1
|
Ru M, Liang H, Ruan J, Haji RA, Cui Y, Yin C, Wei Q, Huang J. Chicken ovarian follicular atresia: interaction network at organic, cellular, and molecular levels. Poult Sci 2024; 103:103893. [PMID: 38870615 PMCID: PMC11225904 DOI: 10.1016/j.psj.2024.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Most of follicles undergo a degenerative process called follicular atresia. This process directly affects the egg production of laying hens and is regulated by external and internal factors. External factors primarily include nutrition and environmental factors. In follicular atresia, internal factors are predominantly regulated at 3 levels; organic, cellular and molecular levels. At the organic level, the hypothalamic-pituitary-ovary (HPO) axis plays an essential role in controlling follicular development. At the cellular level, gonadotropins and cytokines, as well as estrogens, bind to their receptors and activate different signaling pathways, thereby suppressing follicular atresia. By contrast, oxidative stress induces follicular atresia by increasing ROS levels. At the molecular level, granulosa cell (GC) apoptosis is not the only factor triggering follicular atresia. Autophagy is also known to give rise to atresia. Epigenetics also plays a pivotal role in regulating gene expression in processes that seem to be related to follicular atresia, such as apoptosis, autophagy, proliferation, and steroidogenesis. Among these processes, the miRNA regulation mechanism is well-studied. The current review focuses on factors that regulate follicular atresia at organic, cellular and molecular levels and evaluates the interaction network among these levels. Additionally, this review summarizes atretic follicle characteristics, in vitro modeling methods, and factors preventing follicular atresia in laying hens.
Collapse
Affiliation(s)
- Meng Ru
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Haiping Liang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Jiming Ruan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Ramlat Ali Haji
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Yong Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Chao Yin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Qing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China
| | - Jianzhen Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Economic and Technological Development District, Nanchang 330045, China.
| |
Collapse
|
2
|
Wang J, Liu Z, Lin H, Jiao H, Zhao J, Ma B, Wang Y, He S, Wang X. Daily feeding frequency affects feed intake and body weight management of growing layers. Poult Sci 2024; 103:103748. [PMID: 38670057 PMCID: PMC11068612 DOI: 10.1016/j.psj.2024.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of this study was to investigate the effect of feeding behavior on feed intake and body weight in growing layers and the underlying mechanisms, thereby providing a scientific foundation for optimal feeding practices in growing layers' management. A total of 144 Hy-line brown growing layers of 10 wk old and similar body weight, were divided into 3 treatment groups with different feeding frequency and equal cumulative daily feeding amount: the once-a-day feeding group (F1) was fed at 9:00 am every day, with feeding amount of 150 g/layer; the twice-a-day feeding group (F2) were fed at 9:00 am and 13:00 pm every day, with each feeding amount of 75 g/layer; the 4 times-a-day feeding group (F4) were fed at 9:00 am, 11:00 am, 13:00 pm, and 15:00 pm every day, with each feeding amount of 37.5 g/layer. Pre-experiment lasted for 1 wk and formal experiment lasted for 8 wk. The results indicated that the daily feed intake and body weight were decreased (P < 0.05) while feed conversion ratio was not affected (P > 0.05) as daily feeding times increased. The glandular stomach proportion was significantly increased in twice-a-day feeding group, while liver proportion and ileum length were significantly increased in 4 times-feeding group (P < 0.05). Additionally, 4 times-feeding daily resulted in a significant elevation of blood glucose levels, which may have suppressed feed intake (P < 0.05). In 4 times-feeding group, the plasma triglyceride levels increased as feeding times, accompanied by a notable up-regulation in the mRNA level of appetite-suppressing gene, hypothalamic pro-opiomelanocortin (POMC) and glandular stomach ghrelin. This modulation effectively suppressed the subsequent feed intake and body weight. Therefore, 4 times feeding daily is recommended in growing layers' management, because it reduced the feed cost without affecting the feed conversion efficiency.
