1
|
Källstrand J, Niklasson K, Lindvall M, Claesdotter-Knutsson E. Reduced thalamic activity in ADHD under ABR forward masking conditions. APPLIED NEUROPSYCHOLOGY. CHILD 2024; 13:222-228. [PMID: 36524942 DOI: 10.1080/21622965.2022.2155520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a common chronic neurodevelopmental disorder characterized by symptoms of inattention, overactivity, and/or impulsiveness. The prevalence of ADHD varies in different settings and there have been voices raised to call for more objective measures in order to avoid over- and underdiagnosing of ADHD. Auditory Brainstem Response (ABR) is a method where click shaped sounds evoke potentials that are recorder from electrodes on the skull of a patient. The aim of this study was to explore possible alterations in the ABR of 29 patients with ADHD compared to 39 healthy controls. We used a forward masked sound. We found differences in ABR that correspond to the thalamic area. The thalamus seems to play an active role in regulation of activity level in ADHD. More research is needed to draw any further conclusions on using ABR as an objective measurement to detect ADHD.
Collapse
Affiliation(s)
| | - Katalin Niklasson
- Outpatient Department, Child and Adolescent Psychiatry Clinic, Region Skåne, Lund, Sweden
| | - Magnus Lindvall
- Outpatient Department, Child and Adolescent Psychiatry Clinic, Region Skåne, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Emma Claesdotter-Knutsson
- Outpatient Department, Child and Adolescent Psychiatry Clinic, Region Skåne, Lund, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Claesdotter-Knutsson E, Källstrand J, Niklasson K, Andersson M, Lindvall M. The influence of methylphenidate on auditory brainstem response patients with attention deficit hyperactivity disorder; an exploratory study. J Public Health Res 2023; 12:22799036231204319. [PMID: 37841833 PMCID: PMC10568990 DOI: 10.1177/22799036231204319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Background Attention-deficit hyperactivity disorder (ADHD), characterized by periods of inattention, overactivity, and impulsiveness, is the most prevalent neurodevelopmental disorder among children. Auditory Brainstem Response (ABR) is a technique in which clickshaped sounds elicit potentials that are recorded from electrodes placed on a patient's skull. Extant research indicates that ABR is frequently affected in neurodevelopmental disorders such as ADHD. Methylphenidate (MPH), a psychostimulant, is often prescribed to children with ADHD as a first-line pharmacological treatment. The aim of this study was to explore the effects of Methylphenidate treatment on previously observed amplitude alterations in the ABR of patients with ADHD. Methods We recruited 32 drug-naïve children and adolescents (19 males and 13 females; mean age 11 years) diagnosed with ADHD and 35 health controls (15 males and 20 females; mean age 12 years). The ADHD group was treated with Methylphenidate, and ABR was recorded before treatment and at a steady state of medical treatment. Results Medicated ADHD patients exhibited increased activity in the right side ABR in Wave VI. Conclusions A significant increase in activity was found in a part of the ABR thought to correspond to the thalamic area in medicated ADHD patients compared to the same area of non-medicated ADHD patients. The results add to the growing body of research suggesting that specific ABR peaks correlate to certain psychiatric symptoms.
Collapse
Affiliation(s)
- Emma Claesdotter-Knutsson
- Psychiatry, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Katalin Niklasson
- Outpatient Department, Child and Adolescent Psychiatry Clinic, Lund, Sweden
| | - Mitchell Andersson
- Psychiatry, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Magnus Lindvall
- Psychiatry, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Zinnamon FA, Harrison FG, Wenas SS, Liu Q, Wang KH, Linden JF. Increased Central Auditory Gain and Decreased Parvalbumin-Positive Cortical Interneuron Density in the Df1/+ Mouse Model of Schizophrenia Correlate With Hearing Impairment. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:386-397. [PMID: 37519460 PMCID: PMC10382707 DOI: 10.1016/j.bpsgos.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 deletion syndrome have a 25% to 30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle-ear inflammation. The Df1/+ mouse model of 22q11.2 deletion syndrome recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high interindividual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods We measured auditory brainstem responses, cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal auditory brainstem response measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in the auditory cortex but not the secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions In the Df1/+ mouse model of 22q11.2 deletion syndrome, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle-ear inflammation.
