1
|
Basova LV, Riley T, Franklin D, Delorme-Walker V, Lim WL, Grant I, Letendre SL, Iudicello JE, Cherner M, Ellis RJ, Marcondes MCG. Identifying methamphetamine use predictors in HIV infection: Immune-dopaminergic signatures in peripheral leukocytes and the role of COMT genotype. Brain Behav Immun Health 2024; 42:100873. [PMID: 39430881 PMCID: PMC11490913 DOI: 10.1016/j.bbih.2024.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
The pursuit of translational biomarkers is complex due to the heterogeneous human pathophysiology, but critical for disease diagnosis, prognosis, monitoring therapeutic efficacy, and for patient stratification. In HIV-associated neurocognitive impairment (NCI), biomarkers that delineate the trajectory of neuropathogenesis and neurocognitive sequelae are critical, particularly considering confounders such as substance use, including Methamphetamine (METH). METH use is a significant health concern among persons living with HIV (PWH), aggravating cognitive deficits and neuroinflammation despite of antiretrovirals, introducing elements in the microenvironment that are fundamentally differerent in relation to non-METH users, such as high levels of dopamine (DA) affecting HIV-innate immune targets. Yet, current biomarkers do not detect these differences. We hypothesized that predefined DA-induced signatures detectable in peripheral blood leukocytes, can distinguish HIV+ METH users compared to HIV-negative or PWH that are non METH users. The elevated expression of CD8A, CREBBP, CCL5, and combinations of dopaminergic pathway transcripts clustered METH users with detectable CSF viral load and major depressive disorder (MDD), indicating neuroimmune-mechanistic links. Cathecol-o-methyltransferase (COMT) gene polymorphisms affecting DA metabolism improved the identification of PWH using METH with biomarkers. The results indicate that underlying immunedopaminergic mechanisms provide signatures and genotypes that can identify PWH that are METH users and their attributes.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Tera Riley
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
- National Institute for Drug Abuse, Summer Internship, 2023, USA
| | - Donald Franklin
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | | | - Wei Ling Lim
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Igor Grant
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Scott L. Letendre
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Jennifer E. Iudicello
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Mariana Cherner
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | - Ronald J. Ellis
- University of California San Diego, HIV Neurobehavioral Research Program, San Diego, CA, 92103, USA
| | | |
Collapse
|
2
|
Chen L, Ye T, Wang X, Han L, Wang T, Qi D, Cheng X. The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2023; 26:1701-1728. [PMID: 36045534 DOI: 10.2174/1386207325666220831152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively. CONCLUSION Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.
Collapse
Affiliation(s)
- Liyuan Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianyuan Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, China
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaorui Cheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Guo KM, Li W, Wang ZH, He LC, Feng Y, Liu HS. Low-dose aspirin inhibits trophoblast cell apoptosis by activating the CREB/Bcl-2 pathway in pre-eclampsia. Cell Cycle 2022; 21:2223-2238. [PMID: 35792905 PMCID: PMC9586659 DOI: 10.1080/15384101.2022.2092814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022] Open
Abstract
Excessive apoptosis of placental trophoblast cells is considered a major cause of pre-eclampsia (PE) pathogenesis. Phosphorylation of the widely expressed cAMP response element binding protein (CREB) regulates apoptosis and may be involved in PE incidence. Low-dose aspirin (LDA) is an effective approach for preventing PE with unclear mechanisms. Thus we examined whether LDA protects against PE by inhibiting trophoblast cell apoptosis through CREB. The effects of LDA on human PE placenta, PE model rat placenta, and hydrogen peroxide (H2O2)-induced HTR-8/SVneo cell apoptosis were analyzed. TUNEL assay, immunohistochemistry, Cell Counting Assay Kit-8 (CCK-8) assay, western blot, and flow cytometry assay were performed. In the placenta of human PE and rat PE models, the TUNEL index increased and was partially corrected with LDA pre-treatment. Meanwhile, decreased Bcl-2 and increased Bax expression were significantly reversed by LDA pre-treatment. In HTR-8/SVneo cells, H2O2 decreased cell viability, promoted apoptosis, reduced the Bcl-2/Bax ratio, aggravated loss of mitochondrial membrane potential (MMP), increased cytoplasmic cytochrome c release, and simultaneously activated caspase-9 and caspase-3. These effects were effectively restored by LDA pre-treatment in the cells. Moreover, LDA promoted CREB phosphorylation in trophoblast cells. CREB interference further promoted apoptosis, reduced the Bcl-2/Bax ratio, and increased MMP loss. CREB interference also reversed the inhibitory effect of LDA on H2O2-induced apoptosis in HTR-8/SVneo cells. Thus, LDA was shown to inhibit trophoblast cell mitochondrial apoptosis by activating the CREB/Bcl-2 pathway, providing novel evidence for the protective mechanism of LDA in PE.Abbreviations; PE: Pre-eclampsia; LDA: low-dose aspirin; CREB: cAMP response element binding protein; ROS: reactive oxygen species; H2O2: hydrogen peroxide; PBS: Phosphate-buffered saline; Bcl-2: B-cell lymphoma-2; MMP: Mitochondrial membrane potential; Cyt-c: CytochromeC.
