8, or 1.6% Gly. All chickens were raised under cyclic HS conditions at 29°C ± 0.89°C for 10 h/d and 23°C ± 1.45°C for the remaining time over an 18-d feeding trial. Results indicated that broiler chickens fed the NC diet had a greater (P < 0.05) FCR than those fed the PC diet under HS conditions. Increasing supplementation of up to 1.6% Gly in diets decreased (linear, P < 0.001) FCR in broiler chickens. Increasing supplementation of dietary Gly tended to increase (linear, P = 0.070) water holding capacity in the breast meat. Increasing supplementation of dietary Gly decreased (linear, P < 0.05) serum aspartate aminotransferase concentrations and tended to decrease blood heterophil:lymphocyte (linear, P = 0.083) and liver malondialdehyde concentrations (quadratic, P = 0.084). A tendency for increased villus height (linear, P = 0.086) and a significant increase in villus height:crypt depth ratio and goblet cell numbers (linear, P < 0.05) were identified following increasing Gly supplementation. In conclusion, increasing supplementation of dietary Gly improved feed efficiency, meat quality, liver health, and intestinal morphology possibly by mitigating oxidative stress and stress response in broiler chickens raised under HS conditions.
Collapse
Affiliation(s)
- Sung Hoon Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Ji Hye Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
3
|
Ouyang J, Zhang C, Deng C, Wen A, Zhou H, You J, Li G. Dietary vitamin B6 supplementation alleviates heat stress-induced intestinal barrier impairment by regulating the gut microbiota and metabolites in broilers. Poult Sci 2024; 103:104202. [PMID: 39222554 PMCID: PMC11402297 DOI: 10.1016/j.psj.2024.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Heat stress (HS) brings great challenges to the poultry industry. Vitamin B6 (VB6) is an essential micro-nutrient for animals to maintain normal physiological functions and possesses antioxidant and anti-inflammatory properties. This study aimed to explore the effect of VB6 on alleviating HS-induced intestinal barrier impairment in broilers. A total of 250 broilers (609.76 ± 0.34 g) were randomly allocated to 5 groups with 5 replicate cages of 10 birds each. The broilers in thermoneutral (TN) group were raised in thermoneutral conditions (23 ± 1°C) and fed with a basal diet. The birds in other four groups were housed under cycle high temperature (34 ± 1°C for 8 h/d) from d 21 to 35 and fed with the basal diet (HS group) or basal diet supplemented with 6, 12, or 24 mg/kg VB6 (HB-6, HB-12, HB-24 groups). The results showed that HS reduced the growth performance, increased ileum inflammatory cytokines levels, and impaired the gut barrier function (P < 0.05). Compared to the HS group, final body weight, average daily gain, and average daily feed intake, and the feed conversion ratio were improved by VB6 supplementation. The diamine oxidase, interleukin (IL)-1β, tumor necrosis factor-α, IL-18, IL-10, and interferon-γ levels were reduced by VB6 supplementation (P < 0.05). Moreover, VB6 supplementation linearly or quadratically enhanced villus height and villus height-to-crypt depth ratio of duodenum and jejunum, and decreased crypt depth of duodenum and ileum. The mRNA expression of Occlaudin, ZO1, Mucin2, Mucin4, E-cadhein, and β-catenin were increased by VB6 treatment (P < 0.05). Furthermore, dietary VB6 altered the diversity and community of gut microbiota (P < 0.05). A total of 83 differential metabolites associated with the amelioration of VB6 were identified, which were primarily enriched in glycerophospholipid metabolism, caffeine metabolism, and glutathione metabolism pathway. Collectively, VB6 may improve the growth performance and intestinal barrier function of heat-stressed broilers by regulating the ileal microbiota and metabolic homeostasis.
Collapse
Affiliation(s)
- Jingxin Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Chao Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Chenxi Deng
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Ai Wen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China.
| |
Collapse
|
4
|
Hu Y, Zhang W, Yang K, Lin X, Liu HC, Odle J, See MT, Cui X, Li T, Wang S, Liao X, Zhang L, Li S, Hu Y, Luo X. Dietary Zn proteinate with moderate chelation strength alleviates heat stress-induced intestinal barrier function damage by promoting expression of tight junction proteins via the A20/NF-κB p65/MMP-2 pathway in the jejunum of broilers. J Anim Sci Biotechnol 2024; 15:115. [PMID: 39217350 PMCID: PMC11366149 DOI: 10.1186/s40104-024-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. RESULTS The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1β contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1β contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. CONCLUSIONS Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.
