1
|
Karatepe P, Akgöl M, Tekin A, Çalıcıoğlu M, İncili GK, Hayaloğlu AA. Effect of Rheum ribes L. pulp enriched with eugenol or thymol on survival of foodborne pathogens and quality parameters of chicken breast fillets. Int J Food Microbiol 2024; 424:110854. [PMID: 39111156 DOI: 10.1016/j.ijfoodmicro.2024.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The aim of this study was to characterize the pulp of Rheum ribes L. and to determine the effect of the pulp enriched with eugenol (1 %) or thymol (1 %) on the microbiological and physico-chemical quality of chicken breast fillets. Chicken breast fillets, inoculated with Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium, and Escherichia coli O157:H7 (~6.0 log10), were marinated for 24 h in a mixture prepared from a combination of Rheum ribes L. pulp with eugenol or thymol. The quality parameters were analyzed for 15 days at +4 °C. The Rheum ribes L. pulp was found to have high antioxidant activity, high total phenolic content and contained 22 different phenolic substances, among which rutin ranked first. The pulp contained high levels of p-xylene and o-xylene as volatile substances and citric acid as an organic acid. The combination of Pulp + Eugenol + Thymol (PET) reduced the number of pathogens in chicken breast fillets by 2.03 to 3.50 log10 on day 0 and by 2.25 to 4.21 log10 on day 15, compared to the control group (P < 0.05). The marinating treatment significantly lowered the pH values of fillet samples on the first day of the study, compared to the control group (P < 0.05). During storage, TVB-N levels showed slower increase in the treatment groups compared to the control group (P < 0.05). In addition, the marinating process led to significant changes in physicochemical parameters such as water holding capacity, color, texture, cooking loss, and drip loss compared to the control group (P < 0.05). In conclusion, the results of this study showed that the pulp of Rheum ribes L., which has a high antioxidant capacity and contains various bioactive compounds. Furthermore, S. Typhimurium, E. coli O157:H7 and L. monocytogenes were inhibited considerably by marinating Rheum ribes L. pulp with a combination of eugenol and thymol.
Collapse
Affiliation(s)
- Pınar Karatepe
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Ali Tekin
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey; Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Çalıcıoğlu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey.
| |
Collapse
|
2
|
Aljuwayd M, Olson EG, Abbasi AZ, Rothrock MJ, Ricke SC, Kwon YM. Potential Involvement of Reactive Oxygen Species in the Bactericidal Activity of Eugenol against Salmonella Typhimurium. Pathogens 2024; 13:899. [PMID: 39452770 PMCID: PMC11510353 DOI: 10.3390/pathogens13100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
There is an increasing need to develop alternative antimicrobials to replace currently used antibiotics. Phytochemicals, such as essential oils, have garnered significant attention in recent years as potential antimicrobials. However, the mechanisms underlying their bactericidal activities are not yet fully understood. In this study, we investigated the bactericidal activity of eugenol oil against Salmonella enterica serovar Typhimurium (S. Typhimurium) to elucidate its mechanism of action. We hypothesized that eugenol exerts its bactericidal effects through the production of reactive oxygen species (ROS), which ultimately leads to cell death. The result of this study demonstrated that the bactericidal activity of eugenol against S. Typhimurium was significantly (p < 0.05) mitigated by thiourea (ROS scavenger) or iron chelator 2,2'-dipyridyl, supporting the hypothesis. This finding contributes to a better understanding of the killing mechanism by eugenol oil.
Collapse
Affiliation(s)
- Mohammed Aljuwayd
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (M.A.); (A.Z.A.); (Y.M.K.)
- College of Medical Applied Sciences, The Northern Border University, Arar 91431, Saudi Arabia
| | - Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Asim Zahoor Abbasi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (M.A.); (A.Z.A.); (Y.M.K.)
| | - Michael J. Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605, USA;
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA; (M.A.); (A.Z.A.); (Y.M.K.)