Collapse
Affiliation(s)
- Kai-Min Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Zhao-Hua Wang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, Guangzhou Medical University, Guangzhou, China
| | - Lang-Chi He
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Feng
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hui-Shu Liu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Tseng CC, Lin YZ, Lin CH, Hwang DY, Li RN, Tsai WC, Ou TT, Wu CC, Lin YC, Sung WY, Chen KY, Chang SJ, Yen JH. Genetic and epigenetic alterations of cyclic AMP response element modulator in rheumatoid arthritis. Eur J Clin Invest 2022; 52:e13715. [PMID: 34783021 DOI: 10.1111/eci.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Genetic and epigenetic factors are strongly associated with the autoimmune disease rheumatoid arthritis (RA). Cyclic AMP response element modulator (CREM), a gene related to immune system regulation, has been implicated in various immune-mediated inflammatory processes, although it remains unknown whether CREM is involved in RA. METHODS This study enrolled 278 RA patients and 262 controls. Three variants [rs12765063, rs17499247, rs1213386] were identified through linkage disequilibrium and expression quantitative trait locus analysis, and CREM transcript abundance was determined by quantitative real-time polymerase chain reaction. The identified variants were genotyped using the TaqMan Allelic Discrimination assay, and CREM promoter methylation was assessed by bisulphite sequencing. Differences between groups and correlations between variables were assessed with Student's t-tests and Pearson's correlation coefficients. Associations between phenotypes and genotypes were evaluated with logistic regression. RESULTS Rheumatoid arthritis patients exhibited increased CREM expression (p < .0001), which was decreased by methotrexate (p = .0223) and biologics (p = .0001), but could not be attributed to CREM variants. Interestingly, rs17499247 displayed a significant association with serositis (p = .0377), and rs1213386 increased the risk of lymphadenopathy (p = .0398). Furthermore, seven CpG sites showed decreased methylation in RA (p = .0477~ p < .0001). CONCLUSIONS Collectively, our results indicate that CREM hypomethylation and CREM upregulation occur in RA and that CREM variants are involved in the development of serositis and lymphadenopathy in RA. This study highlights the novel roles of CREM in RA pathophysiology.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuan-Zhao Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hui Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Chih Lin
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Humanities and Education, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Zhang X, Wang M, Qiao Y, Shan Z, Yang M, Li G, Xiao Y, Wei L, Bi H, Gao T. Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:282. [PMID: 35434037 PMCID: PMC9011256 DOI: 10.21037/atm-22-762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Abstract
Background Depression is the most common type of psychological disorder, with continuous, prolonged, and persistent bad moods as the main clinical feature. Cordyceps sinensis is a complex consisting of the ascospores and bodies of insect larvae from the Hepialidae family that have been parasitized by Cordyceps sinensis militaris. Previous studies have reported that this herb has antidepressant activity. The present study used network pharmacology and molecular docking techniques to investigate the potential antidepressant mechanisms of Cordyceps sinensis. Methods The active ingredients of Cordycepssinensis were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the potential targets were predicted using the PharmMapper platform. The GeneCards database was then used to obtain sub-targets for depression. Common targets were screened and enrichment analyses were performed using the Metascape platform. Finally, the relationship between the active ingredients and the core targets were verified by molecular docking. Results Through network pharmacological analysis, 7 active ingredients in Cordyceps sinensis and 41 common targets of drugs and diseases were identified. The active ingredients of Cordyceps sinensis may exert antidepressant effects by acting on important targets such as catalase (CAT), CREB binding protein (CREBBP), epidermal growth factor (EGF), and E1A binding protein P300 (EP300), and by modulating the signaling pathways in which these targets are involved. Subsequently, the core targets were docked to the active ingredients and good binding was observed. Conclusions The active ingredients of Cordycepssinensis may exert antidepressant effects by regulating the CREB binding protein and anti-oxidative stress effects. The foxo signaling pathway (hsa04068), hypoxia-inducible factor 1 (HIF-1) signaling pathway (hsa04066), and Huntington’s disease (hsa05016) may be involved in the underlying mechanisms of Cordycepssinensis. The joint application of network pharmacology and molecular docking provides a new approach to study the mechanisms of action of traditional Chinese medicine. Cordyceps sinensis may play an important role in the future treatment of patients with depression.
Collapse
Affiliation(s)
- Xingfang Zhang
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | | | - Yajun Qiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhongshu Shan
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Mengmeng Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Medical College, Qinghai University, Xining, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tingting Gao
- Department of Psychiatry, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.,Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Yue Q, Yang J, Shu Q, Bai M, Shu K. Convolutional Neural Network Visualization for Identification of Risk Genes in Bipolar Disorder. Curr Mol Med 2021; 20:429-441. [PMID: 31782363 DOI: 10.2174/1566524019666191129111753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a type of chronic emotional disorder with a complex genetic structure. However, its genetic molecular mechanism is still unclear, which makes it insufficient to be diagnosed and treated. METHODS AND RESULTS In this paper, we proposed a model for predicting BD based on single nucleotide polymorphisms (SNPs) screening by genome-wide association study (GWAS), which was constructed by a convolutional neural network (CNN) that predicted the probability of the disease. According to the difference of GWAS threshold, two sets of data were named: group P001 and group P005. And different convolutional neural networks are set for the two sets of data. The training accuracy of the model trained with group P001 data is 96%, and the test accuracy is 91%. The training accuracy of the model trained with group P005 data is 94.5%, and the test accuracy is 92%. At the same time, we used gradient weighted class activation mapping (Grad-CAM) to interpret the prediction model, indirectly to identify high-risk SNPs of BD. In the end, we compared these high-risk SNPs with human gene annotation information. CONCLUSION The model prediction results of the group P001 yielded 137 risk genes, of which 22 were reported to be associated with the occurrence of BD. The model prediction results of the group P005 yielded 407 risk genes, of which 51 were reported to be associated with the occurrence of BD.
