1
|
Kishawy AT, Abd El-Wahab RA, Eldemery F, Abdel Rahman MMI, Altuwaijri S, Ezz-Eldin RM, Abd-Allah EM, Zayed S, Mulla ZS, El Sharkawy RB, Badr S, Youssef W, Ibrahim D. Insights of early feeding regime supplemented with glutamine and various levels of omega-3 in broiler chickens: growth performance, muscle building, antioxidant capacity, intestinal barriers health and defense against mixed Eimeria spp infection. Vet Q 2024; 44:1-20. [PMID: 38961536 PMCID: PMC11225632 DOI: 10.1080/01652176.2024.2373287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Early nutritional management approach greatly impacts broilers' performance and resistance against coccidiosis. The current study explored the impact of post-hatch feeding with a combination of glutamine (Glut) and different levels of omega-3 on broiler chickens' growth performance, muscle building, intestinal barrier, antioxidant ability and protection against avian coccidiosis. A total of six hundred Cobb 500 was divided into six groups: first group (fed basal diet and unchallenged (control) and challenged (negative control, NC) groups were fed a basal diet without additives, and the other groups were infected with Eimeria spp and supplemented with 1.5% Glut alone or with three different levels of omega-3 (0.25, 0.5 and 1%) during the starter period. Notable improvement in body weight gain was observed in the group which fed basal diet supplemented with glut and 1% omega 3 even after coccidia infection (increased by 25% compared challenged group) while feed conversion ratio was restored to control. Myogeneis was enhanced in the group supplemented with Glut and omega-3 (upregulation of myogenin, MyoD, mechanistic target of rapamycin kinase and insulin like growth factor-1 and downregulating of myostatin genes). Groups supplemented with Glut and higher levels of omega-3 highly expressed occluding, mucin-2, junctional Adhesion Molecule 2, b-defensin-1 and cathelicidins-2 genes. Group fed 1% Glut + omega-3 showed an increased total antioxidant capacity and glutathione peroxidase and super oxide dismutase enzymes activities with reduced levels of malondialdehyde, reactive oxygen species and H2O2. Post-infection, dietary Glut and 1% omega-3 increased intestinal interleukin-10 (IL) and secretory immunoglobulin-A and serum lysozyme, while decreased the elevated inflammatory mediators comprising interleukin IL-6, tumor necrosis factor-alpha, nitric oxide (NO) and inducible NO synthase. Fecal oocyst excretion and lesions score severity were lowered in the group fed 1% Glut and omega 3. Based on these findings, dietary Glut and omega-3 supplementation augmented restored overall broilers' performance after coccidial challenge.
Collapse
Affiliation(s)
- Asmaa T.Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A. Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Saleh Altuwaijri
- Department of Pathology and laboratory diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rasha M.M. Ezz-Eldin
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ehab M. Abd-Allah
- Veterinary Educational Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Zohair S. Mulla
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudia Arabia
| | - Rasha B. El Sharkawy
- Department of Clinical Pathology, Zagazig Branch, Animal Health Research Institute (AHRI), Agriculture Research Center, Zagazig, Egypt
| | - Shereen Badr
- Department of Clinical Pathology, Animal Health Research Institute (AHRI), Mansoura Branch, Agricultural Research Center (ARC), Giza, Egypt
| | - Wessam Youssef
- Department of Biotechnology, Animal Health Research Institute (AHRI), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Reda FM, Alagawany M, Mahmoud HK, Aldawood N, Alkahtani AM, Alhasaniah AH, Mahmoud MA, El-Saadony MT, El-Kassas S. Application of naringenin as a natural feed additive for improving quail performance and health. J APPL POULTRY RES 2024; 33:100446. [DOI: 10.1016/j.japr.2024.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
3
|
Ahammad GS, Kim IH. Effects of Micellar Quercetin Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microbiota, Meat Quality, and Physiological Status in Broiler Chickens. Animals (Basel) 2024; 14:1918. [PMID: 38998030 PMCID: PMC11240820 DOI: 10.3390/ani14131918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigated the impacts of micellar quercetin (MQ) supplementation on growth performance, meat stability, excreta gas emissions, and physiological status. During a 35-day trial, 640 Ross 308 broilers were utilized. These birds were one day old, with an average initial body weight of 43.34 ± 1.43 g. They were randomly distributed across four experimental diets, each consisting of 10 replicate pens with 16 chicks per pen. The diets included the following: control (CON) with 0% micellar quercetin (MQ), TRT1 with 0.025% MQ, TRT2 with 0.050% MQ, and TRT3 with 0.100% MQ. The results indicate that broilers fed diets with increasing levels of MQ exhibited significantly higher body weight gains (BWGs) compared to the control group (p < 0.05). There was a clear linear increase in the breast muscle percentage with higher levels of quercetin supplementation (p < 0.05), while the breast color remained consistent across all groups (p > 0.05). Both cooking loss and drip loss exhibited a linear decrease as MQ levels in the diet increased (p < 0.05). The level of aspartate aminotransferase (AST) tended to decrease with higher MQ levels. Thyroxine (T4) and lymphocyte levels also showed a linear increase with increasing MQ dosage in the diet (p < 0.05). However, no significant effects were observed on nutrient digestibility, gas emissions, or fecal microbial components (Lactobacillus, E. coli, and Salmonella) with higher levels of MQ supplementation (p > 0.05). In conclusion, augmenting quercetin levels in the diet positively influenced the BWG, breast muscle development, and meat quality parameters such as cooking loss and drip loss, with beneficial effects on blood profiles.