- Department of Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Manjankattil S, Dewi G, Peichel C, Creek M, Bina P, Cox R, Noll S, Kollanoor Johny A. Effect of pimenta essential oil against Salmonella Agona and Salmonella Saintpaul in ground turkey meat and nonprocessed turkey breast meat. Poult Sci 2024; 103:103279. [PMID: 38100945 PMCID: PMC10764266 DOI: 10.1016/j.psj.2023.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023] Open
Abstract
Salmonella enterica Agona (S. Agona) and Salmonella enterica Saintpaul (S. Saintpaul) are among the emerging drug-resistant Salmonella in turkey production and processing. Rapid solutions to control emerging and uncommon serotypes such as S. Agona and S. Saintpaul are needed. This study tested pimenta essential oil (PEO) as a processing antibacterial against S. Agona and S. Saintpaul in experiments representative of different stages of turkey processing. The compound effectively reduced S. Agona and S. Saintpaul in nutrient broth studies and with mature biofilm assays. PEO was tested against a combination of S. Agona and S. Saintpaul in ground turkey meat and nonprocessed breast meat. In the first experiment with ground turkey, samples were inoculated with a mixture of S. Agona and S. Saintpaul (∼3 log10 CFU/g) and treated with PEO at different concentrations (0% PEO, 0.25% PEO, 0.5% PEO, 1% PEO, 2% PEO, and 2.5% PEO). In the second experiment with turkey breast, samples inoculated with ∼3 log10 CFU/g (SA+SP) were dipped in different concentrations of PEO with chitosan (CN) for 2 min. In both these experiments, samples were stored at 4°C, and Salmonella recovery was carried out at 0, 1, 3, 5, and 7 d. All experiments followed a completely randomized design and were repeated 6 times (n = 6). Statistical analysis was done using the PROC-ANOVA procedure of SAS. In the ground turkey meat, PEO at or above 2% reduced 2 log10 CFU/g of Salmonella by day 1. PEO at 2.5% in ground turkey meat resulted in enrichment-negative samples by 1 min, indicative of the rapid killing effect of the compound at a high concentration of PEO (P ≤ 0.05). A maximum reduction of 1.7 log10 CFU Salmonella/g of turkey breast meat was obtained after 2 min of dip treatment containing CN and 2.5% PEO. Results indicate that PEO could be used as a plant-based processing antibacterial against S. Agona and S. Saintpaul in turkey processing. Upscaling to plant-level studies is necessary before recommending its usage.
Collapse
Affiliation(s)
| | - Grace Dewi
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Claire Peichel
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Medora Creek
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peter Bina
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Ryan Cox
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sally Noll
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
4
|
Szczypka M, Lis M, Kuczkowski M, Bobrek K, Pawlak A, Zambrowicz A, Gaweł A, Obmińska-Mrukowicz B. Yolkin, a Polypeptide Complex from Egg Yolk, Affects Cytokine Levels and Leukocyte Populations in Broiler Chicken Blood and Lymphoid Organs after In Ovo Administration. Int J Mol Sci 2023; 24:17494. [PMID: 38139323 PMCID: PMC10743580 DOI: 10.3390/ijms242417494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Yolkin is a polypeptide complex isolated from hen egg yolk that exhibits immunomodulating properties. The aim of the present study was to determine whether in-ovo-delivered yolkin affects leukocyte populations and cytokine levels in broiler chickens. The experiment was carried out on eggs from Ross 308 broiler breeder birds. Yolkin was administered in ovo on the 18th day of incubation, once, at the following three doses: 1, 10, or 100 µg/egg. The immunological parameters were assessed in 1-, 7-, 14-, 21-, 28-, 35-, and 42-day-old birds kept under farming conditions and routinely vaccinated. The leukocyte populations were determined in the thymus, spleen, and blood. The cytokine (IL-1β, IL-2, IL-6, and IL-10) levels were determined in the plasma of the broiler chickens. Each experimental group included eight birds. The most pronounced effect of yolkin was an increase in the population of T cells, both CD4+ and CD8+, mainly in the blood. This effect on the lymphocyte subsets may be valuable regarding chicken immune responses, mainly against T-dependent antigens, during infection or after vaccination.
Collapse
Affiliation(s)
- Marianna Szczypka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Magdalena Lis
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Kamila Bobrek
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-640 Wrocław, Poland;
| | - Andrzej Gaweł
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| |
Collapse
|