Collapse
Affiliation(s)
- Qixuan Yue
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jie Yang
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Qian Shu
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Mingze Bai
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Kunxian Shu
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
7
|
Arasappan D, Eickhoff SB, Nemeroff CB, Hofmann HA, Jabbi M. Transcription Factor Motifs Associated with Anterior Insula Gene Expression Underlying Mood Disorder Phenotypes. Mol Neurobiol 2021; 58:1978-1989. [PMID: 33411239 DOI: 10.1007/s12035-020-02195-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/30/2020] [Indexed: 10/22/2022]
Abstract
Mood disorders represent a major cause of morbidity and mortality worldwide but the brain-related molecular pathophysiology in mood disorders remains largely undefined. Because the anterior insula is reduced in volume in patients with mood disorders, RNA was extracted from the anterior insula postmortem anterior insula of mood disorder samples and compared with unaffected controls for RNA-sequencing identification of differentially expressed genes (DEGs) in (a) bipolar disorder (BD; n = 37) versus (vs.) controls (n = 33), and (b) major depressive disorder (MDD n = 30) vs. controls, and (c) low vs. high axis I comorbidity (a measure of cumulative psychiatric disease burden). Given the regulatory role of transcription factors (TFs) in gene expression via specific-DNA-binding domains (motifs), we used JASPAR TF binding database to identify TF-motifs. We found that DEGs in BD vs. controls, MDD vs. controls, and high vs. low axis I comorbidity were associated with TF-motifs that are known to regulate expression of toll-like receptor genes, cellular homeostatic-control genes, and genes involved in embryonic, cellular/organ, and brain development. Robust imaging-guided transcriptomics by using meta-analytic imaging results to guide independent postmortem dissection for RNA-sequencing was applied by targeting the gray matter volume reduction in the anterior insula in mood disorders, to guide independent postmortem identification of TF motifs regulating DEG. Our findings of TF-motifs that regulate the expression of immune, cellular homeostatic-control, and developmental genes provide novel information about the hierarchical relationship between gene regulatory networks, the TFs that control them, and proximate underlying neuroanatomical phenotypes in mood disorders.
Collapse
Affiliation(s)
- Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Charles B Nemeroff
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute of Early Life Adversity Research, Austin, TX, USA
| | - Hans A Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Mbemba Jabbi
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Calabrò M, Mandelli L, Crisafulli C, Lee SJ, Jun TY, Wang SM, Patkar AA, Masand PS, Benedetti F, Han C, Pae CU, Serretti A. Neuroplasticity, Neurotransmission and Brain-Related Genes in Major Depression and Bipolar Disorder: Focus on Treatment Outcomes in an Asiatic Sample. Adv Ther 2018; 35:1656-1670. [PMID: 30178121 PMCID: PMC6182627 DOI: 10.1007/s12325-018-0781-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mood disorders are common and disabling disorders. Despite the availability of over 100 psychotropic compounds, only one-third of patients benefit from first-line treatments. Over the past 20 years, many studies have focused on the biological factors modulating disease risk and response to treatments, but with still inconclusive data. In order to improve our current knowledge, in this study, we investigated the role of a set of genes involved in different pathways (neurotransmission, neuroplasticity, circadian rhythms, transcription factors, signal transduction and cellular metabolism) in the treatment outcome of major depressive disorder (MDD) and bipolar disorder (BD) after naturalistic pharmacological treatment. METHODS Totals of 242 MDD, 132 BD patients and 326 healthy controls of Asian ethnicity (Koreans) were genotyped for polymorphisms within 19 genes. Response and remission after 6-8 weeks of treatment with antidepressants and mood stabilizers were evaluated. In secondary analyses, genetic associations with disease risk and some disease-associated features (age of onset, suicide attempt and psychotic BD) were also tested. RESULTS None of the variants within the investigated genes was significantly associated with treatment outcomes. Some marginal association (uncorrected p < 0.01) was observed for HTR2A, BDNF, CHL1, RORA and HOMER1 SNPs. In secondary analyses, HTR2A (rs643627, p = 0.002) and CHL1 (rs4003413, p = 0.002) were found associated with risk for BD, HOMER1 (rs6872497, p = 0.002) with lifetime history of suicide attempt in patients, and RORA with early onset and presence of psychotic features in BD. Marginal results were also observed for ST8SIA2 and COMT. DISCUSSION Despite limitations linked to multiple testing on small samples, methodological shortcomings and small significance of the findings, this study may support the involvement of some candidate genes in the outcomes of treatments for mood disorders, as well as in BD risk and other disease features.