Collapse
Affiliation(s)
- Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Ke Yang
- Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Miles Todd See
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sufen Li
- Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
5
|
Aguihe PC, Castelani AB, Ospina-Rojas CI, Iyayi EA, Pozza PC, Murakami AE. Interaction effects of glycine equivalent and standardized ileal digestible threonine in low protein diets for broiler grower chickens. Anim Biosci 2024; 37:1053-1064. [PMID: 38419547 PMCID: PMC11065947 DOI: 10.5713/ab.23.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE This study aims to investigate the interactive effect of a glycine equivalent (Glyequi) and standardized ileal digestible threonine (SID Thr) levels in low crude protein diets on performance, blood biochemistry, pectoral muscular creatine content and oxidative stability of meat in broiler chickens from 21 to 42 days. METHODS A total of 1,500, twenty-one-day-old Cobb-Vantress male broiler chickens were distributed in a completely randomized 5×3 factorial arrangement of Glyequi×SID Thr with five replicates of 20 birds each. Fifteen dietary treatments of 16.5% CP were formulated to contain five levels of total Glyequi (1.16%, 1.26%, 1.36%, 1.46%, and 1.56%) and three levels of SID Thr (0.58%; 0.68% and 0.78%). RESULTS Interaction effects (p<0.05) of Glyequi and SID Thr levels were observed for weight gain, carcass yield, pectoral muscular creatine content and serum uric acid. Higher levels of Glyequi increased (p = 0.040) weight gain in 0.58% and 0.68% SID Thr diets compare to the 0.78% SID Thr diet. The SID Thr level at 0.68% improved (p = 0.040) feed conversion compared to other SID Thr diets. Levels of Glyequi equal to or above 1.26% in diets with 0.78% SID Thr resulted in birds with higher (p = 0.033) pectoral muscular creatine content. The breast meat yield observed in the 0.68% SID Thr diet was higher (p = 0.05) compared to the 0.58% SID Thr diet. There was a quadratic effect of Glyequi levels for pectoral pectoral muscular creatine content (p = 0.008), breast meat yield (p = 0.030), and serum total protein concentrations (p = 0.040), and the optimal levels were estimated to be 1.47%, 1.35%, and 1.40% Glyequi, respectively. The lowest (p = 0.050) concentration of malondialdehyde in the breast meat was found in 0.68% SID Thr diets at 1.36% Glyequi. CONCLUSION The minimum dietary level of Glyequi needed to improve performance in low crude protein diets is 1.26% with adequate SID Thr levels for broiler chickens.
Collapse
Affiliation(s)
- Paschal Chukwudi Aguihe
- Department of Animal Production and Heath Technology, Federal College of Wildlife Management, P.M.B 268, New Bussa 912106,
Nigeria
| | | | | | | | - Paulo Cesar Pozza
- Departamento de Zootecnia, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900,
Brazil
| | - Alice Eiko Murakami
- Departamento de Zootecnia, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900,
Brazil
| |
Collapse
|
6
|
Zhao GP, Cheng WL, Zhang ZH, Li YX, Li YQ, Yang FW, Wang YB. The use of amino acids and their derivates to mitigate against pesticide-induced toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116340. [PMID: 38636261 DOI: 10.1016/j.ecoenv.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Wei-Long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhi-Hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yi-Xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation for Dairy, Inner Mongolia 013757, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Fang-Wei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Bo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
7
|
Mahasneh ZMH, Abuajamieh M, Abedal-Majed MA, Al-Qaisi M, Abdelqader A, Al-Fataftah ARA. Effects of medical plants on alleviating the effects of heat stress on chickens. Poult Sci 2024; 103:103391. [PMID: 38242055 PMCID: PMC10828596 DOI: 10.1016/j.psj.2023.103391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024] Open
Abstract
Over the past decades, global climate change has led to a significant increase in the average ambient temperature causing heat stress (HS) waves. This increase has resulted in more frequent heat waves during the summer periods. HS can have detrimental effects on poultry, including growth retardation, imbalance in immune/antioxidant pathways, inflammation, intestinal dysfunction, and economic losses in the poultry industry. Therefore, it is crucial to find an effective, safe, applicable, and economically efficient method for reducing these negative influences. Medicinal plants (MPs) contain various bioactive compounds with antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory effects. Due to the biological activities of MPs, it could be used as promising thermotolerance agents in poultry diets during HS conditions. Nutritional supplementation with MPs has been shown to improve growth performance, antioxidant status, immunity, and intestinal health in heat-exposed chickens. As a result, several types of herbs have been supplemented to mitigate the harmful effects of heat stress in chickens. Therefore, several types of herbs have been supplemented to mitigate the harmful effects of heat stress in chickens. This review aims to discuss the negative consequences of HS in poultry and explore the use of different traditional MPs to enhance the health status of chickens.