Collapse
Affiliation(s)
- Fhatarah A. Zinnamon
- Ear Institute, University College London, London, United Kingdom
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Freya G. Harrison
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Sandra S. Wenas
- Ear Institute, University College London, London, United Kingdom
| | - Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Jennifer F. Linden
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Clayson PE, Joshi YB, Thomas ML, Sprock J, Nungaray J, Swerdlow NR, Light GA. Click-evoked auditory brainstem responses (ABRs) are intact in schizophrenia and not sensitive to cognitive training. Biomark Neuropsychiatry 2022. [DOI: 10.1016/j.bionps.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Kramer M, Juckel G, Mavrogiorgou P. [Psychopathology and Theory of Perceptual Disturbances]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:280-287. [PMID: 35196716 DOI: 10.1055/a-1720-1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Current classification systems for psychiatric disorders are primarly based on categorial typologies and describe these as distinct nosological entities. A dimensional perspective allows descriptions of a gradual transition between pathologies as well as between normality and pathologies of psychiatric symptoms. Using acoustic hallucinations as most common form of perception disturbances as example, psychiatric-psychopathological and theoretical pros and cons for a dimensional classification of psychiatric symptomatology are sketched in this article. Although doubts concerning the similarity of real perceptions and acoustic hallucinations which underlie such mental events are controversially discussed, many hints could be found for a continuum of hallucinatoric symptoms from the mentally healthy population up to the group of patients with schizophrenia. Studies which investigate the neurophysiological mechanisms of acoustic hallucinations such as hearing voices in healthy persons in comparison to those in patients with schizophrenia could contribute to further differentiation.
Collapse
Affiliation(s)
- Marco Kramer
- Ruhr-Universität Bochum, Psychiatrie, Bochum, Germany
| | - Georg Juckel
- Ruhr-Universität Bochum, Psychiatrie, Bochum, Germany
| | | |
Collapse
|
6
|
Kilonzo VW, Sweet RA, Glausier JR, Pitts MW. Deficits in Glutamic Acid Decarboxylase 67 Immunoreactivity, Parvalbumin Interneurons, and Perineuronal Nets in the Inferior Colliculus of Subjects With Schizophrenia. Schizophr Bull 2020; 46:1053-1059. [PMID: 32681171 PMCID: PMC7505180 DOI: 10.1093/schbul/sbaa082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aberrant processing of auditory stimuli is a prominent feature of schizophrenia (SZ). Prior studies have chronicled histological abnormalities in the auditory cortex of SZ subjects, but whether deficits exist at upstream, subcortical levels has yet to be established. En route to the auditory cortex, ascending information is integrated in the inferior colliculus (IC), a highly gamma amino butyric acid (GABA) ergic midbrain structure that is critically involved in auditory processing. The IC contains a dense population of parvalbumin-immunoreactive interneurons (PVIs), a cell type characterized by increased metabolic demands and enhanced vulnerability to oxidative stress. During development, PVIs are preferentially surrounded by perineuronal nets (PNNs), specialized extracellular matrix structures that promote redox homeostasis and excitatory/inhibitory balance. Moreover, in SZ, deficits in PVIs, PNNs, and the GABA synthesizing enzyme, glutamic acid decarboxylase (Gad67), have been extensively documented in cortical regions. Yet, whether similar impairments exist in the IC is currently unknown. Thus, we compared IC samples of age- and sex-matched pairs of SZ and unaffected control subjects. SZ subjects exhibited lower levels of Gad67 immunoreactivity and a decreased density of PVIs and PNNs within the IC. These findings provide the first histological evidence of IC GABAergic abnormalities in SZ and suggest that SZ-related auditory dysfunction may stem, in part, from altered IC inhibitory tone.