Collapse
Affiliation(s)
| | - In Ho Kim
- Department of Animal Biotechnology, Dankook University, No. 29 Anseodong, Cheonan 330-714, Republic of Korea;
| |
Collapse
|
4
|
Tata A, Zacometti C, Massaro A, Bragolusi M, Ceroni S, Falappa S, Prataviera D, Merenda M, Piro R, Catania S. Empowering veterinary clinical diagnosis in industrial poultry production by ambient mass spectrometry and chemiometrics: a new approach for precise poultry farming. Poult Sci 2024; 103:103709. [PMID: 38598914 PMCID: PMC11017065 DOI: 10.1016/j.psj.2024.103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Untargeted metabolomic profiling, by ambient mass spectrometry and chemometric tools, has made a dramatic impact on human disease detection. In a similar vein, this study attempted the translation of this clinical human disease experience to farmed poultry for precise veterinary diagnosis. As a proof of principle, in this diagnostic/prognostic study, direct analysis in real-time high resolution mass spectrometry (DART-HRMS) was used in an untargeted manner to analyze fresh tissues (abdominal fat, leg skin, liver, and leg muscle) of pigmented and non-pigmented broilers to investigate the causes of lack of pigmentation in an industrial poultry farm. Afterwards, statistical analysis was applied to the DART-HRMS data to retrieve the molecular features that codified for 2 broiler groups, that is, properly pigmented and non-pigmented broilers. Higher abundance of oxidized lipids, high abundance of oxidized bile derivatives, and lower levels of tocopherol isomers (Vitamin E) and retinol (Vitamin A) were captured in nonpigmented than in pigmented broilers. In addition, conventional rapid analyses were used: 1) color parameters of the tissues of pigmented and non-pigmented broilers were measured to rationalize the color differences in abdominal fat, leg skin and leg muscle, and 2) macronutrients were determined in broiler leg muscle, to capture a detailed picture of the pathology and exclude other possible causes. In this study, the DART-HRMS system performed well in retrieving valuable chemical information from broilers that explained the differences between the 2 groups of broilers in absorption of xanthophylls and the subsequent lack of proper broiler pigmentation in affected broilers. The results suggest this technology could be useful in providing near real-time feedback to aid in veterinary decision-making in poultry farming.
Collapse
Affiliation(s)
- Alessandra Tata
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy.