Collapse
Affiliation(s)
- Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan.
| | - Mohannad Abuajamieh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
8
|
Algothmi KM, Mahasneh ZMH, Abdelnour SA, Khalaf QAW, Noreldin AE, Barkat RA, Khalifa NE, Khafaga AF, Tellez-Isaias G, Alqhtani AH, Swelum AA, Abd El-Hack ME. Protective impacts of mitochondria enhancers against thermal stress in poultry. Poult Sci 2024; 103:103218. [PMID: 37980733 PMCID: PMC10692709 DOI: 10.1016/j.psj.2023.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023] Open
Abstract
Heat stress (HS) is still the essential environmental agent influencing the poultry industry. Research on HS in poultry has progressively acquired growing interest because of increased attention to climate alteration. Poultry can survive at certain zone of environmental temperatures, so it could be considered homoeothermic. In poultry, the normal body temperature is essential to enhance the internal environment for growth, which is achieved by normal environmental temperature. Recently, many studies have revealed that HS could cause mitochondrial dysfunction in broilers by inducing redox dysfunction, increasing uncoupling protein, boosting lipid and protein oxidation, and oxidative stress. Moreover, HS diminished the energy suppliers supported by mitochondria activity. A novel strategy for combating the negative influences of HS via boosting the mitochondria function through enrichment of the diets with mitochondria enhancers was also described in this review. Finally, the current review highlights the mitochondria dysfunction induced by HS in broilers and attempts to boost mitochondria functionality by enriching mitochondria enhancers to broiler diets.
Collapse
Affiliation(s)
- Khloud M Algothmi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman 11942, Jordan
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Qahtan A W Khalaf
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Kitab University, Kirkuk 36001, Iraq
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Rasha A Barkat
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | | | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
9
|
Yuan J, Li Y, Sun S, Wu J, Zhou J, He S. Response of growth performance and cecum microbial community to cyclic heat stress in broilers. Trop Anim Health Prod 2023; 56:9. [PMID: 38085433 DOI: 10.1007/s11250-023-03849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Heat stress (HS) can affect growth performance through alterations in specific gut microbiota, which greatly threatens poultry production. How HS affects the mechanisms of microbial changes in the poultry cecum and the complex interactions between cecal microbial changes and growth performance have not yet been well evaluated. This study was conducted to examine the changes in growth performance and cecal microbiotal community in cyclic heat stress (CHS)-treated broilers. A total of 200 twenty-eight-day-old female Arbor Acres (AA) broilers were equally allotted into neutral ambient temperature group (TN group, 24 ± 1°C, 24 h/day) and CHS group (33 ± 1°C, 8 h/day) with five replicates of 10 broilers each, respectively. Growth performance, cecum microbial diversity, flora composition, and community structure were analyzed on days 35 and 42. The decreased average daily feed intake (ADFI), average daily gain (ADG), and the increased feed/gain ratio (F:G) were observed in heat-stressed broilers on days 35 and 42. The alpha and beta diversity index had no significant changes at the two experimental periods (P > 0.05). At the genus level, CHS significantly increased the relative abundance of Enterococcus at 42 days (P < 0.05). Based on the analysis of linear effect size feature selection, CHS made an enriched Reyranella and a reduced Romboutsia and Ruminiclostridium at 35 days of age (P < 0.05). CHS made an enriched Weissella and Enterococcus at 42 days of age (P < 0.05). The present study revealed that CHS reduces broiler growth performance and alters the microbial community of the cecum microbiota and the abundance of species. These findings are of critical importance to alleviate the negative effects of CHS on broiler chickens' growth performance by maintaining gut microbial balance.