Collapse
Affiliation(s)
- Victor W Kilonzo
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI
| |
Collapse
|
7
|
Wang YM, Yang ZY, Cai XL, Zhou HY, Zhang RT, Yang HX, Liang YS, Zhu XZ, Madsen KH, Sørensen TA, Møller A, Wang Z, Cheung EFC, Chan RCK. Identifying Schizo-Obsessive Comorbidity by Tract-Based Spatial Statistics and Probabilistic Tractography. Schizophr Bull 2020; 46:442-453. [PMID: 31355879 PMCID: PMC7442329 DOI: 10.1093/schbul/sbz073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A phenomenon in schizophrenia patients that deserves attention is the high comorbidity rate with obsessive-compulsive disorder (OCD). Little is known about the neurobiological basis of schizo-obsessive comorbidity (SOC). We aimed to investigate whether specific changes in white matter exist in patients with SOC and the relationship between such abnormalities and clinical parameters. Twenty-eight patients with SOC, 28 schizophrenia patients, 30 OCD patients, and 30 demographically matched healthy controls were recruited. Using Tract-based Spatial Statistics and Probabilistic Tractography, we examined the pattern of white matter abnormalities in these participants. We also used ANOVA and Support Vector Classification of various white matter indices and structural connection probability to further examine white matter changes among the 4 groups. We found that patients with SOC had decreased fractional anisotropy (FA) and increased radial diffusivity in the right sagittal stratum and the left crescent of the fornix/stria terminalis compared with healthy controls. We also found changed connection probability in the Default Mode Network, the Subcortical Network, the Attention Network, the Task Control Network, the Visual Network, the Somatosensory Network, and the cerebellum in the SOC group compared with the other 3 groups. The classification results further revealed that FA features could differentiate the SOC group from the other 3 groups with an accuracy of .78. These findings highlight the specific white matter abnormalities found in patients with SOC.
Collapse
Affiliation(s)
- Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China,Sino-Danish Center for Education and Research, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhuo-Ya Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China,Sino-Danish Center for Education and Research, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Han-Yu Zhou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Rui-Ting Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Han-Xue Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yun-Si Liang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China,Sino-Danish Center for Education and Research, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiong-Zhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China,Medical Psychological Institute of Central South University, Changsha, Hunan, PR China
| | - Kristoffer Hougaard Madsen
- Sino-Danish Center for Education and Research, Beijing, PR China,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas Alrik Sørensen
- Sino-Danish Center for Education and Research, Beijing, PR China,Centre for Cognitive Neuroscience, Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | - Arne Møller
- Sino-Danish Center for Education and Research, Beijing, PR China,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Zhen Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, PR China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China,Sino-Danish Center for Education and Research, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China,To whom correspondence should be addressed: Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, PR China; tel: 86-(0)10-64836274, fax: 86-(0)10-64836274, e-mail:
| |
Collapse
|
8
|
Auditory brainstem response (ABR) profiling tests as diagnostic support for schizophrenia and adult attention-deficit hyperactivity disorder (ADHD). Acta Neuropsychiatr 2018; 30:137-147. [PMID: 28803577 DOI: 10.1017/neu.2017.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To evaluate the performances of two auditory brainstem response (ABR) profiling tests as potential biomarkers and diagnostic support for schizophrenia and adult attention-deficit hyperactivity disorder (ADHD), respectively, in an investigator-initiated blinded study design. METHOD Male and female patients with schizophrenia (n=26) and adult ADHD (n=24) meeting Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM IV) diagnostic criteria and healthy controls (n=58) comprised the analysis set (n=108) of the total number of study participants (n=119). Coded sets of randomized ABR recordings were analysed by an independent party blinded to clinical diagnoses before a joint code-breaking session. RESULTS The ABR profiling test for schizophrenia identified schizophrenia patients versus controls with a sensitivity of 84.6% and a specificity of 93.1%. The ADHD test identified patients with adult ADHD versus controls with a sensitivity of 87.5% and a specificity of 91.4%. CONCLUSION The ABR profiling tests discriminated schizophrenia and ADHD versus healthy controls with high sensitivity and specificity. The methods deserve to be further explored in larger clinical studies including a broad range of psychiatric disorders to determine their utility as potential diagnostic biomarkers.