Collapse
Affiliation(s)
- Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Laura Mandelli
- Department of Biomedical and Neuromotor Sciences, Psychiatric Section, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Tae-Youn Jun
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | | | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, Psychiatric Section, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Higgins GA, Allyn-Feuer A, Georgoff P, Nikolian V, Alam HB, Athey BD. Mining the topography and dynamics of the 4D Nucleome to identify novel CNS drug pathways. Methods 2017; 123:102-118. [PMID: 28385536 DOI: 10.1016/j.ymeth.2017.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
The pharmacoepigenome can be defined as the active, noncoding province of the genome including canonical spatial and temporal regulatory mechanisms of gene regulation that respond to xenobiotic stimuli. Many psychotropic drugs that have been in clinical use for decades have ill-defined mechanisms of action that are beginning to be resolved as we understand the transcriptional hierarchy and dynamics of the nucleus. In this review, we describe spatial, temporal and biomechanical mechanisms mediated by psychotropic medications. Focus is placed on a bioinformatics pipeline that can be used both for detection of pharmacoepigenomic variants that discretize drug response and adverse events to improve pharmacogenomic testing, and for the discovery of novel CNS therapeutics. This approach integrates the functional topology and dynamics of the transcriptional hierarchy of the pharmacoepigenome, gene variant-driven identification of pharmacogenomic regulatory domains, and mesoscale mapping for the discovery of novel CNS pharmacodynamic pathways in human brain. Examples of the application of this pipeline are provided, including the discovery of valproic acid (VPA) mediated transcriptional reprogramming of neuronal cell fate following injury, and mapping of a CNS pathway glutamatergic pathway for the mood stabilizer lithium. These examples in regulatory pharmacoepigenomics illustrate how ongoing research using the 4D nucleome provides a foundation to further insight into previously unrecognized psychotropic drug pharmacodynamic pathways in the human CNS.
Collapse
Affiliation(s)
- Gerald A Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Ari Allyn-Feuer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | - Patrick Georgoff
- Department of Surgery, University of Michigan Medical School, USA
| | - Vahagn Nikolian
- Department of Surgery, University of Michigan Medical School, USA
| | - Hasan B Alam
- Department of Surgery, University of Michigan Medical School, USA
| | - Brian D Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA; Michigan Institute for Data Science (MIDAS), USA.
| |
Collapse
|
10
|
Fabbri C, Hosak L, Mössner R, Giegling I, Mandelli L, Bellivier F, Claes S, Collier DA, Corrales A, Delisi LE, Gallo C, Gill M, Kennedy JL, Leboyer M, Lisoway A, Maier W, Marquez M, Massat I, Mors O, Muglia P, Nöthen MM, O'Donovan MC, Ospina-Duque J, Propping P, Shi Y, St Clair D, Thibaut F, Cichon S, Mendlewicz J, Rujescu D, Serretti A. Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World J Biol Psychiatry 2017; 18:5-28. [PMID: 27603714 DOI: 10.1080/15622975.2016.1208843] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a heritable disease with a heavy personal and socio-economic burden. Antidepressants of different classes are prescribed to treat MDD, but reliable and reproducible markers of efficacy are not available for clinical use. Further complicating treatment, the diagnosis of MDD is not guided by objective criteria, resulting in the risk of under- or overtreatment. A number of markers of MDD and antidepressant response have been investigated at the genetic, epigenetic, gene expression and protein levels. Polymorphisms in genes involved in antidepressant metabolism (cytochrome P450 isoenzymes), antidepressant transport (ABCB1), glucocorticoid signalling (FKBP5) and serotonin neurotransmission (SLC6A4 and HTR2A) were among those included in the first pharmacogenetic assays that have been tested for clinical applicability. The results of these investigations were encouraging when examining patient-outcome improvement. Furthermore, a nine-serum biomarker panel (including BDNF, cortisol and soluble TNF-α receptor type II) showed good sensitivity and specificity in differentiating between MDD and healthy controls. These first diagnostic and response-predictive tests for MDD provided a source of optimism for future clinical applications. However, such findings should be considered very carefully because their benefit/cost ratio and clinical indications were not clearly demonstrated. Future tests may include combinations of different types of biomarkers and be specific for MDD subtypes or pathological dimensions.