Collapse
Affiliation(s)
- Junjie Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zengmin Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Baishun Ma
- Shandong Hemeihua Nongmu Co. Ltd., Jinan City, Shandong Province, 250102, China
| | - Yao Wang
- Sinochem Yunlong Co. Ltd., Jinsuo Industrial Zone, Xundian County, Kunming City, Yunnan Province, 655204, China
| | - Shuying He
- Sinochem Yunlong Co. Ltd., Jinsuo Industrial Zone, Xundian County, Kunming City, Yunnan Province, 655204, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
3
|
Lu J, Zhang X, Wang Q, Ma M, Li YF, Guo J, Wang XG, Dou TC, Hu YP, Wang KH, Qu L. Effects of exogenous energy on synthesis of steroid hormones and expression characteristics of the CREB/StAR signaling pathway in theca cells of laying hen. Poult Sci 2024; 103:103414. [PMID: 38262338 PMCID: PMC10835437 DOI: 10.1016/j.psj.2023.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Energy and the cAMP-response element binding protein (CREB)/steroidogenic acute regulatory protein (StAR) signaling pathway play important roles in steroid hormone production and follicular development in hens. This present study aimed to investigate the effects of exogenous energy on the synthesis of steroid hormones and the expression characteristics of the CREB/StAR signaling pathway in theca cells of laying hen. The primary theca cells of small yellow follicles were randomly divided into 6 treatments and cultured in medium with glucose concentrations of 1, 1.5, 3, 4.5, 6, and 7.5 mg/mL for 48 h. It was found that growth was robust and cell outlines were clear when cells were cultured with 1, 1.5, 3, and 4.5 mg/mL glucose, but cell viability was diminished and cell density decreased after exposure to glucose at 6 and 7.5 mg/mL for 48 h. Cell viability showed an increasing and then decreasing quadratic response to increasing glucose concentration in culture (r2 = 0.688, P < 0.001). The cell viability of theca cells cultured with 4.5 mg/mL glucose was greater than those cultured with 1, 1.5, 6, and 7.5 mg/mL glucose (P < 0.05). The concentration of estradiol in the medium containing 3 mg/mL glucose was higher than in medium containing 1, 1.5, and 6 mg/mL glucose (P < 0.05). There was an increasing and then decreasing quadratic correlation between progesterone concentrations and glucose concentrations (r2 = 0.522, P = 0.002). The concentration of progesterone in medium with 4.5 mg/mL glucose was higher than in medium with 1 and 7.5 mg/mL glucose (P < 0.05). There was an increasing and then decreasing quadratic correlation between the relative expression of CREB1 (r2 = 0.752, P < 0.001), StAR (r2 = 0.456, P = 0.002), CYP1B1 (r2 = 0.568, P < 0.001), and 3β-HSD (r2 = 0.319, P = 0.018) in theca cells of laying hens and glucose concentrations after treatment with different glucose concentrations for 48 h. After treatment with 4.5 mg/mL glucose, the expression of StAR, CYP1B1, and 3β-HSD genes were increased compared to treatment with 1, 1.5, 3, 6, and 7.5 mg/mL glucose (P < 0.001). There was an increasing and then decreasing quadratic correlation between glucose concentrations and protein expression of CREB1 (r2 = 0.819, P < 0.001), StAR (r2 = 0.844, P < 0.001), 3β-HSD (r2 = 0.801, P < 0.001), and CYP11A1 (r2 = 0.800, P < 0.001) in theca cells of laying hens. The protein expression of CREB1, StAR, and 3β-HSD in theca cells cultured with 4.5 mg/mL glucose was higher than in other groups (P < 0.001). The results indicate that the appropriate glucose concentration (4.5 mg/mL) can improve the synthesis of steroid hormones in theca cells of laying hens through the upregulation of key genes and proteins in the CREB/StAR signaling pathway.
Collapse
Affiliation(s)
- J Lu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - X Zhang
- Agricultural and Rural Bureau of Hanjiang District, Yangzhou 225100, China
| | - Q Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - M Ma
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Y F Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - J Guo
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - X G Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - T C Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Y P Hu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - K H Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - L Qu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China.
| |
Collapse
|