Collapse
|
9
|
Abdul Wahab NA, Zakaria MN, Abdul Rahman AH, Sidek D, Wahab S. Listening to Sentences in Noise: Revealing Binaural Hearing Challenges in Patients with Schizophrenia. Psychiatry Investig 2017; 14:786-794. [PMID: 29209382 PMCID: PMC5714720 DOI: 10.4306/pi.2017.14.6.786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/23/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The present, case-control, study investigates binaural hearing performance in schizophrenia patients towards sentences presented in quiet and noise. METHODS Participants were twenty-one healthy controls and sixteen schizophrenia patients with normal peripheral auditory functions. The binaural hearing was examined in four listening conditions by using the Malay version of hearing in noise test. The syntactically and semantically correct sentences were presented via headphones to the randomly selected subjects. In each condition, the adaptively obtained reception thresholds for speech (RTS) were used to determine RTS noise composite and spatial release from masking. RESULTS Schizophrenia patients demonstrated significantly higher mean RTS value relative to healthy controls (p=0.018). The large effect size found in three listening conditions, i.e., in quiet (d=1.07), noise right (d=0.88) and noise composite (d=0.90) indicates statistically significant difference between the groups. However, noise front and noise left conditions show medium (d=0.61) and small (d=0.50) effect size respectively. No statistical difference between groups was noted in regards to spatial release from masking on right (p=0.305) and left (p=0.970) ear. CONCLUSION The present findings suggest an abnormal unilateral auditory processing in central auditory pathway in schizophrenia patients. Future studies to explore the role of binaural and spatial auditory processing were recommended.
Collapse
Affiliation(s)
- Noor Alaudin Abdul Wahab
- Audiology Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Audiology Programme, School of Rehabilitation Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd. Normani Zakaria
- Audiology Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Abdul Hamid Abdul Rahman
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Dinsuhaimi Sidek
- Department of Otorhinolaryngology, School of Medicine, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Taylor JA, Matthews N, Michie PT, Rosa MJ, Garrido MI. Auditory prediction errors as individual biomarkers of schizophrenia. NEUROIMAGE-CLINICAL 2017; 15:264-273. [PMID: 28560151 PMCID: PMC5435594 DOI: 10.1016/j.nicl.2017.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a complex psychiatric disorder, typically diagnosed through symptomatic evidence collected through patient interview. We aim to develop an objective biologically-based computational tool which aids diagnosis and relies on accessible imaging technologies such as electroencephalography (EEG). To achieve this, we used machine learning techniques and a combination of paradigms designed to elicit prediction errors or Mismatch Negativity (MMN) responses. MMN, an EEG component elicited by unpredictable changes in sequences of auditory stimuli, has previously been shown to be reduced in people with schizophrenia and this is arguably one of the most reproducible neurophysiological markers of schizophrenia. EEG data were acquired from 21 patients with schizophrenia and 22 healthy controls whilst they listened to three auditory oddball paradigms comprising sequences of tones which deviated in 10% of trials from regularly occurring standard tones. Deviant tones shared the same properties as standard tones, except for one physical aspect: 1) duration - the deviant stimulus was twice the duration of the standard; 2) monaural gap - deviants had a silent interval omitted from the standard, or 3) inter-aural timing difference, which caused the deviant location to be perceived as 90° away from the standards. We used multivariate pattern analysis, a machine learning technique implemented in the Pattern Recognition for Neuroimaging Toolbox (PRoNTo) to classify images generated through statistical parametric mapping (SPM) of spatiotemporal EEG data, i.e. event-related potentials measured on the two-dimensional surface of the scalp over time. Using support vector machine (SVM) and Gaussian processes classifiers (GPC), we were able classify individual patients and controls with balanced accuracies of up to 80.48% (p-values = 0.0326, FDR corrected) and an ROC analysis yielding an AUC of 0.87. Crucially, a GP regression revealed that MMN predicted global assessment of functioning (GAF) scores (correlation = 0.73, R2 = 0.53, p = 0.0006). The diagnostic utility of multiple auditory oddball stimulus paradigms is assessed. Greatest classification accuracy was achieved using a monaural gap stimulus paradigm. The full post-stimulus epoch contains relevant discriminatory components.
Collapse
Affiliation(s)
- J A Taylor
- Queensland Brain Institute, The University of Queensland, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Australia
| | - N Matthews
- School of Psychology, The University of Queensland, Australia
| | - P T Michie
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Newcastle, New South Wales, Australia
| | - M J Rosa
- Max-Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, UK; Department of Computer Science, University College London, UK
| | - M I Garrido
- Queensland Brain Institute, The University of Queensland, Australia; School of Mathematics and Physics, The University of Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Australia; ARC Centre for Integrative Brain Function, Australia.