Collapse
Affiliation(s)
- Chiara Fabbri
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Ladislav Hosak
- b Department of Psychiatrics , Charles University, Faculty of Medicine and University Hospital, Hradec Králové , Czech Republic
| | - Rainald Mössner
- c Department of Psychiatry and Psychotherapy , University of Tübingen , Tübingen , Germany
| | - Ina Giegling
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Laura Mandelli
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Frank Bellivier
- e Fondation Fondamental, Créteil, France AP-HP , GH Saint-Louis-Lariboisière-Fernand-Widal, Pôle Neurosciences , Paris , France
| | - Stephan Claes
- f GRASP-Research Group, Department of Neuroscience , University of Leuven , Leuven , Belgium
| | - David A Collier
- g Social, Genetic and Developmental Psychiatry Centre , Institute of Psychiatry, King's College London , London , UK
| | - Alejo Corrales
- h National University (UNT) Argentina, Argentinean Association of Biological Psychiatry , Buenos Aires , Argentina
| | - Lynn E Delisi
- i VA Boston Health Care System , Brockton , MA , USA
| | - Carla Gallo
- j Departamento de Ciencias Celulares y Moleculares, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Michael Gill
- k Neuropsychiatric Genetics Research Group, Department of Psychiatry , Trinity College Dublin , Dublin , Ireland
| | - James L Kennedy
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Marion Leboyer
- m Faculté de Médecine , Université Paris-Est Créteil, Inserm U955, Equipe Psychiatrie Translationnelle , Créteil , France
| | - Amanda Lisoway
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Wolfgang Maier
- n Department of Psychiatry , University of Bonn , Bonn , Germany
| | - Miguel Marquez
- o Director of ADINEU (Asistencia, Docencia e Investigación en Neurociencia) , Buenos Aires , Argentina
| | - Isabelle Massat
- p UNI - ULB Neurosciences Institute, ULB , Bruxelles , Belgium
| | - Ole Mors
- q Department P , Aarhus University Hospital , Risskov , Denmark
| | | | - Markus M Nöthen
- s Institute of Human Genetics , University of Bonn , Bonn , Germany
| | - Michael C O'Donovan
- t MRC Centre for Neuropsychiatric Genetics and Genomics , Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , UK
| | - Jorge Ospina-Duque
- u Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | | | - Yongyong Shi
- w Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education , Shanghai Jiao Tong University , Shanghai , China
| | - David St Clair
- x University of Aberdeen, Institute of Medical Sciences , Aberdeen , UK
| | - Florence Thibaut
- y University Hospital Cochin (Site Tarnier), University Sorbonne Paris Cité (Faculty of Medicine Paris Descartes), INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Sven Cichon
- z Division of Medical Genetics, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Julien Mendlewicz
- aa Laboratoire de Psychologie Medicale, Centre Européen de Psychologie Medicale , Université Libre de Bruxelles and Psy Pluriel , Brussels , Belgium
| | - Dan Rujescu
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Alessandro Serretti
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
11
|
Bhat S, Mallya S, Varghese VK, Jayaram P, Chakrabarty S, Joshi KS, Nesari TM, Satyamoorthy K. DNA methylation detection at single base resolution using targeted next generation bisulfite sequencing and cross validation using capillary sequencing. Gene 2016; 594:259-267. [PMID: 27637516 DOI: 10.1016/j.gene.2016.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 01/10/2023]
Abstract
With a purpose of accurate and simultaneous determination of DNA methylation from multiple loci in multiple samples, here, we are demonstrating a method to aid rapid DNA methylation detection of genomic sequences. Using genomic DNA of peripheral blood from 14 healthy individuals, DNA methylation in 465 CpG sites from 12 loci of genes (ADAM22, ATF2, BCR, CD83, CREBBP, IL12B, IL17RA, MAP2K2, RBM38, TGFBR2, TGFBR3, and WNT5A) was analysed by targeted next generation bisulfite sequencing. Analysed region for three genes, BCR, IL17RA and RBM38 showed an absolute mean DNA methylation of 25.6%, 89.2% and 38.9% respectively. Other nine gene loci were unmethylated and exhibited <10% absolute mean DNA methylation. Two genes, IL17RA and RBM38 were technically validated using direct capillary sequencing and results were comparable with positive correlation (P=0.0088 & P<0.0001 respectively) in the CpG sites for DNA methylation. All CpG sites analysed from RBM38 genes locus displayed 95% limits of agreement for DNA methylation measurements from the two methods. The present approach provides a fast and reliable DNA methylation quantitative data at single base resolution with good coverage of the CpG sites under analysis in multiple loci and samples simultaneously. Use of targeted next generation bisulfite sequencing may provide an opportunity to explore genes in the discovery panel for biomarker identification and facilitate functional validation.
Collapse
Affiliation(s)
- Smitha Bhat
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Pradyumna Jayaram
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Kalpana S Joshi
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune, Maharashtra, India
| | - Tanuja M Nesari
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India.
| |
Collapse
|
12
|
Wang R, Wang Y, Hu R, Chen X, Song M, Wang X. Decreased plasma levels of neureglin-1 in drug naïve patients and chronic patients with schizophrenia. Neurosci Lett 2015; 606:220-4. [PMID: 26365407 DOI: 10.1016/j.neulet.2015.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
Although the neuregulin-1 (NRG1) gene is one of the susceptibility genes for schizophrenia and various other psychiatric diseases, it remains unclear how individual psychiatric diseases affect the expression of the NRG1 protein in patients. A previous study reported a schizophrenia-linked decrease in serum NRG1 levels. The present study aimed to replicate this initial finding and to assess its disease specificity for schizophrenia. We collected plasma samples from drug-naïve patients with first-episode schizophrenia (n=80), patients with chronic schizophrenia (n=86), patients with bipolar I disorder (n=60), patients with bipolar II disorder (n=60) and patients with major depressive disorder (n=60), we measured the plasma levels of NRG1β1 and compared the levels with those of age- and sex-matched healthy volunteers (n=82). One-way ANOVA and post hoc analyses detected specific NRG1β1 decreases in the participants with first-episode and chronic schizophrenia but not in those with bipolar I disorder, bipolar II disorder or major depressive disorder. The mean plasma levels of NRG1β1 immunoreactivity were 4.27±0.71 ng/mL in the participants with first-episode schizophrenia, 4.08±0.64 ng/mL in the participants with chronic schizophrenia and 7.21±0.91 ng/mL in the healthy controls. Although we analyzed the pathological correlations of NRG1β1 immunoreactivity in terms of the clinical parameters of the sample, we observed only weak positive correlations with the age of the participants with chronic schizophrenia and the disease onset times of the participants with bipolar II disorder. We failed to identify correlations between other clinical parameters and plasma NRG1β1 immunoreactivity among all patient subjects. These findings suggest that NRG1 may serve as a relatively specific disease marker for schizophrenia. However, the pathological role of this decrease must be explored further.