Collapse
Affiliation(s)
- Junjun Yuan
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Yan Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Shiang Sun
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Jiaying Wu
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Jin Zhou
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China.
| |
Collapse
|
10
|
Mo J, Xiang J, Li J, Yang M, Zhang Z, Zhang L, Zhang G, Yang Y, Liu G, Lu Y, Hu D, Si H. Natural Magnolol ameliorates coccidiosis infected with Eimeria tenella by affecting antioxidant, anti-inflammatory, and gut microbiota of chicks. Poult Sci 2023; 102:102975. [PMID: 37708766 PMCID: PMC10506099 DOI: 10.1016/j.psj.2023.102975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023] Open
Abstract
Magnolol, a natural extract from magnolia officinalis, has received growing interest in its bioactive properties such as antioxidant, anti-inflammatory, and antibacterial activities. Nevertheless, there is little research on Magnolol in the treatment of parasitic infections currently. Eimeria tenella (E. tenella) infection causes damage to epithelial cells and cecal mucosa, resulting in increased intestinal permeability, which is pretty detrimental to the balance of the intestinal microenvironment. However, at present, in the treatment of chicken coccidiosis, the abuse of antibiotics is quite serious, which has brought losses and harms to the chicken farming industry that cannot be ignored. In this study, based on the excellent antioxidant and anti-inflammatory properties of Magnolol, we proved that it does have a desirable therapeutic potential on chicks infected with E. tenella. Actually, the results showed that the clinical symptoms of the chicks infected with E. tenella were relieved and their growth performance was restored by Magnolol treatment. Furthermore, Magnolol improved the antioxidant and anti-inflammatory properties of chicks. Meanwhile, the Magnolol reversed the imbalance of the intestinal microbiota of sick chicks, which recovered the diversity, promoted the potential beneficial bacteria, and inhabited the potential pathogenic bacteria. Overall, Magnolol may be an alternative to chemical drugs that are effective in treating E. tenella infections.
Collapse
Affiliation(s)
- Jiahao Mo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Jun Xiang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Jiang Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Meng Yang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Zhidan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Lifang Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Geyin Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Yunqiao Yang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Gengsong Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, PR China.
| |
Collapse
|
11
|
Zheng X, Xie Y, Chen Z, He J, Chen J. Effects of Glycine Supplementation in Drinking Water on the Growth Performance, Intestinal Development, and Genes Expression in the Jejunum of Chicks. Animals (Basel) 2023; 13:3109. [PMID: 37835714 PMCID: PMC10571574 DOI: 10.3390/ani13193109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Glycine, the most basic amino acid found in nature, is considered an essential amino acid for chicks. However, the precise understanding of high concentrations of glycine's significance in promoting the growth performance of chicks, as well as its impact on intestinal development, re-mains limited. Consequently, the objective of this study was to investigate the effects of glycine supplementation in drinking water on growth performance, intestine morphology, and development in newly hatched chicks. In this study, 200 newly born chicks were selected and pro-vided with a supplementation of 0.5%, 1%, and 2% glycine in their drinking water during their first week of life. The results revealed that glycine supplementation in drinking water could significantly increase the average daily gain of chicks from days 7 to 14. Furthermore, a significant difference was observed between the group supplemented with 1% glycine and the control group. Concurrently, this glycine supplementation increased the villus height and the ratio of the villus height to crypt depth in jejunum on both day 7 and day 14. Glycine supplementation in drinking water significantly affected the mRNA expression level of the ZO-1, GCLM, and rBAT genes in jejunum, which may have certain effects on the mucosal immune defense, cellular antioxidant stress capacity, and amino acid absorption. Overall, the findings of this study indicate that glycine supplementation in drinking water can enhance the growth performance of chicks and promote their intestine development.