| |
Collapse
|
11
|
Nielzén S, Holmberg J, Sköld M, Nehlstedt S. Brain stem audiometry may supply markers for diagnostic and therapeutic control in psychiatry. Neurosci Lett 2016; 632:163-8. [PMID: 27581525 DOI: 10.1016/j.neulet.2016.08.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022]
Abstract
The purpose of the present study is to try an alternative way of analyzing the ABR (Auditory Brainstem Response). The stimuli were complex sounds (c-ABR) as used in earlier studies. It was further aimed at corroborating earlier findings that this method can discriminate several neuropsychiatric states. Forty healthy control subjects, 26 subjects with the diagnosis schizophrenia (Sz) and 33 with ADHD (Attention deficit hyperactivity disorder) were recruited for the study. The ABRs were recorded. The analysis was based on calculation of areas of significantly group different time spans in the waves. Both latency and amplitude were thereby influential. The spans of differences were quantified for each subject in relation to the total area of the curve which made comparisons balanced. The results showed highly significant differences between the study groups. The results are important for future work on identifying markers for neuropsychiatric clinical use. To reach that goal calls for more extensive studies than this preliminary one.
Collapse
Affiliation(s)
- Sören Nielzén
- Department of Clinical Neuroscience, Section of Psychiatry, Lund, Sweden.
| | | | | | | |
Collapse
|
12
|
Abdul Wahab NA, Wahab S, Abdul Rahman AH, Sidek D, Zakaria MN. The Hyperactivity of Efferent Auditory System in Patients with Schizophrenia: A Transient Evoked Otoacoustic Emissions Study. Psychiatry Investig 2016; 13:82-8. [PMID: 26766950 PMCID: PMC4701690 DOI: 10.4306/pi.2016.13.1.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Electrophysiological studies, which are mostly focused on afferent pathway, have proven that auditory processing deficits exist in patients with schizophrenia. Nevertheless, reports on the suppressive effect of efferent auditory pathway on cochlear outer hair cells among schizophrenia patients are limited. The present, case-control, study examined the contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) in patients with schizophrenia. METHODS Participants were twenty-three healthy controls and sixteen schizophrenia patients with normal hearing, middle ear and cochlear outer hair cells function. Absolute non-linear and linear TEOAEs were measured in both ears by delivering clicks stimuli at 80 dB SPL and 60 dB SPL respectively. Subsequently, contralateral suppression was determined by subtracting the absolute TEOAEs response obtained at 60 dBpe SPL during the absence and presence of contralateral white noise delivered at 65 dB HL. No attention tasks were conducted during measurements. RESULTS We found no significant difference in absolute TEOAEs responses at 80 dB SPL, in either diagnosis or ear groups (p>0.05). However, the overall contralateral suppression was significantly larger in schizophrenia patients (p<0.05). Specifically, patients with schizophrenia demonstrated significantly increased right ear contralateral suppression compared to healthy control (p<0.05). CONCLUSION The present findings suggest increased inhibitory effect of efferent auditory pathway especially on the right cochlear outer hair cells. Further studies to investigate increased suppressive effects are crucial to expand the current understanding of auditory hallucination mechanisms in schizophrenia patients.
Collapse
Affiliation(s)
- Noor Alaudin Abdul Wahab
- Audiology Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Audiology Programme, School of Rehabilitation Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Wilayah Persekutuan, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Wilayah Persekutuan, Malaysia
| | - Abdul Hamid Abdul Rahman
- Department of Psychiatry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Wilayah Persekutuan, Malaysia
| | - Dinsuhaimi Sidek
- Department of Otorhinolaryngology, School of Medicine, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd. Normani Zakaria
- Audiology Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
13
|
Abnormal brainstem auditory response in young females with ADHD. Psychiatry Res 2015; 229:750-4. [PMID: 26275703 DOI: 10.1016/j.psychres.2015.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/14/2015] [Accepted: 08/05/2015] [Indexed: 11/22/2022]
Abstract
Studies have shown that the auditory brainstem response (ABR) is often affected in neurodevelopmental disorders. The aim of this study is to investigate possible differences in ABR between young females with ADHD compared to control subjects. This study focuses on young females, age 7-17 with ADHD, comparing the ABR of 43 young females with ADHD to 21 age- and gender-matched control subjects. Young females with ADHD have a significantly different ABR in a region between cochlear nucleus and superior olivary complex as well as in the thalamic region compared to control subjects. These data indicate specific differences in ABR between girls with ADHD compared to female controls.