Collapse
Affiliation(s)
- Ran Wang
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China
| | - Yumei Wang
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China
| | - Rui Hu
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China
| | - Xingshi Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Mei Song
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China
| | - Xueyi Wang
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China.
| |
Collapse
|
13
|
Matsumoto Y, Fabbri C, Pellegrini S, Porcelli S, Politi P, Bellino S, Iofrida C, Mariotti V, Melissari E, Menchetti M, Martinelli V, Cappucciati M, Bozzatello P, Brignolo E, Brambilla P, Balestrieri M, Serretti A. Serotonin transporter gene: a new polymorphism may affect response to antidepressant treatments in major depressive disorder. Mol Diagn Ther 2015; 18:567-77. [PMID: 24958631 DOI: 10.1007/s40291-014-0110-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Several gene variants have been related to major depressive disorder (MDD) treatment outcomes; however, few studies have investigated a possible different effect on pharmacotherapy and brief psychotherapy response. METHODS A total of 137 MDD patients were randomized to either interpersonal counseling (IPC; n = 40) or antidepressant pharmacological treatment (n = 97). Outcomes were remission, response, and symptom improvement at week 8. Five genetic variants were investigated (5HTR2A rs6314, BDNF rs6265, SLC6A4 rs8076005, CREB1 rs2253206, and TPH2 rs11179023) as possible modulators of outcomes. RESULTS The LC6A4 rs8076005 AA genotype and A allele were associated with response rate in the antidepressant group (p = 0.015 and 0.005, respectively) and in the whole sample (p = 0.03 and 0.02, respectively). In the IPC group a non-significant trend in the same direction was observed. The TPH2 rs11179023 A allele showed a marginal association with symptom improvement in the IPC group only. Other gene variants did not impact on outcomes in any treatment group. CONCLUSION Our study suggests that rs8076005 in the SLC6A4 gene may be a modulator of antidepressant response, especially when pharmacological treatment is used.
Collapse
Affiliation(s)
- Yoshihiko Matsumoto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang H, Zhang Y, Qiao M. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder. Neural Regen Res 2014; 8:843-52. [PMID: 25206732 PMCID: PMC4146087 DOI: 10.3969/j.issn.1673-5374.2013.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/20/2013] [Indexed: 01/05/2023] Open
Abstract
The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.
Collapse
Affiliation(s)
- Hongyan Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China ; Taishan Medical University, Taian 271000, Shandong Province, China
| | - Yingquan Zhang
- Taian Hospital of Traditional Chinese Medicine, Taian 271000, Shandong Province, China
| | - Mingqi Qiao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| |
Collapse
|
15
|
Association of CREB1 gene polymorphism with drug seeking behaviour in eastern Indian addicts. Neurosci Lett 2014; 570:53-7. [PMID: 24704376 DOI: 10.1016/j.neulet.2014.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 11/23/2022]
Abstract
cAMP response element binding protein (CREB) is a major transcription factor which plays an important role in a wide array of cellular functions. CREB also has a significant function in developing substance abuse. A study was undertaken to identify the single nucleotide polymorphisms (SNP) at selective areas of CREB1 gene in heroin as well as in alcohol addicts in comparison with control population. One hundred and forty control subjects, 112 heroin and 102 alcoholics, all male and residing in Kolkata, a city in eastern India participated in the study. SNPs from several exonic regions of CREB1 gene were assessed to investigate possible associations with addiction. One SNP in exon 3, rs35349697, demonstrated a significant correlation with opioid addiction as well as with alcohol addiction. A novel SNP, also located in exon 3, was identified which showed epistatic interaction with rs35349697 to decrease susceptibility to narcotic addiction in the population. The study is the first report on the identification of a role of CREB1 gene polymorphism with addiction.
Collapse
|
16
|
Li M, Luo XJ, Rietschel M, Lewis CM, Mattheisen M, Müller-Myhsok B, Jamain S, Leboyer M, Landén M, Thompson PM, Cichon S, Nöthen MM, Schulze TG, Sullivan PF, Bergen SE, Donohoe G, Morris DW, Hargreaves A, Gill M, Corvin A, Hultman C, Toga AW, Shi L, Lin Q, Shi H, Gan L, Meyer-Lindenberg A, Czamara D, Henry C, Etain B, Bis JC, Ikram MA, Fornage M, Debette S, Launer LJ, Seshadri S, Erk S, Walter H, Heinz A, Bellivier F, Stein JL, Medland SE, Arias Vasquez A, Hibar DP, Franke B, Martin NG, Wright MJ, Su B. Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility. Mol Psychiatry 2014; 19:452-61. [PMID: 23568192 PMCID: PMC3937299 DOI: 10.1038/mp.2013.37] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/28/2013] [Accepted: 03/06/2013] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a polygenic disorder that shares substantial genetic risk factors with major depressive disorder (MDD). Genetic analyses have reported numerous BD susceptibility genes, while some variants, such as single-nucleotide polymorphisms (SNPs) in CACNA1C have been successfully replicated, many others have not and subsequently their effects on the intermediate phenotypes cannot be verified. Here, we studied the MDD-related gene CREB1 in a set of independent BD sample groups of European ancestry (a total of 64,888 subjects) and identified multiple SNPs significantly associated with BD (the most significant being SNP rs6785[A], P=6.32 × 10(-5), odds ratio (OR)=1.090). Risk SNPs were then subjected to further analyses in healthy Europeans for intermediate phenotypes of BD, including hippocampal volume, hippocampal function and cognitive performance. Our results showed that the risk SNPs were significantly associated with hippocampal volume and hippocampal function, with the risk alleles showing a decreased hippocampal volume and diminished activation of the left hippocampus, adding further evidence for their involvement in BD susceptibility. We also found the risk SNPs were strongly associated with CREB1 expression in lymphoblastoid cells (P<0.005) and the prefrontal cortex (P<1.0 × 10(-6)). Remarkably, population genetic analysis indicated that CREB1 displayed striking differences in allele frequencies between continental populations, and the risk alleles were completely absent in East Asian populations. We demonstrated that the regional prevalence of the CREB1 risk alleles in Europeans is likely caused by genetic hitchhiking due to natural selection acting on a nearby gene. Our results suggest that differential population histories due to natural selection on regional populations may lead to genetic heterogeneity of susceptibility to complex diseases, such as BD, and explain inconsistencies in detecting the genetic markers of these diseases among different ethnic populations.