Collapse
Affiliation(s)
- Xiaotong Zheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yinku Xie
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Ziwei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Jiaheng He
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Jianfei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
12
|
Zheng C, Zhong Y, Zhang W, Wang Z, Xiao H, Zhang W, Xie J, Peng X, Luo J, Xu W. Chlorogenic Acid Ameliorates Post-Infectious Irritable Bowel Syndrome by Regulating Extracellular Vesicles of Gut Microbes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302798. [PMID: 37616338 PMCID: PMC10558682 DOI: 10.1002/advs.202302798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Post-infectious irritable bowel syndrome (PI-IBS) occurs after acute infectious diarrhea, and dysbiosis can be involved in its pathogenesis. Here, the role of chlorogenic acid (CGA) is investigated, a natural compound with several pharmacological properties, in alleviating PI-IBS in rats. It is elucidated that the gut microbiota plays a key role in PI-IBS pathogenesis and that rectal administration of CGA alleviated PI-IBS by modulating the gut microbiota and its metabolites. CGA supplementation significantly increased fecal Bacteroides acidifaciens abundance and glycine levels. Glycine structurally altered B. acidifaciens extracellular vesicles (EVs) and enriched functional proteins in the EVs; glycine-induced EVs alleviated PI-IBS by reducing inflammation and hypersensitivity of the intestinal viscera and maintaining mucosal barrier function. Moreover, B. acidifaciens EVs are enriched in the brain tissue. Thus, CGA mediates the mitigation of PI-IBS through the gut microbiota and its metabolites. This study proposes a novel mechanism of signal exchange between the gut microenvironment and the host.
Collapse
Affiliation(s)
- Cihua Zheng
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Yuchun Zhong
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Wenming Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Zhuoya Wang
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Haili Xiao
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Wenjun Zhang
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Jian Xie
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006P. R. China
| | - Jun Luo
- Department of Rehabilitation MedicineThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| | - Wei Xu
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang University1 Minde RoadNanchangJiangxi330006P. R. China
| |
Collapse
|
13
|
Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci 2023; 10:1255520. [PMID: 37841463 PMCID: PMC10569619 DOI: 10.3389/fvets.2023.1255520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heat stress is a threat that can lead to significant financial losses in the production of poultry in the world's tropical and arid regions. The degree of heat stress (mild, moderate, severe) experienced by poultry depends mainly on thermal radiation, humidity, the animal's thermoregulatory ability, metabolic rate, age, intensity, and duration of the heat stress. Contemporary commercial broiler chickens have a rapid metabolism, which makes them produce higher heat and be prone to heat stress. The negative effect of heat stress on poultry birds' physiology, health, production, welfare, and behaviors are reviewed in detail in this work. The appropriate mitigation strategies for heat stress in poultry are equally explored in this review. Interestingly, each of these strategies finds its applicability at different stages of a poultry's lifecycle. For instance, gene mapping prior to breeding and genetic selection during breeding are promising tools for developing heat-resistant breeds. Thermal conditioning during embryonic development or early life enhances the ability of birds to tolerate heat during their adult life. Nutritional management such as dietary manipulations, nighttime feeding, and wet feeding often, applied with timely and effective correction of environmental conditions have been proven to ameliorate the effect of heat stress in chicks and adult birds. As long as the climatic crises persist, heat stress may continue to require considerable attention; thus, it is imperative to explore the current happenings and pay attention to the future trajectory of heat stress effects on poultry production.
