3
|
Zhu L, Wu X, Xu B, Zhao Z, Yang J, Long J, Su L. The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood. Neurosci Lett 2020; 745:135596. [PMID: 33359735 DOI: 10.1016/j.neulet.2020.135596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) is a highly heritable mental disorder with a substantial disease burden. Machine learning (ML) method can be used to identify individuals with SCZ on the basis of blood gene expression data with high accuracy. METHODS This study aimed to differentiate patients with SCZ from healthy individuals by using the messenger RNA expression level in peripheral blood of 48 patients with SCZ and 50 controls via ML algorithms, namely, artificial neural networks, extreme gradient boosting, support vector machine (SVM), decision tree, and random forest. The expression of six mRNAs was detected using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The relative expression levels of GNAI1 (P < 0.001), PRKCA (P < 0.001), and PRKCB (P = 0.021) increased in the SCZ group, whereas those of FYN (P < 0.001), LYN (P = 0.022), and YWHAZ (P < 0.001) decreased in the SCZ group. We generated models with various combinations of genes based on five ML algorithms. The SVM model with six factors (GNAI1, FYN, PRKCA, YWHAZ, PRKCB, and LYN genes) was the best model for distinguishing patients with SCZ from healthy individuals (AUC = 0.993, sensitivity = 1.000, specificity = 0.895, and Youden index = 0.895). CONCLUSIONS This study suggested that the combination of genes using the ML method is better than the use of a single gene to discriminate patients with SCZ from healthy individuals. The combination of GNAI1, FYN, PRKCA, YWHAZ, PRKCB, and LYN under the SVM model can be used as a diagnostic biomarker for SCZ.
Collapse
Affiliation(s)
- Lulu Zhu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Xulong Wu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Bingyi Xu
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi Zhao
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianxiong Long
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China.
| | - Li Su
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, Yi Q, Li C, Li X, Shen J, Song Z, Ji W, Wang M, Zhou J, Chen B, Liu Y, Wang J, Wang P, Yang P, Wang Q, Feng G, Liu B, Sun W, Li B, He G, Li W, Wan C, Xu Q, Li W, Wen Z, Liu K, Huang F, Ji J, Ripke S, Yue W, Sullivan PF, O'Donovan MC, Shi Y. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet 2017; 49:1576-1583. [PMID: 28991256 DOI: 10.1038/ng.3973] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Zhiqiang Li
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yu
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China.,Department of Psychiatry, Jining Medical University, Jining, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dai Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China.,Peking-Tsinghua Joint Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Qizhong Yi
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Disease and Metabolic Disease Institute of Qingdao University, Qingdao, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Ji
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China.,Changning Mental Health Center, Shanghai, China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yahui Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jiqiang Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Wang
- Wuhu Fourth People's Hospital, Wuhu, China
| | - Ping Yang
- Wuhu Fourth People's Hospital, Wuhu, China
| | - Qingzhong Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benxiu Liu
- Longquan Mountain Hospital of Guangxi Province, Liuzhou, China
| | - Wensheng Sun
- Longquan Mountain Hospital of Guangxi Province, Liuzhou, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Weihua Yue
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Yongyong Shi
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China.,Changning Mental Health Center, Shanghai, China
| |
Collapse
|
8
|
Zhang Q, Liu H, Zhu Q, Zhan P, Zhu S, Zhang J, Lv T, Song Y. Patterns and functional implications of platelets upon tumor "education". Int J Biochem Cell Biol 2017; 90:68-80. [PMID: 28754316 DOI: 10.1016/j.biocel.2017.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
While platelets are traditionally recognized to play a predominant role in hemostasis and thrombosis, increasing evidence verifies its involvement in malignancies. As a component of the tumor microenvironment, platelets influence carcinogenesis, tumor metastasis and chemotherapy efficiency. Platelets status is thus predictable as a hematological biomarker of cancer prognosis and a hot target for therapeutic intervention. On the other hand, the role of circulating tumor cells (CTCs) as an inducer of platelet activation and aggregation has been well acknowledged. The cross-talk between platelets and CTCs is reciprocal on that the CTCs activate platelets while platelets contribute to CTCs' survival and dissemination. This review covers some of the current issues related to the loop between platelets and tumor aggression, including the manners of tumor cells in "educating" platelets and biofunctional alterations of platelets upon tumor "education". We also highlight the potential clinical applications on the interplay between tumors and platelets. Further studies with well-designed prospective multicenter trials may contribute to clinical "liquid biopsy" diagnosis by evaluating the global changes of platelets.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| |
Collapse
|