Collapse
Affiliation(s)
- M Li
- 1] State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China [2] University of Chinese Academy of Sciences, Beijing, China
| | - X-J Luo
- University of Rochester Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - M Rietschel
- 1] Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany [2] Department of Psychiatry, University of Bonn, Bonn, Germany
| | - C M Lewis
- MRC SGDP Centre, Institute of Psychiatry, King's College London, London, UK
| | - M Mattheisen
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - S Jamain
- 1] Inserm U 955, IMRB, Psychiatrie Génétique, Créteil, France [2] Fondation Fondamental, Créteil, France
| | - M Leboyer
- 1] Inserm U 955, IMRB, Psychiatrie Génétique, Créteil, France [2] Fondation Fondamental, Créteil, France [3] Pôle de Psychiatrie, AP-HP, Hôpital H. Mondor-A. Chenevier, Créteil, France [4] Faculté de Médecine, Université Paris Est, Créteil, France
| | - M Landén
- 1] Section of Psychiatry and Neurochemistry, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden [2] Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - P M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - S Cichon
- 1] Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany [2] Department of Genomics, Life and Brain Center and Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - M M Nöthen
- 1] Department of Genomics, Life and Brain Center and Institute of Human Genetics, University of Bonn, Bonn, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - T G Schulze
- 1] Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Mannheim, Germany [2] Section on Psychiatric Genetics, Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Göttingen, Germany
| | - P F Sullivan
- Departments of Genetics, Psychiatry and Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - S E Bergen
- 1] Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA [2] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - G Donohoe
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - D W Morris
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - A Hargreaves
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - M Gill
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - A Corvin
- Neuropsychiatric Genetics Group and Department of Psychiatry, Institute of Molecular Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, St James Hospital, Dublin, Ireland
| | - C Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - A W Toga
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - L Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Q Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - H Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - L Gan
- University of Chinese Academy of Sciences, Beijing, China
| | - A Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - D Czamara
- Max Planck Institute of Psychiatry, Munich, Germany
| | - C Henry
- 1] Inserm U 955, IMRB, Psychiatrie Génétique, Créteil, France [2] Fondation Fondamental, Créteil, France [3] Pôle de Psychiatrie, AP-HP, Hôpital H. Mondor-A. Chenevier, Créteil, France [4] Faculté de Médecine, Université Paris Est, Créteil, France
| | - B Etain
- 1] Inserm U 955, IMRB, Psychiatrie Génétique, Créteil, France [2] Fondation Fondamental, Créteil, France [3] Pôle de Psychiatrie, AP-HP, Hôpital H. Mondor-A. Chenevier, Créteil, France
| | - J C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - M A Ikram
- 1] Department of Radiology and Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands [2] The Netherlands Consortium of Healthy Aging, Leiden, The Netherlands
| | - M Fornage
- Brown Foundation Institute of Molecular Medicine and Human Genetics Center School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - S Debette
- 1] Department of Neurology, Boston University School of Medicine, Boston, MA, USA [2] Institut National de la Santé et de la Recherche Médicale (INSERM), U708, Neuroepidemiology, Paris, France [3] Department of Epidemiology, University of Versailles Saint-Quentin-en-Yvelines, Paris, France
| | - L J Launer
- Laboratory of Neurogenetics, Intramural Research Program, National Institute of Aging, NIH, Bethesda, MD, USA
| | - S Seshadri
- 1] Department of Neurology, Boston University School of Medicine, Boston, MA, USA [2] The National, Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - S Erk
- 1] Department of Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany [2] Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - H Walter
- 1] Department of Psychiatry, University of Bonn, Bonn, Germany [2] Department of Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany [3] Division of Mind and Brain Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - A Heinz
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - F Bellivier
- 1] Inserm U 955, IMRB, Psychiatrie Génétique, Créteil, France [2] Fondation Fondamental, Créteil, France [3] AP-HP, Hôpital St-Louis-Lariboisière-F Widal, Service Universitaire de Psychiatrie, Paris, France [4] Faculté de Médecine, Université Denis Diderot, Paris, France
| | - J L Stein
- 1] Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA [2] Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - S E Medland
- 1] Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia [2] Quantitative Genetics Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia [3] Broad Institute of Harvard and MIT, Boston, MA, USA
| | - A Arias Vasquez
- 1] Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands [2] Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - D P Hibar
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - B Franke
- 1] Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands [2] Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - N G Martin
- Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - M J Wright
- Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - B Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
17
|
Chiesa A, Marsano A, Han C, Lee SJ, Patkar AA, Pae CU, Serretti A. Epistatic Interactions between CREB and CREM Variants in Affective Disorder. Psychiatry Investig 2014; 11:200-3. [PMID: 24843377 PMCID: PMC4023096 DOI: 10.4306/pi.2014.11.2.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 12/16/2022] Open
Abstract
The aim of the present work is to investigate the existence of epistatic interactions possibly influencing psychotropic agents' response between rs6740584 within Cyclic adenosine monophosphate Response Element Binding (CREB) and rs12775799 within cAMP response element-modulator (CREM) variants in bipolar disorder (BD) and major depressive disorder (MDD). All BD and MDD patients were administered with the Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HAMD) at baseline and at endpoint, respectively. A multiple regression model was employed to investigate the existence of possible epistatic interactions between the two variants and diverse clinical factors including drug response in affective disorders. No significant epistatic interaction was observed between rs6740584 within CREB and rs12775799 within CREM on both symptom improvement and other clinical factors in affective disorders. Our preliminary results suggest that no epistatic interaction between rs6740584 within CREB and rs12775799 within CREM should exist on clinical improvement and clinical factors in affective disorders.