Collapse
|
14
|
Wahlström V, Åhlander F, Wynn R. Auditory brainstem response as a diagnostic tool for patients suffering from schizophrenia, attention deficit hyperactivity disorder, and bipolar disorder: protocol. JMIR Res Protoc 2015; 4:e16. [PMID: 25679914 PMCID: PMC4342660 DOI: 10.2196/resprot.3880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/23/2014] [Indexed: 11/23/2022] Open
Abstract
Background Psychiatric disorders, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and bipolar disorder, may sometimes be difficult to diagnose. There is a great need for a valid and reliable diagnostic tool to aid clinicians in arriving at the diagnoses in a timely and accurate manner. Prior studies have suggested that patients suffering from schizophrenia and ADHD may process certain sound stimuli in the brainstem in an unusual manner. When these patient groups have been examined with the electrophysiological method of brainstem audiometry, some studies have found illness-specific aberrations. Such aberrations may also exist for patients suffering from bipolar disorder. Objective In this study, we will examine whether the method of brainstem audiometry can be used as a diagnostic tool for patients suffering from schizophrenia, ADHD, and bipolar disorder. Methods The method includes three steps: (1) auditory stimulation with specific sound stimuli, (2) simultaneous measurement of brainstem activity, and (3) automated interpretation of the resulting brain stem audiograms with data-based signal analysis. We will compare three groups of 12 individuals with confirmed diagnoses of schizophrenia, ADHD, or bipolar disorder with 12 healthy subjects under blinded conditions for a total of 48 participants. The extent to which the method can be used to reach the correct diagnosis will be investigated. Results The project is now in a recruiting phase. When all patients and controls have been recruited and the measurements have been performed, the data will be analyzed according to a previously arranged algorithm. We expect the recruiting phase and measurements to be completed in early 2015, the analyses to be performed in mid-2015, and the results of the study to be published in early 2016. Conclusions If the results support previous findings, this will lend strength to the idea that brainstem audiometry can offer objective diagnostic support for patients suffering from schizophrenia, ADHD, and bipolar disorder. A positive result from the study could imply that brainstem audiometry could become an important supportive tool for clinicians in their efforts to diagnose patients with these disorders in a timely and accurate manner. Trial Registration ClinicalTrials.gov NCT01629355; https://clinicaltrials.gov/ct2/show/NCT01629355 (Archived by WebCite at http://www.webcitation.org/6VBfTwx5H).
Collapse
Affiliation(s)
- Viktor Wahlström
- Division of Addictions and Specialized Psychiatry, University Hospital of North Norway, Tromsø, Norway
| | | | | |
Collapse
|
15
|
Sköld M, Källstrand J, Nehlstedt S, Nordin A, Nielzén S, Holmberg J, Adolfsson R. Thalamocortical abnormalities in auditory brainstem response patterns distinguish DSM-IV bipolar disorder type I from schizophrenia. J Affect Disord 2014; 169:105-11. [PMID: 25173433 DOI: 10.1016/j.jad.2014.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/14/2014] [Accepted: 08/03/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bipolar disorder type I (BP-I) belongs to a spectrum of affective disorders that are expressed in many different ways and therefore can be difficult to distinguish from other conditions, especially unipolar depression, schizoaffective disorder, schizophrenia (SZ), but also anxiety and personality disorders. Since early diagnosis and treatment have shown to improve the long-term prognosis, complementary specific biomarkers are of great value. The auditory brainstem response (ABR) has previously been applied successfully to identify specific abnormal ABR patterns in SZ and Asperger syndrome. METHODS The current study investigated the early auditory processing of complex sound stimuli e.g. forward masking, in BP-I compared to SZ patients. The ABR curves of BP-I patients (n=23) and SZ patients (n=20) were analyzed in terms of peak amplitudes and correlation with an ABR norm curve based on a non-psychiatric control group (n=20). RESULTS BP-I patients had significantly higher wave III (p=0.0062) and wave VII (p=0.0472) amplitudes compared with SZ patients. Furthermore, BP-I patients, and to a lesser extent SZ patients, showed low correlation with the norm ABR curve in the part of the curve comprising waves VI-VII. LIMITATIONS Sample size was relatively small and study groups were not matched for age and gender. CONCLUSIONS BP-I patients showed specific aberrances, specifically in the latter part of the ABR curve, implicating abnormalities in thalamocortical circuitry. The abnormal ABR wave patterns significantly separated BP-I patients from SZ patients suggesting that ABR might serve as a biomarker for BP-I.