Collapse
Affiliation(s)
| | | | - Oluwadamilola Oso
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Kokou Tona
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
14
|
Liu X, Ma Z, Wang Y, Jia H, Wang Z, Zhang L. Heat stress exposure cause alterations in intestinal microbiota, transcriptome, and metabolome of broilers. Front Microbiol 2023; 14:1244004. [PMID: 37795292 PMCID: PMC10547010 DOI: 10.3389/fmicb.2023.1244004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Heat stress can affect the production of poultry through complex interactions between genes, metabolites and microorganisms. At present, it is unclear how heat stress affects genetic, metabolic and microbial changes in poultry, as well as the complex interactions between them. Methods Thus, at 28 days of age a total of 200 Arbor Acres broilers with similar body weights were randomly divided into the control (CON) and heat stress treatment (HS). There were 5 replicates in CON and HS, respectively, 20 per replication. From the 28-42 days, the HS was kept at 31 ± 1°C (9:00-17:00, 8 h) and other time was maintained at 21 ± 1°C as in the CON. At the 42nd day experiment, we calculated the growth performance (n = 8) of broilers and collected 3 and 6 cecal tissues for transcriptomic and metabolomic investigation and 4 cecal contents for metagenomic investigation of each treatment. Results and discussion The results indicate that heat stress significantly reduced the average daily gain and body weight of broilers (value of p < 0.05). Transcriptome KEGG enrichment showed that the differential genes were mainly enriched in the NF-kB signaling pathway. Metabolomics results showed that KEGG enrichment showed that the differential metabolites were mainly enriched in the mTOR signaling pathway. 16S rDNA amplicon sequencing results indicated that heat stress increased the relative abundance of Proteobacteria decreased the relative abundance of Firmicutes. Multi-omics analysis showed that the co-participating pathway of differential genes, metabolites and microorganisms KEGG enrichment was purine metabolism. Pearson correlation analysis found that ornithine was positively correlated with SULT1C3, GSTT1L and g_Lactobacillus, and negatively correlated with CALB1. PE was negatively correlated with CALB1 and CHAC1, and positively with g_Alistipes. In conclusion, heat stress can generate large amounts of reactive oxygen and increase the types of harmful bacteria, reduce intestinal nutrient absorption and antioxidant capacity, and thereby damage intestinal health and immune function, and reduce growth performance indicators. This biological process is manifested in the complex regulation, providing a foundational theoretical basis for solving the problem of heat stress.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Wang
- Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China
| | - Lihuan Zhang
- Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
15
|
Lan R, Luo H, Wu F, Wang Y, Zhao Z. Chitosan Oligosaccharides Alleviate Heat-Stress-Induced Lipid Metabolism Disorders by Suppressing the Oxidative Stress and Inflammatory Response in the Liver of Broilers. Antioxidants (Basel) 2023; 12:1497. [PMID: 37627493 PMCID: PMC10451627 DOI: 10.3390/antiox12081497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Heat stress has been reported to induce hepatic oxidative stress and alter lipid metabolism and fat deposition in broilers. Chitosan oligosaccharides (COSs), a natural oligosaccharide, has anti-oxidant, anti-inflammatory, and lipid-lowering effects. This study is conducted to evaluate dietary COS supplementation on hepatic anti-oxidant capacity, inflammatory response, and lipid metabolism in heat-stressed broilers. The results indicate that heat-stress-induced poor (p < 0.05) growth performance and higher (p < 0.05) abdominal adiposity are alleviated by COS supplementation. Heat stress increases (p < 0.05) serum AST and ATL activity, serum and liver MDA, TG, TC, and LDL-C levels, and the expression of hepatic IL-1β, IL-6, SREBP-1c, ACC, and FAS, while it decreases (p < 0.05) serum SOD and CAT activity, liver GSH-Px and SOD activity, and the expression of hepatic Nrf2, GPX1, IL-10, MTTP, PPARα, and CPT1. Nevertheless, COS supplementation decreases (p < 0.05) serum AST and ATL activity, serum and liver MDA, TG, TC, and LDL-C levels, and the expression of hepatic IL-1β, IL-6, SREBP-1c, ACC, and FAS, while it increases (p < 0.05) serum SOD and CAT activity, liver GSH-Px activity, and the expression of hepatic Nrf2, CAT, IL-10, LPL, MTTP, PPARα, and CPT1. In conclusion, COS could alleviate heat-stress-induced lipid metabolism disorders by enhancing hepatic anti-oxidant and anti-inflammatory capacity.
Collapse
Affiliation(s)
| | | | | | | | - Zhihui Zhao
- Department of Animal Science and Technology, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.L.); (H.L.); (F.W.); (Y.W.)
| |
Collapse
|