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Andrea Massaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Marco Bragolusi
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Simona Ceroni
- Fileni Alimentare SPA, Località Cerrete Collicelli N° 8, Cingoli, Macerata 62011, Italy
| | - Sonia Falappa
- Fileni Alimentare SPA, Località Cerrete Collicelli N° 8, Cingoli, Macerata 62011, Italy
| | - Davide Prataviera
- Avian Medicine Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Buttapietra, Verona 37060, Italy
| | - Marianna Merenda
- Avian Medicine Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Buttapietra, Verona 37060, Italy
| | - Roberto Piro
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salvatore Catania
- Avian Medicine Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Buttapietra, Verona 37060, Italy
| |
Collapse
|
5
|
Santos MJ, Ludke MC, Silva LM, Rabello CB, Barros MR, Costa FS, Santos CS, Wanderley JS. Complexed amino acid minerals vs. bis-glycinate chelated minerals: Impact on the performance of old laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:395-408. [PMID: 38371472 PMCID: PMC10874725 DOI: 10.1016/j.aninu.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024]
Abstract
The present study was to evaluate the effect of trace minerals (Zn, Mn, and Cu) from complexed amino acid minerals (ZMCAA) and bis-glycinate chelated minerals (ZMCGly) in laying hen diets on performance, internal and external egg quality, yolk mineral deposition, intestinal morphometry, and bone characteristics. From 78 to 98 weeks of age, 400 White LSL-Lite strain laying hens were distributed in a randomized design with 4 treatments with 10 replicates per treatment. Treatments were distributed in a 2 × 2 factorial arrangement using either Zn, Mn, and Cu of ZMCAA or ZMCGly source at 2 levels: low (20, 20, and 3.5 mg/kg of Zn, Mn, and Cu, respectively) or high (40, 40, and 7 mg/kg of Zn, Mn, and Cu, respectively). The analysis of variance was performed, and in cases where differences were observed, the means were compared using Tukey's test (P < 0.05). The source and level of trace mineral supplementation had a significant impact on the performance of laying hens. Hens fed ZMCAA had higher egg production (P = 0.01), egg weight (P = 0.02), egg mass (P = 0.01), and lower feed conversion ratio (P = 0.05) compared to those fed ZMCGly. The ZMCAA supplementation showed higher albumen height (P = 0.01), albumen weight (P = 0.01), and eggshell thickness (P < 0.01). The deposition of Zn (P < 0.01), Mn (P < 0.01), and Cu (P < 0.01) in the egg yolk was greater for hens received ZMCAA. Tibia weight (P = 0.04) and bone densitometry (P < 0.01) in the tibia were higher with ZMCAA supplementation. In the small intestine, ZMCAA resulted in longer villi (P = 0.02) and shorter crypt depth (P = 0.01) in the duodenum. Jejunum and ileum measurements were influenced by the level and source of trace minerals (P < 0.05). Laying hens fed ZMCAA exhibited superior performance, egg quality, deposition of trace minerals in the egg yolk, and bone density compared to hens fed ZMCGly. In this study, older laying hens supplemented with ZMCAA at lower levels demonstrated adequate levels of supplementation.
Collapse
Affiliation(s)
- Marcos J.B. Santos
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Maria C.M.M. Ludke
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Leandro M. Silva
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Carlos B.V. Rabello
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Mércia R. Barros
- Department of Veterinary Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Fabiano S. Costa
- Department of Veterinary Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Clariana S. Santos
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Jamille S.S. Wanderley
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
6
|
Abo El-Maaty H, Sherif S, Taha AE, Al-Otaibi AM, Othman SI, Allam AA, Mahrose K. Effects of housing systems and feed additive on growth, carcass traits, liver function, oxidative status, thyroid function, and immune parameters of broilers. Poult Sci 2023; 102:103121. [PMID: 37852054 PMCID: PMC10591001 DOI: 10.1016/j.psj.2023.103121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
The effects of rearing Cobb500 broiler chickens under 3 different housing systems (floor litter, floor plastic, and batteries) without or with feed additive (Butinov) on broiler performance, blood parameters and carcass traits were evaluated. Three hundred 1-day-old chicks were distributed in a 3 × 2 factorial arrangement (6 treatments each of 5 replicates). The results showed that reared broilers on litter or plastic floors had high values (P ≤ 0.01) of bird's weight (BW), weight gain (WG), and feed intake (FI) throughout the entire study period (1-42 d of age) compared with rearing on batteries. Rearing broilers in the different housing systems and with or without feed additives did not affect (P ≥ 0.05) total feed conversion (FCR). Different rearing systems or feed additives did not influence broiler chicks' carcass traits and some serum blood parameters. The plastic floor system significantly increased (P ≤ 0.05) blood serum corticosterone compared with litter and batteries. Feed additive (Butinov) decreased the level of T4 (P ≤ 0.05) in blood serum. Plastic floors or batteries significantly increased (P ≤ 0.01) the level of antibody titer against avian influenza virus (HIAV) compared to chicken reared on a litter floor. The results suggested that using housing systems of litter or plastic floors could improve broiler growth performance without adversely affecting carcass traits and blood characteristics compared with rearing in batteries. Also, broiler diets' feed additive (Butinov) and their interaction with rearing systems did not improve broiler growth performance.
Collapse
Affiliation(s)
- Hayam Abo El-Maaty
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Sara Sherif
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, 22758 Edfina, Egypt.
| | - Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 13225, Saudi Arabia
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|