Collapse
Affiliation(s)
| | | | | | - Annelie Nordin
- Division of Psychiatry, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | | | | | - Rolf Adolfsson
- Division of Psychiatry, Department of Clinical Sciences, Umeå University, Umeå, Sweden.
| |
Collapse
|
16
|
Källstrand J, Lewander T, Baghdassarian E, Nielzén S. A new method for analyzing auditory brain-stem response waveforms using a moving-minimum subtraction procedure of digitized analog recordings. Neuropsychiatr Dis Treat 2014; 10:1011-6. [PMID: 24944514 PMCID: PMC4057334 DOI: 10.2147/ndt.s59178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The auditory brain-stem response (ABR) waveform comprises a set of waves (labeled I-VII) recorded with scalp electrodes over 10 ms after an auditory stimulation with a brief click sound. Quite often, the waves are fused (confluent) and baseline-irregular and sloped, making wave latencies and wave amplitudes difficult to establish. In the present paper, we describe a method, labeled moving-minimum subtraction, based on digitization of the analog ABR waveform (154 data points/ms) in order to achieve alignment of the ABR response to a straight baseline, often with clear baseline separation of waves and resolution of fused waves. Application of the new method to groups of patients showed marked differences in ABR waveforms between patients with schizophrenia versus patients with adult attention deficit/hyperactivity disorder versus healthy controls. The findings show promise regarding the possibility to identify ABR markers to be used as biomarkers as support for clinical diagnoses of these and other neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Tommy Lewander
- Department of Neuroscience, Medical Faculty, Uppsala University, Uppsala, Sweden
| | - Eva Baghdassarian
- Department of Neuroscience, Medical Faculty, Uppsala University, Uppsala, Sweden ; Department of Psychiatry, Uppsala University Hospital, Uppsala, Sweden
| | - Sören Nielzén
- Department of Psychiatry, Medical Faculty, University of Lund, Lund, Sweden
| |
Collapse
|
17
|
Tarasenko MA, Swerdlow NR, Makeig S, Braff DL, Light GA. The auditory brain-stem response to complex sounds: a potential biomarker for guiding treatment of psychosis. Front Psychiatry 2014; 5:142. [PMID: 25352811 PMCID: PMC4195270 DOI: 10.3389/fpsyt.2014.00142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022] Open
Abstract
Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.
Collapse
Affiliation(s)
- Melissa A Tarasenko
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System , La Jolla, CA , USA ; Department of Psychiatry, University of California San Diego , La Jolla, CA , USA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego , La Jolla, CA , USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego , La Jolla, CA , USA
| | - David L Braff
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System , La Jolla, CA , USA ; Department of Psychiatry, University of California San Diego , La Jolla, CA , USA
| | - Gregory A Light
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System , La Jolla, CA , USA ; Department of Psychiatry, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
18
|
Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities. Am J Otolaryngol 2013; 34:646-51. [PMID: 23953938 DOI: 10.1016/j.amjoto.2013.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/29/2013] [Accepted: 07/08/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE AND BACKGROUND Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. PATIENTS AND METHODS Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. RESULTS The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (p<0.05). However, the absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively). In the subgroup consisting of 10 patients suffering from 'other learning disabilities' and who were characterized as with 'light' dyslexia according to dyslexia tests, no significant delays were found in peak latencies A and C and interpeak latencies A-C in comparison with the control group. CONCLUSIONS Acoustic representation of a speech sound and, in particular, the disyllabic word 'baba' was found to be abnormal, as low as the auditory brainstem. Because ABRs mature in early life, this can help to identify subjects with acoustically based learning problems and apply early intervention, rehabilitation, and treatment. Further studies and more experience with more patients and pathological conditions such as plasticity of the auditory system, cochlear implants, hearing aids, presbycusis, or acoustic neuropathy are necessary until this type of testing is ready for clinical application.
Collapse
|
19
|
Current world literature. Curr Opin Psychiatry 2013; 26:231-6. [PMID: 23364282 DOI: 10.1097/yco.0b013e32835dd9de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|