Collapse
Affiliation(s)
- Alberto Chiesa
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Agnese Marsano
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Soo-Jung Lee
- Department of Psychiatry, Bucheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Bucheon, Republic of Korea
| | - Ashwin A. Patkar
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Chi-Un Pae
- Department of Psychiatry, Bucheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Bucheon, Republic of Korea
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Alda M, Shao L, Wang JF, Lopez de Lara C, Jaitovich-Groisman I, Lebel V, Sun X, Duffy A, Grof P, Rouleau GA, Turecki G, Young LT. Alterations in phosphorylated cAMP response element-binding protein (pCREB) signaling: an endophenotype of lithium-responsive bipolar disorder? Bipolar Disord 2013; 15:824-31. [PMID: 24238631 DOI: 10.1111/bdi.12131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 08/26/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Abnormalities of signal transduction are considered among the susceptibility factors for bipolar disorder (BD). These include changes in G-protein-mediated signaling and subsequent modification of gene expression via transcription factors such as cAMP response element-binding protein (CREB). METHODS We investigated levels of CREB in lymphoblasts from patients with BD, all responders to lithium prophylaxis (n = 13), and healthy control subjects (n = 15). Phosphorylated CREB (pCREB) was measured by immunoblotting in subjects with BD (n = 15) as well as in their affected (n = 17) and unaffected (n = 18) relatives, and healthy controls (n = 16). RESULTS Basal CREB levels were comparable in patients and control subjects and were not changed by lithium treatment. pCREB levels were increased in both patients and their relatives compared to controls (p = 0.003). Forskolin stimulation led to a 24% increase in pCREB levels in cells from healthy subjects (p = 0.002) but not in the other three groups. When using basal and stimulated pCREB levels as a biochemical phenotype in a preliminary linkage study, we found the strongest support for linkage in regions largely overlapping with those showing linkage with the clinical phenotype (3p, 6p, 16p, 17q, 19q, and 21q). CONCLUSIONS Abnormal pCREB signaling could be considered a biochemical phenotype for lithium-responsive BD.
Collapse
Affiliation(s)
- Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
20
|
Soreq L, Salomonis N, Bronstein M, Greenberg DS, Israel Z, Bergman H, Soreq H. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 2013; 6:10. [PMID: 23717260 PMCID: PMC3652308 DOI: 10.3389/fnmol.2013.00010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are key post transcriptional regulators of their multiple target genes. However, the detailed profile of miRNA expression in Parkinson's disease, the second most common neurodegenerative disease worldwide and the first motor disorder has not been charted yet. Here, we report comprehensive miRNA profiling by next-generation small-RNA sequencing, combined with targets inspection by splice-junction and exon arrays interrogating leukocyte RNA in Parkinson's disease patients before and after deep brain stimulation (DBS) treatment and of matched healthy control volunteers (HC). RNA-Seq analysis identified 254 miRNAs and 79 passenger strand forms as expressed in blood leukocytes, 16 of which were modified in patients pre-treatment as compared to HC. 11 miRNAs were modified following brain stimulation 5 of which were changed inversely to the disease induced changes. Stimulation cessation further induced changes in 11 miRNAs. Transcript isoform abundance analysis yielded 332 changed isoforms in patients compared to HC, which classified brain transcriptomes of 47 PD and control independent microarrays. Functional enrichment analysis highlighted mitochondrion organization. DBS induced 155 splice changes, enriched in ubiquitin homeostasis. Cellular composition analysis revealed immune cell activity pre and post treatment. Overall, 217 disease and 74 treatment alternative isoforms were predictably targeted by modified miRNAs within both 3′ and 5′ untranslated ends and coding sequence sites. The stimulation-induced network sustained 4 miRNAs and 7 transcripts of the disease network. We believe that the presented dynamic networks provide a novel avenue for identifying disease and treatment-related therapeutic targets. Furthermore, the identification of these networks is a major step forward in the road for understanding the molecular basis for neurological and neurodegenerative diseases and assessment of the impact of brain stimulation on human diseases.
Collapse
Affiliation(s)
- Lilach Soreq
- Department of Medical Neurobiology, Hadassah Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|